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Abstract
Storytelling animation has a great potential to be widely

adopted by domain scientists for exploring trends in scientific

simulations. However, due to the dynamic nature and genera-

tion methods of animations, serious concerns have been raised

regarding their effectiveness for analytical tasks. This has led

to interactive techniques often being favored over animations, as

they provide the user with complete control over the visualization.

This trend in scientific visualization design has not yet considered

newer algorithmic animation generation methods that are driven

by the automatic analysis of data features and storytelling tech-

niques. In this work, we performed an experiment which com-

pares feature-driven storytelling animations to common interac-

tive visualization techniques for time-varying scientific simula-

tions. We discuss the design of the experiment, including tasks

for storm-surge analysis that are representative of common scien-

tific visualization projects. Our results illustrate the relative ad-

vantages of both feature-driven storytelling animations and inter-

active visualizations, which may provide useful design guidelines

for future storytelling and scientific visualization techniques.

1. Introduction
Animation is widely used to show trends in many data-

intensive applications. It also remains one of the most popular

choices for end users, since it is a natural and attractive way to

represent dynamic events. When studying time-varying simula-

tion data, domain scientists often use animations to visualize tem-

poral events. In fact, animation has become an essential part of

many scientists’ workflow for analyzing simulations.

Despite its widespread use with domain scientists, animation

has never been a dominant or even popular approach in the scien-

tific visualization community. Part of the reason for this trend is

that animations are often simplistically generated by connecting

snapshots from individual time steps, which does not meet the re-

quirements of challenging research tasks. Another reason is that

while several methods have been developed for generating anima-

tions for visualization, including user-driven editing systems [1]

and automatic animation approaches [34, 35, 36], complex ani-

mations have not been sufficiently evaluated with domain users or

compared to interactive approaches.

Research in visualization has also raised concerns regarding

the effectiveness of animation. A number of studies have been

performed to evaluate the effectiveness of animation in differ-

ent research fields, such as information visualization [16, 29, 12],

graph visualization [14, 10, 4], medical visualization [24], hierar-

chical diagram differencing [37], and visual tracking [10]. The

results from these studies are mixed. While some researchers

have found animation to be effective in visualizations [16, 24],

others have concluded that alternate methods such as small mul-

tiples should be used for analysis tasks, regardless of the fact that

animation is widespread and engaging [29, 6]. The main concern

is whether animation facilitates accurate perception of changes in

the data [33] and supports iterative analysis [29].

To explore the gap between the popularity of animation and

concerns about its fitness for scientific analysis, we designed an

experiment to evaluate the performance of feature-driven anima-

tion and interactive systems. Two systems are described in the

study design, one using feature-driven storytelling animations and

the other using common interaction techniques. We describe

an implementation of feature-driven animation designed to sat-

isfy general requirements for analyzing time-varying data visual-

ization. The experiment uses two similar hurricane/storm-surge

datasets and a corresponding set of tasks. The tasks are designed

to represent common studies users perform in scientific visualiza-

tion: examining event representation, data exploration, and rea-

soning about relationships between underlying data features.

Our results suggest that feature-driven storytelling anima-

tions may consistently lead to more timely results, and have com-

parable accuracy to interactive visualization across a variety of

tasks common to scientific visualization. Given the scope of the

study, we view our results as an indication that feature-driven ani-

mation can and should play a larger role in scientific visualization

design, particularly as a mechanism for providing an overview

and a moderate level of detail for the dominant features in time-

varying scientific simulations. Although this study is based on an

application of time-varying visualization (storm surge analysis),

the design of our study, including both the feature-driven anima-

tion approach and selection of visualization tasks, can be applied

to other scientific visualization domains.

The long term goal of our study on storytelling animation is

to explore new visualization and interaction mechanisms that suit

the changing environments of visualization applications, particu-

larly the shorter simulation-to-analysis-to-simulation cycle of do-

main scientists and the continual increases in simulation size and

complexity. Animation will likely remain the dominant method

domain scientists use to explore time-varying simulation data.

Therefore, visualization researchers should focus on studying

how users work with animations and identifying where interac-

tion is most needed in order to improve visualization design.

