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ABSTRACT

This paper presents a new approach to intrusion detection that sup-
ports the identification and analysis of network anomalies using
an interactive coordinated multiple views (CMV) mechanism. A
CMV visualization consisting of a node-link diagram, scatterplot,
and time histogram is described that allows interactive analysis
from different perspectives, as some network anomalies can only
be identified through joint features in the provided spaces. Spectral
analysis methods are integrated to provide visual cues that allow
identification of malicious nodes. An adjacency-based method is
developed to generate the time histogram, which allows users to
select time ranges in which suspicious activity occurs. Data from
Sybil attacks in simulated wireless networks is used as the test bed
for the system. The results and discussions demonstrate that in-
trusion detection can be achieved with a few iterations of CMV
exploration. Quantitative results are collected on the accuracy of
our approach and comparisons are made to single domain explo-
ration and other high-dimensional projection methods. We believe
that this approach can be extended to anomaly detection in general
networks, particularly to Internet networks and social networks.

Categories and Subject Descriptors

1.3.6 [Computer Graphics]: Methodology and Techniques—In-
teraction Techniques; H.5.2 [Information Systems]: Information
Interfaces and Presentation—User Interfaces; C.2.0 [Computer-
Communication Networks]: General—Security and Protection

General Terms
Algorithms, Security
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Coordinated multiple views, spectral analysis, security visualiza-
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VizSec ’10, September 14, 2010 Ottawa, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0013-1/10/09 ...$10.00.

1. INTRODUCTION

Accurate and timely detection of network intrusions is a crucial
component for many security and privacy applications. Some in-
trusions are notoriously difficult to detect due to their complexity
and number of variations. Attackers can often easily modify their
patterns and signatures to hide from existing detection approaches.
Therefore, exploring features of network anomalies during attacks
can fundamentally improve various intrusion detection methods.

Several single domain exploration methods for analysis of secu-
rity data have been developed, as described in our related work in
Section 5. Approaches such as these can often overcome the limits
of algorithmic methods by integrating interactive exploration with
visualizations. However, single domain approaches are not capable
of exploring network anomalies across different domains. Such ca-
pabilities can be vital in identifying complex intrusions, especially
attacks that can be identified only by comparing and correlating
several different criteria. The system described in this paper com-
bines node-link diagrams (referred to as the graph domain) with a
derived spectral domain. The temporal domain, while crucial to
the beginning of an analysis session, is discussed to a lesser extent.
Each domain provides a different perspective and can manifest fea-
tures of the data that the others cannot.

Specifically, this paper presents a CMV approach that facilitates
the detection of network anomalies based on changes in network
attributes when attacks occur. We concentrate on exploring net-
work features in the graph and spectral domains. The visualization
of the graph domain is shown via a node-link diagram, in which
node clustering and connectivity can be explored. The visualiza-
tion of the spectral space represents network nodes as points in a
scatterplot, in which anomalous node distributions can be detected
through the spectral analysis approaches described in Section 2.1.
The temporal domain is visualized as a time histogram of node ac-
tivity, which allows users to identify and select temporal ranges
during which attacks are likely to have occurred. This CMV ap-
proach facilitates the exploration of network features using all of
the temporal, spectral, and graph domains, thereby providing an
effective network anomaly detection solution.

The system described in this paper has been designed to facilitate
the detection of Sybil attacks in a time-varying setting. Detection is
achieved via the linked visualizations which allows iterative explo-
ration of network features. Because attacks cannot be consistently
detected without closely selecting the attack time range, a time



histogram is provided to guide users in choosing time ranges in
which attacks are likely to have occurred. Several interaction tech-
niques are provided that are designed specifically for facilitating
the detection of network anomalies, particularly through explor-
ing subgraphs and examining features of interest in both the graph
and spectral spaces. An application of the described approach is
demonstrated by detecting Sybil attacks in simulated wireless net-
works. Neighbor relationships are collected among the wireless
nodes during a selected time period and the accumulative results
are converted into an adjacency matrix. Then spectral and network
graph based analysis techniques are applied to the matrix to cre-
ate several dimensions that are used in the visualizations. Both
case studies and quantitative results are presented to evaluate the
effectiveness of the described approach. The CMV exploration ap-
proach is also compared to single domain exploration and other
high-dimensional projection methods.

The main contribution of this paper is a CMV exploration ap-
proach that facilitates detection of network anomalies based on fea-
ture inspection in spectral, graph, and temporal domains. The de-
scribed system provides suitable visualizations of the graph, spec-
tral, and temporal spaces and interactive exploration mechanisms
necessary for detecting anomalies and identifying malicious nodes.
Spectral analysis metrics are incorporated into the intrusion de-
tection procedures and visualization, particularly the spectral non-
randomness measurement. These metrics are shown to be useful in
the intrusion detection process.

