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ABSTRACT

Scientific illustrations use accepted conventions and methodologies
to effectively convey object properties and improve our understand-
ing. We present a method to illustrate volume datasets by emulating
example illustrations. As with technical illustrations, our volume
illustrations more clearly delineate objects, enrich details, and ar-
tistically visualize volume datasets. For both color and scalar 3D
volumes, we have developed an automatic color transfer method
based on the clustering and similarities in the example illustrations
and volume sources. As an extension to 2D Wang Tiles, we pro-
vide a new, general texture synthesis method for Wang Cubes that
solves the edge discontinuity problem. We have developed a 2D
illustrative slice viewer and a GPU-based direct volume rendering
system that uses these non-periodic 3D textures to generate illustra-
tive results similar to the 2D examples. Both applications simulate
scientific illustrations to provide more information than the original
data and visualize objects more effectively, while only requiring
simple user interaction.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—color, shading, and texture

Keywords: Volume Illustration, Example-based Rendering, Wang
Cubes, Texture Synthesis, Color Transfer.

1 INTRODUCTION

Scientific illustrations play an essential role in education and train-
ing. For example, illustrations are a vital medium in teaching
anatomy, explaining biological processes, highlighting anomalies,
and explaining surgical procedures. They are commonly used as
examples to explain structures (e.g., shape, size, appearance, etc.)
and provide stylized or additional information to acquired datasets
(e.g., CT and MRI). Therefore, exploring an example-based ren-
dering method can adapt traditional illustration techniques to more
effectively present information and provide a familiar environment
to those who have been trained with similar images for years.

Because of the inevitable information loss during the acquisition
of scientific datasets, many illustrators employ textures to enrich
object details. These textures usually provide more information be-
yond the original data resolution and improve the understanding
of the real objects. For example, Figure 1 shows an illustration of a
slice through the upper abdomen and a corresponding magnetic res-
onance image (MRI) [27]. The illustrative section provides much
more information than the MRI by adding fine structural detail and
clearly delineating organs with accepted conventions, such as draw-
ing the veins in blue and arteries in red [13].

Although scientific illustrations do not exactly replicate real sub-
jects, the illustrators follow specific methodologies and procedures
to concisely, accurately, and effectively convey the important as-
pects of the subject, such as shape, location, orientation, and struc-
ture. Figure 2 shows two pairs of scientific illustrations and high-
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Figure 1: A scientific illustration shows more general information
with colored textures than the corresponding MRI.

resolution medical images from the Visible Human Project [1] com-
paring the same organs of the human body. These examples demon-
strate a strong similarity between scientific illustrations and the real
subjects. They also show that illustrators usually modify and/or
simplify the size or position of a real subject to achieve a coherent
structure, and change real colors to distinguish one object from the
surroundings and improve understanding. For example, in Figure
2(a), the geometry and detail of the spinal disk (in blue) has been
simplified since it is not the focus of the illustration. On the whole,
these examples demonstrate the strong ability of scientific illustra-
tions to provide expressive and additional information compared to
medical images. Similar to scientific illustrations, the utilization of
textures can provide more information and serve as an additional
method to distinguish different objects, matching the visualization
objective of feature rendering and exploration. However, the large
memory requirements and the need for both high-resolution 3D tex-
ture synthesis methods and tedious user interaction limit the render-
ing features, resolutions, and styles.

In this paper, we present a method to generate illustrative ren-
derings of volume datasets using example illustrations and pho-
tographs. Our method is composed of a texture synthesis and color
transfer method to generate illustrative 3D textures. Once the il-
lustrative textures are generated, volume datasets of similar subject
matter can be interactively rendered using any of these illustrative
textures. As in scientific illustrations, these 3D textures can be used
in volume applications to enrich detail and achieve illustrative and
artistic rendering styles. Specifically, to emulate example 2D illus-
trations, the 3D textures are automatically generated by recoloring
available 3D samples using color distributions. Wang Cubes [5] are
then synthesized from the colored 3D samples and used to generate
non-periodic volumetric textures. The textures for all the materi-
als/objects are efficiently mapped into a volume, enriching both de-
tail and the rendering, while using a small amount of texture space.

For volume illustration, volume textures of real or similar objects
are chosen as input to provide meaningful information. First, their
colors are transferred using selected sample illustrations to gener-
ate illustrative textures (Section 3). Next, the illustrative textures
are used to synthesize a set of Wang Cubes (Section 4). These syn-
thesized Wang Cubes can tile any sized volume texture and are used
in interactive rendering (Section 5). To match object features, we
generate one texture for every object in the volume. The users are
only required to provide the input textures and illustration examples
prior to the interactive rendering.

We have developed two applications using these new methods.



Figure 2: The comparison of scientific illustrations (left, which are
enlarged from Figure 1) and high-resolution medical images from the
visible woman (right) around the vertebra and liver. The images are
scaled to match each other.

Our real-time 2D slice viewer allows users to create continuous
illustrative slice views for any cut direction through the volume,
while our GPU-based direct volume renderer generates volumetric
dataset illustrations, where the illustration styles and effects can be
interactively modified through multiple transfer functions. Both ap-
plications take advantage of the abilities of scientific illustrations to
effectively convey object properties, and save tedious user interac-
tion through our new example-based texture generation and color
transfer methods.