The following of the paper is organized as follows. We first

review related work on animation, storytelling and narrative vi-

sualization, and evaluation methods in Section 2. Then, we de-

scribe our study design in Section 3 and tasks for the user study

in Section 4. We continue to present the details of the experiment,

evaluation and discussion from the user study in Sections 5 and 6

respectively. At the end, we conclude the work and present future

work in Section 7.



2. Related Work
2.1 Animation for Visualization

In scientific visualization, approaches related to animation

have concentrated on creating animations and using animations

to highlight data features [23, 35, 11]. For example, Gershon [15]

presented methods for visualizing fuzzy data in an animation

loop. Viola et al. [34] presented a method to focus viewpoints

automatically on data features. Akiba et al. [1] presented AniViz

to create animations with templates and operators. Yu et al. [36]

presented an automatic animation generation approach for time-

varying data visualization. Animations were also used to visualize

vector datasets [22, 5].

For information visualization, animation approaches have

also been explored. For example, Heer and Robertson [16] devel-

oped design guidelines for animated transitions. Lundström [24]

et al. used animation to convey uncertainty in medical visual-

ization. Blumenkrants et al. [7] created narrative visualization to

study algorithms. Zongker and Salesin [38] proposed and dis-

cussed the principles and guidelines of animation for slideshow

presentations. In general, given the abstract nature of data in in-

formation visualization, animation is seen as effective for presen-

tation tasks but not for in-depth analytical tasks.

2.2 Storytelling and Narrative Visualization

The word “storytelling” has a long history and it has been

introduced to visualization for improving visual communica-

tion [28, 25, 19, 21]. While the term of narrative visualization is

relatively new [31, 17, 18, 30], it also refers to using data stories

to augment visualization as a communication medium.

Narrative structure is a central concept in both storytelling

and narrative visualization. It refers to “a series of events, facts,

etc., given in order and with the establishing of connections be-

tween them” from the Oxford English Dictionary and it is often

simplified to structures like beginning, middle, and end in vi-

sualization systems [31]. The studies of narrative visualization

have been performed from several aspects. Segel and Heer [31]

investigated the design space of narrative visualization, includ-

ing the genres, visual narratives, and narrative structures. Hull-

man and Diakopoulos [17] demonstrated visualization rhetoric as

an analytical framework for understanding the effects of design

techniques on end-user interpretation. Hullman et al. [18] later

conducted a qualitative analysis of 42 professional narrative vi-

sualizations to gain empirical knowledge on the forms that struc-

ture and sequence took. Satyanarayan and Heer [30] developed

a model of storytelling abstractions and instantiate the model in

Ellipsis with a graphical interface for story authoring.

Research of storytelling and narrative visualization has also

been developed and applied to applications on several fields. Yu

et al. [36] generated automatic animations with narrative struc-

tures extracted from event graphs for time-varying scientific vi-

sualization. Lee et al. [20] presented a visual data storytelling

process with steps involved in finding insights, turning these in-

sights into a narrative, and communicating this narrative to an au-

dience. Andrews and Baber [2] designed a branching comic to

compare how readers recall a visual narrative. Pschetz et al. [27]

developed TurningPoint to investigate narrative-driven talk plan-

ning in slideware. Spaulding and Faste used studies to prototype

and build immersive design words [32].

2.3 Evaluation of Animation and Storytelling
A number of studies have been performed to evaluate the

effectiveness of animation. For example, Tversky and Morri-

son [33] found that animation may be ineffective for displaying

events and it could be too complex and too fast to be accurately

perceived. However, they did acknowledge that animation sup-

ported interactions such as close-ups, zooming, alternative per-

spectives and control of speed, were likely to facilitate percep-

tion and comprehension. Archambault et al. [3] performed user

study on mental maps with animation and small multiples and

concluded that small multiples performed significantly faster but

with more errors.

In information visualization, several studies have compared

animation with different visualization methods such as scatter-

plots [12] and dynamic graphs [14, 13]. For example, Boy et

al. [8] conducted experiments on the effectiveness of using “in-

troductory stories” to engage users and found out that providing

a start point of exploration with an initial story did not affect the

user engagement. Heer and Robertson found that animated transi-

tions significantly improved graphical perception [16]. Robertson

et al. [29] evaluated the effectiveness of animation in trend visu-

alization and found that small comparable visualization was the

most effective approach. They discovered that animation worked

well in presentation tasks but not as good as other techniques for

analysis purposes.