The remainder of this paper is organized as follows. In Section 2
we introduce the background of spectral analysis and Sybil attacks.
Section 3 presents the CMV exploration approach, including the
design of the graph, spectral, and temporal spaces as well as CMV
interaction mechanisms. Section 4 describes the experimental re-
sults including case studies and quantitative data. Comparative re-
sults are also presented between the described approach and other
high-dimensional projection and single domain detection methods.
We review related work on spectral analysis, Sybil attack detec-
tion, and interactive visualization techniques in Section 5. Finally,
we conclude and discuss future work in Section 6.

2. NETWORK BACKGROUND
2.1 Spectral Analysis

Topological data is commonly collected in network applications,
since it is extremely important for routing. A global network topol-
ogy records the connectivity relationships among all the wireless
nodes. This section describes how spectral analysis can be used to
analyze network features in the topology data.

While there are many different mechanisms to describe a net-
work topology, the most straightforward scheme is the adjacency
matrix. If there are n nodes in the network, we can construct a
n X n matrix based on the neighboring relationships among them.
Generally an entry of ‘1’ implies that the two corresponding nodes
are neighbors and *0’ if they are not connected. As a special case,
we define that a node is not the neighbor of itself, so that true neigh-
bor relationships amongst nodes can be emphasized.

Let A = (aij)nxn denote the n x n adjacency matrix of the net-
work. Since we assume that the neighbor relationship is mutual, A
is a symmetric matrix and A = A”. Since we assume that a node
cannot connect to itself, all the elements on the main diagonal are
equal to 0. By the spectral theorem, all eigenvalues of the matrix A

are real. Now let us use A; to denote the i-th largest eigenvalue of
A associated with unit eigenvector x;. Hence, the spectral decom-
position of A can be represented as A = Z?:l )\Zasza:lT Here we
use x;; to denote the j-th element in the vector ;. The value of
x;; represents the role of the j-th node in the eigenvector x;.

Suppose the network contains k node communities. Therefore,
the largest k eigenvalues and eigenvectors reflect the nodes’ asso-
ciation to the £ communities. The i-th eigenvalue indicates the
density of community 4. If node j is a central node in community 3,
xi; has a large value while z;; ~ 0 for [ # j. Figure 1 illustrates a
network containing three node communities. Here nodes B, C, and
D are the central nodes of the communities and their corresponding
elements in the eigenvectors have the largest values.

Figure 1: A network with three node communities.

Based on these observations, we can define the non-randomness
of node 7 as follows [31]:

k
j=1

This metric combines the centrality of the node to the £ communi-
ties and is weighted by the density of each community. Therefore,
the non-randomness measures the node’s contribution to the whole
network. In Figure 1, the central nodes of the communities have
large non-randomness values, while the singleton and noise nodes
have small values.

If all the nodes in a network connect to each other independently
and randomly, the contribution of nodes to the network topology
is directly related to their degree of node connectivity. The more a
node connects to the others, the more central role the node plays.

Given the degree of connectivity, d;, we expect that the non-randomness

measures of those nodes with the same degree are approximately
the same, and those nodes deviated from the majority have a higher
probability to be the anomalies. If the node ¢ connects randomly to
the rest of the network, its non-randomness value follows the nor-
mal distribution whose expectation and variance are upper bounded
as follows:
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where Z; denotes the average value of x;: Z; = %Z?:l Tji.

Therefore, one reasonable strategy is to label node 4 as an anomaly
if Ri > E(R;) + ¢y/V(R:). Here the value of € controls the
detection sensitivity. For normal distribution, if ¢ = 2, E(R;) +



24/ V(R;) covers more than 95% probability. In practice, we sub-
stitute E(R;) and V (R;) with their upper bounds shown in (2) and
(3), respectively.

We are able to make use of these metrics to detect Sybil attacks,
which often produce anomalous connectivity patterns when attack-
ing network resources. Features of Sybil attacks are explored in the
following section.

2.2 Sybil Attack

The Sybil attack is a particularly harmful attack on wireless net-
works [5]. This attack has been demonstrated to be detrimental
to many important network functions. In a Sybil attack, a single
malicious node plays the roles of multiple legitimate members of
the network by impersonating their identities or claiming fake IDs.
If there is a group of collusive attackers, each of them can pre-
tend to be the whole group simultaneously at different places in the
network, thus manipulating the results of localized voting or data
aggregation. Furthermore, Sybil attacks can allow malicious nodes
to take control over the entire network by compromising a limited
number of physical devices, and defeat the replication mechanisms
in distributed systems.