The evaluation work of animation in scientific visualization

is rare. Lundström et al. [24] employed radiologists in a study

simulating the clinical task of stenosis assessment, in which they

found animation technique outperformed traditional rendering in

terms of assessment accuracy. Boyandin et al. [9] presented a user

study analyzing findings made while exploring changes in spatial

interaction with flow maps using animation and small-multiples.

They found animation tended to enable more findings related to

the geographically local events and changes between years.

Different from standard animations, our feature-driven story-

telling animations are designed for interactive visualization tasks.

They can be used to visualize the overall temporal trends or study

the details of specific events. We believe that for data with mean-

ingful 3D structures like scientific simulations, storytelling ani-

mation techniques can be used to visualize temporal events ef-

fectively. To the best of our knowledge, no significant work has

been done to evaluate the efficacy and effectiveness of animation

in scientific visualization.

3. Study Design
To provide the necessary background of our study, we start

with a brief introduction of the storytelling animation technique

and application domain used in the study.

3.1 Storytelling Guidelines for Animation
For each task, an animation is generated based on the associ-

ated events and features. All the animations used in the study are

generated by following three design guidelines:

• Start with an overview of entire duration

• End with a focused view in relevant time duration

• Include all relevant data attributes in at least one segment of

the animation sequence
These guidelines are consistent with the procedure of data explo-

ration that is often followed in the visualization community. They



Figure 1. The left figure shows the time step indicator - a small triangle shape. The right figure shows that animation is currently in the second of the three

events marked as different colors.

Figure 2. Example visualizations of elevation, wind vector, atmospheric pressure, and velocity parameters.

provide a storytelling feature to the animations by introducing an

event first and visualizing additional details gradually.

We choose a typical application of scientific visualization,

hurricane and storm surge simulation, to study the effects of sto-

rytelling animation. We follow the method used in [36] to gener-

ate storytelling animations, which can be applied to a wide range

of hurricane and storm surge simulations. This approach char-

acterizes temporal patterns from different variables and scales in

a time-varying sequence to create an event graph. Based on the

animation design guidelines described above, the event graph is

traversed to determine the sequence of events shown in the ani-

mation. Animations are generated automatically with changing

views and smooth transitions. As shown in Figure 1, a time in-

dicator is provided to show the current time step number and a

sequence duration bar is provided at the bottom of the panel to

show the remaining time in the current event. Details of anima-

tions for each task in the experiment are provided in Section 4.

Specifically, the animation system contains two panels: a 3D

rendering panel and a temporal trend panel, which are the same

as the interactive visualization system. The 3D rendering panel

adopts the same rendering scheme for all the data attributes and

time steps, in the sense that all the rendering effects are exactly

the same. The main difference is that for the animation system,

the 3D rendering panel displays animation, while for the interac-

tive system, the 3D rendering panel displays the rendering from a

selected time step. The control panel is disabled for the animation

system to avoid the confusion of different animation effects.

3.2 Datasets
Two storm surge simulation datasets are used in the experi-

ment, Hurricane Isabel (2003) and Hurricane Irene (2011). Sev-

eral features of these two datasets make them suitable for our

study.

First, the two simulation datasets are similar. Both datasets

cover the same region, whose terrain model consists of more than

260,000 vertices and 520,000 triangles. They also contain the

same set of four key variables, elevation, wind vectors, atmo-

spheric pressure, and depth-average velocity. The number of time

steps from the two datasets are also comparable, Isabel contains

396 time steps and Irene contains 336. Based on these obser-

vations, we expect that the choice of datasets did not affect the

performance of participants in the user study.

Second, because the two hurricanes not exactly alike, we can

design a set of comparable tasks with different answers for each

dataset. For example, the eye paths of the two hurricanes differ

completely. This means that participants will not able to answer

the questions for one dataset by using the information they acquire

from the other dataset, ensuring that the order of the datasets does

not affect the results of the experiment.

3.3 Data Features
To generate animations for the evaluation, the relevant data

features need to be automatically modeled and computed. As

shown in Figure 2, storm surge simulations provide complex 3D

scenarios which simulate the behavior of water elevation given

different hurricane-related parameters. We describe several data

features that are important to our study in the following.