Specifically, when the malicious node sends out network packets
with different IDs, the same group of neighbors receive these pack-
ets. Therefore, the fake IDs often have many of the same neigh-
bors. When we apply the spectral analysis approach described in
Section 2.1 to the scenario, we find that these fake IDs actually
form a node community as they move together. Therefore, the non-
randomness values of these nodes should be high. On the other
hand, if we consider a wireless ad hoc network in which every le-
gitimate node moves randomly and independently in the area, their
neighbors change continuously and the non-randomness values are
much smaller. Therefore, for legitimate nodes, the average similar-
ity of their neighbors decreases sharply over time, as shown in Fig-
ure 2. Conversely, the average similarity of malicious nodes should
remain significantly higher over time than that of legitimate nodes.
This difference in non-randomness values provides a new metric by
which we can distinguish between suspicious and legitimate nodes.
Section 4 provides more experiment results.
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Figure 2: Relationship between the neighbor similarity of the
legitimate nodes and the monitored duration.

Based on the previous description, we find that the spectral anal-
ysis approach alone cannot guarantee the detection of the Sybil
nodes. The challenge is to select a suitable time range for analysis.
If we only consider the adjacency matrix at a specific moment, two
legitimate nodes in a wireless ad hoc network may be close to each
other and thus share many common neighbors. In this case, we can-
not distinguish this condition from the cases in which several Sybil

IDs spoof the same physical device and move in a coordinated fash-
ion. Therefore, using data from individual time steps may result in
high false positive rates. However, when we look at the neighbor
relationship for a longer time duration, the neighbors of the legiti-
mate nodes are generally significantly different. To better quantify
such changes, we define the ratio between the radio communica-
tion range of the wireless nodes and their highest moving speed as
one unit time. For example, two nodes C' and D are at the same
position. If C' is static and D is moving in a random direction at
the highest speed, after one unit time they will no longer be neigh-
bors. Figure 2 illustrates the changes of the neighbor similarity of
legitimate nodes as the monitored duration increases. Over time,
legitimate nodes are less likely to have the same neighbors. Based
on the results in Figure 2, we choose a minimum detection period
around 10 units of time. The adjacency matrices are aggregated
during the detection period to calculate the non-randomness values
of all the nodes. This value, combined with the connectivity degree
of the node, gives us a number of outliers when an attack is oc-
curring. By identifying these clusters and utilizing the interaction
techniques in the visualizations, a user can find the malicious nodes
and the node they impersonate.

3. COORDINATED MULTIPLE VIEWS EX-
PLORATION

This section describes the details of our CMV visualization ap-
proach. We first present our design of CMV exploration, which
visualizes network features from a selected time range in both the
graph space and spectral space. A time histogram based on ad-
jacency matrices is then described that suggests possible attack
durations through network information. Additionally, we present
several necessary CMV interaction methods, which are designed
specifically to facilitate the detection of network anomalies.

3.1 Visualization Design

The system design objective is to facilitate the detection of anoma-
lous behaviors in networks for a given time range. In order to
achieve detection with certainty, we provide visualizations and in-
teractions for the graph, spectral, and temporal spaces. As such,
the system makes use of coordinated multiple views by connect-
ing multiple visualizations of the same data and updating all views
based on user interaction in any view. What follows is an overview
of our system design.

The results of the spectral analysis yields several useful metrics.
These results are utilized in a visualization system which provides
a workspace where various network features can be analyzed. The
spectral analysis yields high-dimensional data, so to facilitate ef-
fective interaction we project the data to a 2D sub-spectral space
and render them in a scatterplot visualization. For analyzing net-
work features from different spectral dimensions, we allow users
to select any two dimensions of the spectral space as the axes of
the scatterplot. Figure 3 shows two examples of the spectral space
visualization. The image on the left visualizes the first two dimen-
sions of the spectral space, and the right represents the degree and
non-randomness metrics. Nodes determined to be suspicious by the
spectral analysis methods are colored light blue. For convenience,
nodes that are known to be malicious are shown in dark blue.

In particular, we integrate the spectral analysis method which
measures the non-randomness features of network node distribu-
tions. We have found this metric to be particularly useful when
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Figure 3: Visualization of the spectral space.

searching for suspicious activity in network data. Visualizing the
spectral analysis results allows the user to identify and explore a
number of outliers in the network. However, such outliers will of-
ten contain both malicious and legitimate nodes. Therefore, the
outliers must be examined further, preferably in other domains such
as the graph space, to better determine their threat status.

In contrast to the spectral space, network visualization has been
studied extensively. As such, we visualize the graph space with
a node-link diagram, which visualizes the connectivity relation-
ships of network nodes. Interactions (described in Section 3.2) are
well suited to node-link diagrams (as opposed to matrix visualiza-
tions). As such, several interaction techniques are provided that
allow users to select subgraphs in order to reveal clustering and
distribution relationships among the nodes. As Figure 4 shows, our
node-link diagram can show isolated subgraphs and highly con-
nected nodes, which are features of Sybil attacks.

The temporal space is visualized as a time histogram. The time
histogram is designed to guide users to select suspicious durations
in which the network may be under attack. Effective analysis of
temporal information is often crucial to intrusion detection. This
problem is relevant to this work because an accurate selection of
the attack duration is closely related to the ratio of successfully de-
tected malicious nodes. The purpose of the time histogram is to
project our input data as network adjacency matrices from a rela-
tively large time duration (on the order of thousands) to a 2D space
that reveals useful visual patterns. This method provides a suitable
start for users to identify potential attack durations. An example of
areas of interest and user selection is shown in Figure 5. Without
the time histogram, users would have to estimate the attack time
range, which makes it difficult to accurately detect complex or sub-
tle attacks over a long period of time.

Specifically, we construct a time histogram based on the data
from all of the time steps. In the time histogram visualization, the
Y axis is evenly divided according to the number of nodes, and the
X axis represents time steps (or time divisions if the number of time
steps is larger than the number of horizontal pixels on the screen, as
explained in the following paragraph). The connectivity degrees of
all nodes are mapped to intensity values, with white being highly
connected and black representing no connections. To better show
regions of interest, a logarithmic scaling factor is applied to the
intensity values. Using this view, users can select time ranges of

interest by finding areas of increased activity and selecting the cor-
responding range on the X axis.

If the average number of time steps in the data used is greater
than the number of horizontal pixels on the screen, the system col-
lapses time steps evenly in order to show the entire time range on
normal-sized computer screens. For example, if the number of time
steps is 10,000 and the screen width is approximately 1000 pixels,
the system will divide the time range into bins of 10 time steps each
and use this data in the time histogram.

3.2 Interaction

The node-link view provides several basic interactions. Trans-
formation interactions include zooming and panning. Users may
change the layout algorithm (force-directed, radial, et cetera) as
needed. Selection interactions include box and individual node se-
lection, and all selected nodes are highlighted in the scatterplot
view. Showing selected nodes in all views assists the user in de-
termining which outliers are indeed malicious nodes.

Since the spectral space shows the results of non-trivial statisti-
cal analysis, we expect that users will usually begin their interaction
process there. As such, a larger set of interaction capabilities are
provided for this view. Like the node-link view, box and individ-
ual selections on the spectral space scatterplot are reflected in the
node-link view. To explore scatterplot selections further, the user
may temporarily show a new graph containing only the selected
nodes. This allows the identification of suspicious sub-graphs and
connectivity patterns.

Because the spectral analysis provides several metrics (eigenvec-
tors, non-randomness, degree), our system allows any of them to be
placed on the X and Y axes via drop-down menus. This gives the
user several possible spaces in which they can find patterns and
outliers. Users can adjust the matrix accumulation threshold with
the provided interface components. The suspiciousness threshold
value from the spectral analysis can also be altered, which increases
or decreases the number of automatically-detected outliers. We ex-
pect that users will be able to place more confidence in their selec-
tions of suspicious nodes by choosing subsets of nodes that have
already been determined as suspicious by the spectral analysis.

Dual domain interaction is necessary to allow iterative explo-
ration of hypotheses regarding malicious nodes. Simply identi-
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(b) Double-attack Time Histogram

Figure 5: Time Histogram Example: Note the semi-continuous
lines at the top of the view in 5(a). In this case, the suspicious ac-
tivity occurs during the entire duration of the simulation. See-
ing this pattern, a user will know to select the entire time range
to get more accurate spectral analysis results. Similar results
are shown in 5(b), where each area of interest (illustrated as
red and blue boxes) indicates an area in which a rise in activity
is seen.

fying outliers is not sufficient, as oftentimes non-malicious nodes
are found among the outliers, since some nodes in a network ex-
hibit connectivity patterns different from most other nodes (a mail
server, for instance). By allowing users to redraw the graph with
only the nodes of interest selected in the scatterplot, users can gather
additional information about the nodes that are outliers. For exam-
ple, since it is known that Sybil nodes tend to communicate fre-
quently [5], they will be shown as a highly connected subgraph
whereas benign nodes will often form multiple subgraphs. Users
may then make selections in the node-link view identifying the re-
maining suspicious nodes and continue interaction in the scatter-
plot view by adjusting the threshold and time ranges to explore the
patterns in the refined list of suspicious nodes.

3.3 Detection Solution

The challenges of detecting malicious activity in a given time
duration are two-fold. First, a suitable detection strategy must be
developed to distinguish between anomalous and normal network
features. Second, users are often required to modify potential attack
durations for better detection accuracy. Since these two problems
are closely related, it is particularly challenging for users to explore
solutions for both of them. The described CMV visualization is
designed to provide a platform that addresses these issues by giving
users the tools needed to analyze complex detection problems.

We use data from Sybil attacks in simulated wireless networks
to test our system. Our input data gives an adjacency matrix for
each time step. When the user selects a time range, the matrices
for the selected time steps are added together to generate an ac-
cumulation matrix. A new adjacency matrix is then generated by
applying a user-defined threshold value to the accumulation matrix.
For example, if the threshold value is 100, then any element in the
accumulation matrix that is below 100 will be set to 0, and any
element larger than or equal to 100 will be set to 1. This derived
adjacency matrix is analyzed using the spectral methods, and the
results are reflected in all of the visualization views.