Back Surge Modeling

Storm surge is an abnormal rise of water generated by a

storm, over and above the predicted astronomical tide. Near the

coast, people are especially concerned about ”back surge,” which

drives considerable amount of water back to the river from the

ocean and may cause serious flooding. Simply speaking, the back

surge travels the opposite direction of normal surges. Back surge

is an event that appears frequently near the North Carolina coast,

specifically near the Outer Banks. It generally can be found af-

ter the eye has passed and the overall water velocity is directly

perpendicular to the hurricane’s direction. The Figure 3 provides

examples of the Outer Banks under normal and back surge condi-

tions. We use the temporal features of water velocity and direction

to model back surge with the following three steps:

First, we extract the boundary of Outer banks by selecting

vertices whose heights are close to sea surface elevation. The

water velocity directions at the boundary are used to indicate the

direction of surge. In Figure 3 (the third image), the grid of storm

surge model is shown. Second, the direction of the tides is simu-

lated with depth-average velocity variable. We use these two an-

gles to determine whether the tides are traveling into land or going

out from land. If the angle between tide direction and the Outer



Figure 3. The two images on the left show example renderings of normal and back surge conditions. The two images on the right provide the modeling of back

surge – one shows the vertices in the grid and the other shows the elevation changes and tide directions.

Figure 4. The inundation area of Isabel (left) and the path of Irene extracted

from simulations (right).

Banks out-going direction is smaller than 90 degrees, we consider

it to be water coming out of the land as back surge; otherwise, wa-

ter is coming toward land. Figure 3 (the fourth image) visualizes

the temporal changes of elevation values on all the boundaries.

Third, we accumulate the depth-average velocity by treating out-

going directions positive and in-going directions negative. The

back surge can be identified at the local maximum points beyond

the range of normal water elevations.

Inundation

Inundation is another important feature in the simulation, as

it is crucial to emergency response and evacuation planing. We

compute the inundation area by comparing the water elevation

height of a vertex with the height of land. Figure 4 (left) shows

the inundation area caused by Hurricane Isabel.

Hurricane path

The hurricane path can be computed by connecting the cen-

ters of hurricane eye from all the time steps. We identify the

hurricane eye through the maximum wind velocity attribute and

smooth the path using a Gaussian function. Based on the hurri-

cane path we extracted, we further calculate the speed and loca-

tions of hurricane eye along the path. Figure 4 (right) shows the

extracted path of Irene.

3.4 Control System: Interactive Visualization
In order to evaluate how users can effectively analyze data

with animations, it is important to describe the supported inter-

action techniques and animations and to ensure that differences

in the two compared methods are understood with regards to the

outcome of the study.

The interactive visualization is selected to compare with an-

imations as it is the most commonly used approach to study time-

varying scientific simulations. The design of the interactive vi-

sualization system also adopts typical visualization systems with

three panels: a 3D rendering panel, a temporal trend panel, and a

control panel. The last two panels are shown in Figure 5.

Rendering Panel The 3D rendering panel visualizes all the

involved data attributes from a selected time step. Standard in-

teractions are provided, including rotation, zooming in/out, view-

point selection, selection of time step, and selection of data at-

tribute such as the examples in Figure 2. We only provide these

standard interactions to direct participants to focus on the tasks.

We also provide a time indicator to specify the selected time step.

Temporal Trend Panel The temporal trend panel presents

2D curves of data fluctuations. This panel is included in the sys-

tem to plot different variables of storm surge simulations. The

temporal trend curves are updated automatically according to the

tasks. For example, for the task of visualizing surges, the curve of

average water elevation is displayed in the temporal trend panel.

Control Panel The control panel is for selecting data at-

tributes, time steps, and reset 3D view. Our interactive visualiza-

tion system only enables relevant data attributes for each task to

direct the focus of participants on the same set of data attributes.

4. Tasks
Our user study consists of three categories of tasks, including

representation, exploration, and reasoning tasks, which are prob-

lems that users frequently encounter in scientific visualization.

Each category contains two tasks. The categories are designed

and presented in increasingly difficulty during the user study. In

the following, we describe each task in details and how the story-

telling animations are generated to support the tasks.

4.1 Category 1 - Representation
One important usage of visualization is to facilitate the accu-

rate representation (and subsequent perception) of features in the

data [29]. The purpose of these tasks is to examine how well par-

ticipants understand data features from the storytelling animation



Figure 5. System interface – temporal trend panel shown on the top and

the control panel shown on the bottom.

or interactive visualization.

Task 1: The instruction to the participants for this task is:

“Use the interactive visualization system or animation to visual-

ize the hurricane, and draw the path of the hurricane on the map

manually.” As shown in Figure 6, the subjects are provided with

a map on a A4 paper. They can mark locations of the hurricane

eye at different time steps and connect them as a line. The partici-

pant’s answer is further compared with the ground truth shown as

the red line for evaluating accuracy.

Figure 6. Task 1 – Left: An example of participant’s answer on a map

of the Outer Banks. Right: Overlapped image of ground truth image with

participant’s answer. This image was then used to compute a pixel difference

between the correct and participant’s answers.

The storytelling animation was designed to use the the tem-

poral trend panel to show two main attributes, atmospheric pres-

sure and wind strength, as they were the most relevant factors

related to this task. The animation consisted of two phases. Each

phase displayed the hurricane wind strength and atmospheric

pressure with a Bird’s-eye view of the entire grid of the entire

time duration respectively.

Task 2:

The instruction to the participants is: “Use the interactive vi-

sualization system or animation to examine the inundation areas,

and mark all the inundation areas within a blue circle.”

The storytelling animation was designed to use the control

panel to show the water elevation, as it was the only attribute re-

lated to this task. The average of elevation of every time step was

shown in the temporal trend panel. The animation of inundation

along North Carolina was shown in three phases. We start with

an overview of the North Carolina coast through the entire time

duration. The second phase showed a more focused view on areas

around Outer Banks, the Pamlico and Albemarle Sound. The last

phase displayed a view on North Carolina coast after the surges.

The participants were asked to report the storm surge time dura-

tion and where the highest possibilities of inundations were.

4.2 Category 2 - Exploration

This category focuses on analyzing data with storytelling an-

imation and interactive visualization. Participants are asked to

explore the data to determine whether certain features or events

existed in the simulation. In addition, the participants are asked

to explore the relationships between different variables, such as

wind vectors and elevations.

Task 3:

The instruction to the participants for this task is: “Did you

find back surge during the storm surge? If yes, write down the

starting time step and ending time step of the back surge, and

mark where back surge appeared on the map.” In this task, the

participants were given the definition of back surge and the aver-

age value of elevation of every time step was displayed. Partici-

pants were asked to find specific time steps and locations of the

beginning and ending of back surges. Two sample answers from

participants were shown in Figure 8.

The storytelling animation was designed to contain three

phases: the first showed an overview of the North Carolina coast

for the entire time duration; the second phase used a focused view

around the back surge area detected by our algorithm and dis-

played velocity vectors along with elevation surfaces; the last

phase showed the elevation changes after the hurricane passed

through the coastal area.

Task 4:

The instruction to the participants for this task is: “Describe

the relationships (location, strength, and height) between the hur-

ricane eye and the highest elevation.”

In this task, the participants were asked to identify and ex-

plain relationships between wind vectors and water elevations.

The wind vectors clearly showed the hurricane eye and eye wall

and the elevation surface showed when and where the ocean level

changed. Two sample answers from the participants of this task

were shown in Figure 9. Temporal curves of elevation and at-

mospheric pressure changes were displayed as hints to the par-

ticipants. The interactive system enabled participants to explore

elevation surface and wind vectors.

The storytelling animation was designed to use two phases

to describe this event. First, the elevation and wind direction were

rendered using a focused view on North Carolina coast. The sec-

ond was a dynamic view following the hurricane eye to observe

the wind in the second phase.



Figure 7. Task 2 – two examples of participants’ answers. Among each pair, the left image shows the answer of the participant, and the right image is our

processed result with the participant answers painted black. These images were then compared with the ground truth image.

Figure 8. Task 3 – example answers from participants. Participants marked

back surge area and wrote down the time duration.

4.3 Category 3 - Reasoning

In this category, the participants examined low level details

to determine various relationships for certain locations in the sim-

ulation. We focused on if and how fast the participants could

identify reasons for different patterns of two locations during the

hurricane. The overall changes of relevant variables in the de-

tailed area were also shown to the participants.

Task 5: The two locations were NOAA water level obser-

vation stations on the Outer Banks. One is Oregon Marina Inlet,

the other is Beaufort. The vertices around these two areas were

extracted and the overall changes of water level were shown to

the participants. An overview of how the hurricane traveled was

presented to the participants and then the relevant variables dur-

ing the storm surge time were displayed. The instruction to the

participants for this task is: “Why are the elevation and pressure

changes different from each other for those two locations?”