According to the properties of Sybil attacks, we identify the at-
tack features in all three components of our CMV visualization. As
we describe in Section 3.1, malicious nodes are often clustered in
the graph space. They will also be classified as outliers under the



spectral non-randomness measurement. Oftentimes, they can be
initially identified by bright, continuous line segments in the time
histogram. However, selections in the time histogram must be ex-
amined further in the other views to confirm malicious activity.

Based on the network features in the components of our CMV vi-
sualization, we develop an effective mechanism to locate the Sybil
nodes. Specifically, users start from the time histogram view to se-
lect a suspicious time duration with the illustrated line patterns. The
system accumulates the network adjacency matrices within this du-
ration and produces a (0, 1)-matrix as described above. After the
spectral analysis is performed, both the graph space and spectral
space are visualized automatically according to the selected time
duration. Then users can utilize the provided interactive explo-
ration methods to search for related attack features in both spaces.

The advantage of our approach is as follows. Once a malicious
node is identified, due to the group nature of Sybil identities, we
can quickly locate other “partner” nodes by visualizing the highly
connected clusters in the graph space. We can remove all the ma-
licious nodes from the network and repeat our detection strategy,
until the network is clear. A network can be identified as clear if all
the outliers in the spectral space do not appear in the same clusters
in the graph space.

It is worth mentioning that the same pre-determined attack du-
ration will not satisfy the detection requirements under different
conditions. For example, if the selected time duration is too long,
the attack features will be hidden under the noise in the network.
On the other hand, if the duration is too short, we will not be able
to distinguish Sybil identities from legitimate nodes that happen to
move as a group. We experiment with different values of the dura-
tion and the results are presented in Section 4.

Our prototype system is implemented using the Java language
and a combination of JUNG (Java Universal Network / Graph Frame-
work)[9], JOGL (Java bindings for OpenGL)[23], and MATLAB(8].
JUNG is an open-source library for displaying node-link diagrams.
The matlabcontrol library[10] is used to make calls to MATLAB
from Java throughout the interaction process to allow convenient
and timely calculations for the spectral analysis.

4. RESULTS AND DISCUSSIONS

In this section, we first describe two case studies that demon-
strate how our CMV exploration approach can be used for detect-
ing network anomalies. We then present our simulation results to
evaluate the effectiveness of our approach. We also compare our
CMV exploration approach to other single domain methods and
high-dimensional projection mechanisms such as MDS and PCA.

4.1 Case Studies

Two case studies are provided to demonstrate the robustness of
our approach. In the first example, malicious nodes that attack ex-
tensively in a short time duration are identified. In the second exam-
ple, we show the need for the CMV exploration by studying a more
subtle variant of Sybil attacks. Both studies demonstrate that the
described CMV exploration can be used to detect malicious nodes
that are difficult to locate when only using single domain detection
methods.

In the first case study, the goal is to identify Sybil nodes that
are attached to the same physical device. Initially, our system pro-
vides the visualization of the entire time duration, as shown in Fig-
ure 6(a). The user may select some of the seemingly clustered
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(a) Initial view of all timesteps. The red box in the time his-
togram represents a user selection of a time range. The results
of this selection are shown in the following figure.
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justing accumulation thresholds, and creating a subgraph of
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(c) Results for the entire time duration. Malicious nodes are
shown in dark blue for reference.

Figure 6: Snapshots from the first case study.



points at the right of the scatterplot and re-calculate the node-link
diagram, but will find that these form several separate subgraphs,
which is not indicative of attacking nodes. Therefore, the user must
further leverage the interactive capabilities of the system further to
find suspicious activity. The first step is to select a suitable time
duration. In the time histogram, the user notices several areas in
which multiple nodes have increased activity that is sustained over
a certain time period (that is, a range along the X axis) as shown in
Figure 6(a). By selecting these time ranges and examining nodes in
the spectral and graph spaces for related clusters, the user will be
able to determine which nodes exhibit patterns of an attack. Specif-
ically, when the user reaches the time range indicated by the red
box in the time histogram of Figure 6(a), the user is shown the up-
dated graph and spectral space visualizations. The user then selects
the degree and non-randomness measures for the X and Y axes, re-
spectively. This results in a number of nodes being automatically
labeled as suspicious (colored light blue).