Figure 10 showed the locations of observation stations on

Outer Banks and the temporal trends of two different attributes.

The storytelling animation was designed to display a focused

view of these two locations rendering relevant variables with the

locations highlighted. The animation duration included overall

changes followed by changes during the storm surge time period

using three phases. The first phase displayed the overall changes

over the entire time period. The second phase showed the eleva-

tion with velocity vectors to help participants find the reason for

the differences in the elevation curves. The last phase displayed

the wind vectors with atmospheric pressure to help participant in-

spect the pressure changes.

Task 6: There are two canals in North Carolina which could

be dramatically affected by storm surge. One was the Pungo River

Canal; the other was Adam Creek Canal. The two canals were im-

pacted differently during in the hurricane datasets because of their

relative locations to the hurricane path. The vertices around these

two areas were extracted and the overall changes of these vertices

were shown to the participants. The participants were asked to

explain the reason why the two canals were affected differently

during the storm surge. The instruction to the participants for this

task is: “Why does the Pungo River Canal and Adam Creek Canal

have different changes in elevation?”

Figure 11 showed the locations of the two canals in North

Carolina and the temporal trends of two different attributes. The

storytelling animation was designed to show an overview of

changes during the entire time duration, changes of elevation sur-

faces, and elevation and water velocity of each location during the

surge time duration with a closer view.

5. Experiment
Using the previously described tasks, we conducted an in-lab

controlled experiment to compare our two visualization systems

for time-varying data visualization: feature-driven animated visu-

alization and interactive visualization.

5.1 Participants
Participants consisted of undergraduate and graduate stu-

dents from the Computer Science department. There were 12

participants (10 male, 2 female) with an average age of 26.5 and

standard deviation of 2.94 (maximum 29, minimum 19). Esti-

mated total participation time (training, tasks, and debriefing) was

45 minutes. During the tasks, participants were asked to work as

quickly and accurately as possible. However, due to the complex-

ity of the tasks, no strict time limit was given.

5.2 Procedure
A training session was provided before the tasks. In training,

example snapshots of each variable and a demo animation were



Figure 9. Task 4 – Example answers from participants. Participants draw

a redline to indicate the hurricane path and wrote down the answers. The

first answer was: “The fore front shore: Highest elevation a little ahead of the

hurricane eye. The middle shore: Highest elevation along with the hurricane

eye. The back shore: Highest elevation a little behind the hurricane eye.”.

The second answer was: “Highest elevation is at 250 ahead of the hurricane

eye. Some places reduces its climax, a little after the hurricane eye passed

at 290.”.

shown. Each participant was also given several minutes to learn

the interactions for the animation and control systems.

Each of the six tasks contained two sections, one with the

animation and the other with the interactive system. The order

of the two datasets was randomly chosen at the beginning of

the participant’s session, and it was alternated between interac-

tion/animation sections. Furthermore, the order of systems pre-

sented (animated/interactive) was randomly chosen. Although no

task was dependent on another, each participant completed them

in the same order (tasks 1-6) for consistency.

The same procedure was used for administering each task.

First, participants were given time to read the task and questions

were encouraged before starting the task.

During the animation section, participants watched the ani-

mation repeatedly (with pause, fast-forward, and rewind controls)

until they completed the task. For the interactive section, partici-

pants utilized the provided controls to explore different views and

variables in order to complete the tasks. To better compare the

systems, data variables that were not directly relevant to the task

were disabled in the interactive sections.

All experiments were conducted in the same room and on

the same machine (resolution 1920 × 1280). Upon completing

a section, participants were given answer sheets to record their

results before moving to the next task.

(a)Task 5

(b)Elevation

(c)Atmospheric Pressure

Figure 10. Task 5: (a) The two locations in task 5 on the Outer Banks,

marked with numbers and in red or blue box. (b) and (c) show the temporal

trends of elevation changes and atmospheric pressure of these two locations.

(a) Task 6

(b)Water Velocity

(c)Elevation

Figure 11. Task 6: (a) The locations of the two canals in task 6, marked

with numbers and in red or blue box. (b) and (c) show the temporal trends of

water velocities and elevation changes of these two locations.

5.3 Results
Our study adhere to a within-subjects design, since partici-

pants completed the same tasks with both the animation and inter-

active systems. We use paired t-test [26] throughout this section

to compare values across tasks, as it is commonly used to com-

pare two population means when they are correlated (the samples

are the matched pairs in our study).

The average data for all participants is included in table 1.

We divide our analysis into two parts: completion time and accu-

racy. The implications of the results are explored further in the

discussion.

5.3.1 Completion time

This study includes 144 completion times, 2 for each of the 6

tasks (one for animation, one for interaction) and 12 participants.

A strong significant effect is found for completion time with p-

value 5.04E−06 , indicating that animation tasks being completed

more quickly than interaction tasks (M = 170.99,SD = 102.21

and M = 257.36,SD = 127.62 respectively). This result supports

our hypothesis that animation supports more timely performance

than interactive visualizations.



P A Time I Time A Acc I Acc

1 114.5 340.17 52.44 58.15

2 86.67 144.67 44.55 30.38

3 91.17 276.17 38.26 32.56

4 224.33 185.83 52.12 74.42

5 189.33 422 42.01 55.26

6 160.33 214.33 59.29 51.53

7 130.33 221.33 51.07 38.04

8 311.67 237.17 51.08 69.47

9 124.5 301.33 57.33 56.35

10 266.17 172 90.41 79.62

11 185.83 337.83 81.26 55.01

12 167 191.5 53.44 65.23
Table 1. Average time (seconds) spent on one task and accu-

racy of animation (A) and interaction (I) systems of each par-

ticipant (P).

Figure 12. Task completion time and standard errors.

Table 2 shows the average completion time, standard devi-

ation, and t-test results of each task. The t-test results show sig-

nificant differences in overall completion time and for tasks 1, 4,

5, and 6. While the average completion times for tasks 2 and 3

are still lower for animation than the interactive system, the dif-

ferences are not significant (see table 2). Figure 12 shows the

average completion times and standard error for each of the tasks.

The average completion time for tasks using the Isabel

dataset is 3 minutes and 31 seconds, while for Irene it was 3 min-

utes and 39 seconds. The closeness of these values indicates that

our results were not affected by using different datasets.

The average completion time for each task category (repre-

sentation, exploration, and reasoning) is 176, 207 and 262 sec-

onds respectively. These results are consistent with the difficulty

of each category.

5.3.2 Accuracy

We describe how we scored each task before presenting the

analysis of task accuracy.

Representation (1 & 2): Since both tasks in this category

require participants to draw answers manually, we use the follow-

ing pixel-based method to compare their answers with the ground

truth. For task 1, 20 points are evenly sampled along the path of

ground truth. Then, for each of the 20 points, we search for the

closest point from the participant’s drawing. The sum of the dis-

Task A (M) I (M) A (SD) I (SD) p

All 170.99 257.36 102.21 127.62 5.04E−06

1 94.75 190.92 55.57 63.14 0.0025

2 171.17 238.5 124.32 112.16 0.1056

3 162.83 218.92 80.84 110.34 0.1058

4 168.67 279.83 135.23 154.14 0.0489

5 222.83 321.58 91.01 152.64 0.0407

6 205.67 294.42 71.52 126.33 0.0095
Table 2. Task completion time (in seconds) and standard error.

tances between all the point pairs gives a quantitative result for

task 1. For task 2, we compare the areas (number of pixels) from

participant answers and the ground truth. The ground truth and a

sample answer for task 2 is shown in Figure 7.

Exploration (3 & 4): The grading for task 3 is achieved

as follows: for each of the answers on the staring time step, the

ending time step, and location, credits are weighted as 33%. We

allowed a +/-5 time step differences in answering time step val-

ues. The answers for task 4 were that there were several different

phases of the relationship between the highest elevation and hur-

ricane, such as highest elevation appeared both before and after

the hurricane eye along the path. We gave partial credits to each

correct description.

Reasoning (5 & 6): Both tasks 5 and 6 require participants

to describe differences in the apparent impact of the hurricane on

variables such as water elevation or pressure in two areas. Correct

answers described the relative position of the hurricane eye, as

well as the time when the hurricane passed.

Task 5 required the participants to figure out two features of

the hurricanes. The first feature is that one storm passed both two

locations. The second feature is that the hurricane eye is closer to

one location than the other which causes the effects of different

pressure. For scoring, 50 points were removed for each error.