After adjusting the threshold to examine how the outliers change,
the result in the top right of Figure 6(b) is shown. By selecting
the nodes with the largest non-randomness values, the user reduces
the node-link diagram to a small number of nodes. It is immedi-
ately obvious that of the outliers shown in the graph view, some
are highly connected and some are not. If the highly connected
subgraph does not have such a regular structure, the user can fur-
ther refine her/his selections through interacting with the spectral
space visualization. At this point, by finding several nodes clus-
tered in both the spectral and node-link spaces, all malicious nodes
in the selected time range are correctly identified. The final detec-
tion result is shown in Figure 6(c). Comparing Figures 6(a) and
6(c), we can see that this Sybil attack does not show an obvious
pattern in the initial view. Rather, it can only be detected by the re-
lated features from both views. After the nodes responsible for the
first attack have been identified, the user can take the list of mali-
cious nodes and see if they are responsible for the second attack by
comparing their identification attributes to the results of performing
similar interactions on the second suspicious time range.

In the second case study, the user must identify the nodes respon-
sible for a different style of Sybil attack. An initial visualization
for the entire time duration is shown in Figure 7. This case is in-
teresting, since the view that contributes the most to a successful
identification is the node-link diagram, and the spectral space visu-
alization is used to verify the results. Via the time histogram, the
user will notice that there is a sustained activity rate in some nodes
across the entire network. It should be noted that sustained activity
does not always imply malicious activity, but only suspicious ac-
tivity. For example, a highly visited web server can generate high
activity throughout the network lifetime.

Since this particular attack occurs throughout the entire dataset,
the initial view that shows the entire time range will show outliers
in the node-link view. This is demonstrated in 7(a). The user will
confirm this by selecting the high activity portion of the time his-
togram, which happens to span most of the temporal space. After
adjusting the threshold values higher to accommodate a larger time
range, the user will observe that the outlying nodes are communi-
cating to only one node. The user can then select these nodes in
the graph space visualization and see where they lie in the spectral
space. As shown in Figure 7(b), it turns out that all the nodes are
classified as the same point when the user selects eigenvectors 1
and 2 as their respective X and Y axes in the spectral space. The
user can conclude that this is highly suspicious activity and mark
the outlier nodes and their proxy for isolation and investigation.
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(b) Results after confirming the time range on the the time his-
togram and selection of the outliers in the graph view. The
proxy is selected in the graph space (yellow) and the Sybil
nodes are selected through the outlier in the scatterplot (green).
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that a correct temporal range selection is crucial.

Figure 7: Snapshots from the second case study.



Comparing the locations of malicious nodes from Figures 7(a) and
7(c), we can see that they are hidden in the original spectral space
without the information from the graph space.

4.2 Quantitative Results

This subsection presents the simulation results of the described
approach. We first introduce the configuration of the simulated net-
work. The detection accuracy of the proposed approach and its re-
lationship to the parameters of the mechanisms are then presented.

Simulation Setup

The experiments are conducted in two phases. In the first phase,
we simulate the network topology changes of a wireless ad hoc net-
work that are caused by node movement. In the second phase, our
detection approach is tested on detecting Sybil attacks and locating
the fake identities. The mobile nodes are deployed in a square area
with the size of 1400 x 1400m?. The radio communication range
r of the wireless nodes is set as 250m, and any two nodes having a
distance shorter than r can directly communicate to each other.

Within the simulated area, 100 nodes are randomly and uni-
formly distributed. We adopt the random trip movement model
proposed in [2] to describe the moving patterns of the nodes. We
assume that the highest moving speed of the nodes is 5 m/s. In
every simulation, we sample the network topology at the interval
of r/highest speed. Totally 200 samples of the network topology
are collected during the simulation period. Within the network,
we randomly choose one to five nodes to act as the attacker. Each
malicious node can interact with other nodes using two identities
simultaneously. We assume that the legitimate nodes cannot iden-
tify those fake identities by examining the properties of the radio
signals. We generate twenty-two initial node deployments in the
network. For each node deployment, we produce ten different node
movement patterns.

The detection accuracy of the proposed approach is evaluated by
the false alarm rate. Specifically, we consider two types of rates:
false positive and false negative. In a false positive mistake, a legit-
imate node is incorrectly identified as an attacker. In a false nega-
tive alarm, a Sybil node is incorrectly identified as a legitimate user.
The simulation results show that some parameters of the proposed
approach have opposite impacts on the two false alarm rates and
some tradeoff must be carefully assessed.

Simulation Results

Figure 8 illustrates the detection results when we apply only the
spectral mechanism. Here we investigate the relationship between
the detection accuracy and the parameters of the spectral method.
We are interested in the impact of two parameters: threshold and
delta. Specifically, we use the average results of three selected
attack datasets for each value of threshold and delta shown in
Figure 8. Since the adopted spectral mechanism can analyze only
(0,1)-integer matrices, the first parameter threshold is used to con-
vert the accumulated adjacency matrix into a (0,1) matrix by com-
paring the connectivity counts of the nodes to the selected thresh-
old value. We can see that the selected threshold value will di-
rectly impact the detection results. As the threshold increases, the
Sybil nodes stand out because of the consistency of the connections
among the fake identities. This leads to a lower false negative rate.
However, as the threshold increases, the expectation value E() in
Equation 2 starts to decrease and more legitimate nodes with a large
non-randomness value fall into the suspicious area. Therefore, the

false positive rate increases as well. Figure 8.(a) shows the relation-
ship between the false alarm rates and the selected threshold value,
which is measured by the number of unit time as defined in Section
2. Here the parameter delta has the fixed value 5. We can see that
the changes of the curves match our analysis.

Similar analysis can be applied to the choice of the parameter
delta. The parameter threshold is fixed as 12. As the value of delta
increases, we define a wider range of the non-randomness value for
the legitimate nodes. Therefore, fewer legitimate nodes will be in-
correctly labeled as attackers and we will have a lower false positive
rate. However, the wider range of the non-randomness values will
make it more difficult for us to distinguish the Sybil nodes from the
legitimate identities and lead to a higher false negative rate. The
results in Figure 8.(b) demonstrate such changes.
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Figure 8: Detection accuracy of the spectral approach. The red
line indicates the percentage of the malicious nodes that are de-
tected; the green line indicates the percentage of the malicious
nodes that are not detected; and the blue line indicates the per-
centage of legitimate nodes that are incorrectly labeled as Sybil
nodes.

The results in Figure 8 show that the spectral analysis approach
alone can not provide sufficiently accurate detection capabilities.
Figure 9 illustrates the simulation results of our CMV exploration
approach. For a fair comparison between the single spectral do-
main approach and our CMV approach, we use the same parame-
ter delta in Figure 9(a) and parameter threshold in Figure 9(b) as
those in Figure 8. The only difference is that a wireless node in
our approach is labeled as a Sybil identity only when it demon-
strates anomaly in both domains, specifically the topology value of
this node is above the threshold and it is located above the delta
specified non-randomness curve. Here a wireless node is labeled



as a Sybil identity only when it demonstrates anomaly in both do-
mains. The results in Figure 8 and 9 demonstrate that our CMV
exploration approach can help reduce both false positive and false
negative mistakes. The percentages of the missed malicious nodes
are reduced from [0, 0.35] to [0, 0.2] and the percentages of legiti-
mate nodes that are incorrectly labeled as Sybil nodes are reduced
from [0.05, 0.3] to [0.02, 0.08].
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Figure 9: Detection accuracy of the CMYV approach.

4.3 Discussion

While there are several different mechanisms that can be used to
calculate the primary components of a matrix, we choose the spec-
tral approach over other schemes because of its simplicity and con-
sistency in visual representation. For example, the multi-dimensional
scaling (MDS) mechanism [25] can reconstruct the relative posi-
tions of the nodes based on their neighbor relationships. However,
the reconstructed result can rotate freely before the positions of sev-
eral anchor nodes are determined. To better justify our decision,
we compare the spectral analysis results with the results of princi-
pal component analysis (PCA) [28] and MDS. In Figure 10, we can
see in all three schemes the attackers are outliers. However in the
spectral space, the malicious nodes are always at the upper-right
corner in the space, since they have large non-randomness values.
Therefore, users may consistently focus their attention on these re-
gions during the interactive detection process and disregard entities
below the decision line in the spectral space. In contrast, PCA and
MBDS produce an inconsistent positioning of clusters, so users must
explore all the different clusters to find malicious nodes.

Performance for the described system can be discussed in terms
of visualization and spectral scalability. Since the most detailed
analyses are performed in the scatterplot and node-link diagrams,
these are of particular interest in terms of performance.

The limitation of the node-link approach is that it can only visu-
alize several hundred nodes effectively on a normal sized display.
To address this limitation, the proposed system can easily make
use of more effective space filling algorithms, or could implement
an administrator-defined hierarchical schema based on the network
being observed, along with the necessary interactions to handle
hierarchical constructs. Scatterplots are also limited in terms of
screen space. However, since users will usually filter out nodes
classified as normal by the spectral analysis, this is only a problem
if the number of outliers is in the thousands when the user has a
normal sized display.

Our detection solution and case studies have demonstrated that
Sybil attacks cannot be successfully detected with a high degree of
certainty by using the graph space or spectral space visualizations
alone. However, by facilitating the detection of attack features in
the graph, spectral, and temporal domain, users may isolate mali-
cious nodes in a timely and accurate manner.

S. RELATED WORK

Interactive detection of intrusion attacks is a popular topic in
security visualization. For clarity, we only review the most rele-
vant work on spectral approaches for analyzing network properties,
Sybil attack detection methods, and interactive networking detec-
tion and CMV exploration methods.

5.1 Spectral Approaches

Spectral methods are a part of graph theory, and have been shown
useful in applied mathematics and scientific computing. However,
to the best of our knowledge, there have not been many spectral ap-
proaches in visualization. The most related work is an introduction
of spectral methods by Seary and Richards, who applied spectral
methods to discover cohesive clusters and localized features of a
network [21]. This paper is the first spectral visualization approach
to secure a wireless network.