Task 6 asked for two features that one storm created big

splats on one canal and the other is two canals are laying at differ-

ent directions. Each of the reasons were credited 50 points.

The accuracy study includes 144 scores, 2 for each of the

6 tasks (one for animation, one for interaction) and 12 partici-

pants. No significant effect was found for overall accuracy (p-

value 0.43) with animation and interaction having similar scores

(M = 56.10,SD = 34.01 and M = 55.50,SD = 34.96 respec-

tively). This result does not support our hypothesis that interactive

visualization supports more accurate performance than animated

visualizations.

Table 3 shows the average accuracy, standard deviation, and

t-test results of each task. The t-test results show no significant

differences at neither the overall nor the task level. Figure 13

shows the average accuracy scores and standard error bars for

each of the tasks.

The average accuracy for tasks using the Isabel dataset was

52.87%, while for Irene it was 58.74%. Similar to the completion

time, the accuracy results indicate that our study was not affected

by using different datasets.

The average accuracy for each task category (representation,

exploration, and reasoning) was 72.49%, 54.29% and 40.63% re-

spectively. These results are also consistent with the difficulty of

each category.



Task A (M) I (M) A (SD) I (SD) p

All 56.10 55.50 34.01 34.96 0.43

1 80.07 84.07 17.61 17.68 0.3381

2 63.97 61.86 9.40 6.97 0.3025

3 60.75 52.5 29.94 34.58 0.2479

4 52.67 51.25 39.00 41.62 0.3961

5 58.33 62.5 27.64 29.76 0.3371

6 20.83 20.83 37.96 32.00 0.5
Table 3. Task accuracy and standard deviation.

Figure 13. Task accuracy and standard error bars.

6. Discussion
This section reviews the results of our experiment and

touches on some fundamental questions about the role of anima-

tion and interaction in visualization.

We hypothesized that interaction would lead to more accu-

rate results on Exploration and Reasoning tasks, and the feature-

driven animation would lead to more timely results. While we did

find that feature-driven animation consistently led to faster results

(p < .001), the accuracy between the animation and interactive

systems was comparable (p > .05).

The similarity in accuracy does not indicate that animation

can simply be substituted for interaction. Instead, it indicates that

for several tasks in which interaction is commonly used, feature-

driven animation may support the user equally well. Additionally,

the experiment required the exploration and reasoning tasks to be

well-defined, and it is likely that tasks which are less defined will

benefit from interactive capabilities.

Tasks using the animation system were completed faster than

those using the interactive system. This effect held regardless

of whether animation or interaction was first used on the task,

since the order of the systems presented was random. Since accu-

racy between the systems was comparable, this supports our con-

tention that feature-driven animation can and should play a larger

role in the design of scientific visualizations.

Similar to the previous studies of animation, users often

described animation as fun and engaging. This is important

to visualization for directing user attention and designing effec-

tive analysis approaches. Particularly for time-varying data re-

search, where temporal changes are pervasive, animation remains

a natural way to represent and analyze the characteristics of data

changes across time.

Identifying suitable ways to generate animations and incor-

porating animation into the interactive exploration process should

prove valuable for time-varying data visualization. While many

feature-driven approaches for scientific visualization have been

developed, the problem of how to incorporate domain knowledge

and advanced computing models is still open. Finally, beyond our

basic design of feature-driven animation, additional storytelling

techniques should be studied to explore methods for generating

animations that yet more intuitive for users to interpret.

7. Conclusion and Future Work
This paper presents an experiment to compare feature-driven

storytelling animations to interactive visualization for studying

time-varying 3D simulations. Two systems are compared using

three categories of visualization tasks, including simple represen-

tation, exploration, and reasoning tasks. The results of experi-

ment show that feature-driven animations consistently led to more

timely results with comparable accuracy to the interactive system.

Since interactive visualization has been the dominant approach

used in scientific visualization, the results highlight the promise

of feature-driven animation for future design.

In the future, we plan to conduct an experiment with students

and faculty from our Meteorology Department to explore the dif-

ferences in animation and interactive visualization for participants

who have varying levels of domain knowledge. We believe that

animation as one of the most popular tools for scientists working

with simulation data, should be studied and improved in order to

become a more effective part of time-varying visualization.
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