In the field of network analysis, researchers have explored spec-
tral methods to describe network properties and their relationships.
For example, Ying and Wu [30] proposed a spectral property pre-
serving mechanism to study important topological features of net-
work data. Their approach could better study the general proper-
ties of the social networks. Wang er al. [26] proposed a graph
theoretical approach with diffusion and spectral methods based on
their previous evidence graph model. Their graph spectral methods
could identify crucial elements and patterns of attack by extracting
the important graph structure. Our CMV exploration approach pro-
vides a platform to integrate suitable spectral analysis methods for
intrusion detections.

5.2 Sybil Attack Detection in Network

Sybil attack is a harmful attack on distributed systems and wire-
less networks [5]. Newsome et al. have systematically classified
these attacks into several types and analyzed their threats to wire-
less sensor networks [17]. The following provides a brief survey of
Sybil attack detection methods in the field of security. In contrast to
these methods, our approach does not require any special devices
or hard assumptions on the network scenarios.

Based on the detection mechanisms, we divide the previous ap-
proaches into three categories: identity, location, and signal-print
based methods. Identity-based approaches usually mitigate the Sybil
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Figure 10: Comparison among the mechanisms of (a) MDS, (b) PCA, and (c) spectral. The blue stars are Sybil nodes and the green

dots are legitimate ones.

attacks by limiting the generation of valid node information, such
as the pre-distributed secret keys [17]. For example, a detection
approach was proposed for vehicular ad hoc networks through pos-
sible explanations for collected data of each node [7].

Location-based approaches utilize the fact that each node can
only be at one position at a specific moment. Localization algo-
rithms, such as SeRLoc [14], were proposed to allow sensors to de-
termine their locations under known attacks including Sybil attack.
The geometric properties of message transmission delay were also
explored to reduce the impacts of Sybil attacks [1]. In [19], every
node signed its ID and position and sent this information out in sev-
eral random directions. The different positions signed by multiple
replications of the same node had a high chance of being detected.

In the signal-print based detection mechanisms, the investigators
attempt to collect the properties of the radio signals and detect the
false claims of the node identities. For example, in [6], multiple
access points measured the signal strength from a node to form the
signalprint and used it to detect Sybil nodes. A similar idea was
adopted in [4]. The approach in [29] integrated a series of position
claims and witness reports in VANETS to detect Sybil nodes. In
[3], the radio signal transient shape at the start of a packet was used
to identify a physical node and detect Sybil nodes.

5.3 Interactive Visualization Techniques

Interactive techniques are important and necessary for effective
data exploration in visualization. These techniques are often used
in coordinated multiple views (CMV) visualizations. By interact-
ing with the visual features, analysts can gain insight into the data.
At the same time, through interaction, it is possible for analysts to
correlate features from multiple perspectives [11]. For example,
the XmdvTool [27] is a system that combines several visualization
methods with interactions. Users can explore their data in a va-
riety of formats and views. Zhao et al. [32] combined node-link
diagrams [20] with Treemaps [22] interactively to benefit from the
efficiency of Treemaps and structural clarity of node-link diagrams.
Nathalie et al. [16] built the system MatrixExplorer to explore so-
cial networks by using a CMV approach consisting of matrices and
node-link diagrams. They provided several functions for users to
interact with matrices, while the node-link diagram views provide
additional information on social network features. Kosara et al.
introduce the time histogram as a means of visualizing large time-
varying data [12].
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Several mechanisms have been designed to explore network data
and its security properties. For example, in [24] BGP protocol data
were used to characterize routing behaviors. Network and port scan
attacks were studied in [13, 15]. Interactive visualization can also
help explore complicated data structures such as attack graphs [18].
‘We combine the graph, spectral, and temporal spaces in a visualiza-
tion to analyze network anomalies through iterative exploration.

6. CONCLUSION AND FUTURE WORK

This paper presents a CMV approach that facilitates the detec-
tion of Sybil attacks of varying time durations in simulated wireless
networks. The described system allows users to detect suspicious
activity through the temporal space and analyze network anomalies
via visual features on both graph space and spectral space, thus pro-
viding new exploration capabilities by integrating network features
from different perspectives. We have designed CMV visualization
with essential interactive exploration methods for studying the net-
work features required to detect malicious activity. The given re-
sults and discussion indicate that our approach provides a suitable
detection mechanism that has potential to be extended to general
network security applications or social network analysis.

For future work, we first plan to test the described system with
network flow data. We are also interested in utilizing existing spec-
tral analysis approaches to explore other network features that can
be affected during attacks. Furthermore, we plan to test our proto-
type system with other types of attacks in wireless networks with
the goal of achieving a generic intrusion detection visualization
system for wireless networks.
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