2 RELATED WORK

Volume illustration techniques take advantage of the effectiveness
of scientific and artistic illustrations to improve volume visualiza-
tions in many aspects. For instance, Kirby et al. [15] combined
multiple data values to generate 2D flow images by utilizing con-
cepts from paintings. Saito explored the usage of simple primitives
on isosurfaces to depict volume shapes [23]. Owada et al. [20] pre-
sented an approach for polygon meshes using texture synthesis on
a surface. Here we concentrate on general illustrations of volume
datasets, extending the early work of combining non-photorealistic
rendering (NPR) and volume rendering techniques to enhance im-
portant features and regions [7]. Artistic rendering effects were
achieved by implementing artistic procedures and simulating illus-
tration techniques [18, 28]. Recently, these techniques have been
extended with hardware-accelerated rendering techniques to render
large datasets and produce high quality results [9, 17].

Wang Tiles [29, 30] are used to generate non-periodic textures in
computer graphics by following their placing rules. Analogous to
Wang Tiles, Culik and Kari [5] introduced Wang Cubes with col-
ored faces. Several researchers have used Wang Tiles and Wang
Cubes to generate textures and patterns in computer graphics, in-
cluding Jos Stam [26] for water simulation, Neyret and Cani [19]
for stochastic surface tiling, Cohen et al. [4] for non-periodic im-
age generation, Sibley et al. [24] for video synthesis and geometry
placement, and Lu et al. [16] for illustrative volume rendering using
geometric primitives.

Example-based approaches have been used in many fields, such
as machine translation, image processing, and rendering. Because
of their ability to “learn” from examples, these approaches take ad-
vantage of useful information that is difficult to summarize, and
simplify user interaction. Within this field, we are especially in-
terested in two categories, example-based rendering and texture
synthesis. Example-based rendering generates new results by sim-
ulating the drawing styles of examples. Freeman et al. [8] used
Markov random fields to learn the transformation from captured
image to scene interpretation. Hertzmann et al. [12] presented
the image analogy framework. Drori et al. [6] and Hamel and
Strothotte [10] generated new images by extrapolating multiple ex-
ample style fragments. The example-based idea has also been ex-
plored for texture synthesis methods in various applications, includ-
ing the work of Haro and Essa [11] and Chen et al. [3]. Also,

Wang and Mueller [31] generated missing details from available
high-resolution data for virtual microscopy by matching the data
source details on multiple levels.

3 COLOR TRANSFER

3.1 Problem and Assumptions

To simulate arbitrary illustration examples for volume applications,
we must solve the problem of synthesizing high resolution three-
dimensional textures from two-dimensional illustration examples.
Achieving high quality 3D textures from 2D examples is a dif-
ficult task [32]. Another limiting factor is that many texture ex-
amples have insufficient resolution for texture synthesis since they
are cropped from illustrations and bounded by the size of the real
objects. On the other hand, these small texture examples provide
useful color distributions. Since scientific illustrations usually rep-
resent important, real object features, it is common to see strong
similarities between the illustrations and the real objects, and be-
tween two illustrations of the same objects even when they use
different drawing styles (Figure 2). We can use these similarities
to change the problem of three-dimensional texture synthesis to a
color transfer problem by using available 3D source textures (e.g.,
color section volumes, MR, CT scalar volumes).

To simulate the styles of example illustrations, we transfer both
the chromatic (two channels) and luminance values from the illus-
trations to the source dataset. Since a 3D texture is treated as an ar-
ray of color (or grey-scale) information, the color transfer problem
has no fundamental differences from color transfer between 2D im-
ages. Our work is based on Reinhard’s method [21], which transfers
colors between colored images by mapping the mean and standard
deviations along each color channel and uses distance-weighted
colors from separate swatches to improve the results, since the qual-
ity depends on the composition similarity between the example and
source images. To save some color blending, Welsh et al. [33] trans-
fer colors between corresponding swatches and they target transfer-
ring colors to grey scale images by matching luminance and texture
information. The effectiveness of the result is highly dependent on
the user’s selection of corresponding regions in each image. How-
ever, the user interaction required by their method to adjust the cor-
responding regions manually becomes much more difficult and te-
dious for 3D textures. Therefore, we present a fully automatic color
transfer method for 3D volumes from user-provided example pho-
tographs or illustrations to source data volume.

In medicine and many biological fields, photographic volumes
for many subjects are readily becoming available (e.g., The Visible
Human Project). Our technique works for transferring color from
2D sources to three-dimensional volume datasets using these color
volumes when available and also for directly transferring from the
2D source images to more readily available scalar volumes (e.g.,
high resolution CT datasets) by considering the scalar volumes as
grey-scale color volumes.

Our solution is composed of three steps: clustering, mapping,
and transferring. We use the following two assumptions based on
similarities between the example images and source volumes:

1. Simplicity: Illustrations can improve our understanding of the
subject by omitting some unnecessary details. Therefore, we
assume an illustration is a simplified drawing of the real ob-
ject. Since illustrations usually employ different colors for
different objects, we assume that if two objects do not have
the same colors in the example, they will not share the same
colors in the source. This assumption is unavoidable in an
automatic method with no user interaction.

2. Similarity: Scientific illustrations often effectively capture
object features, including relative area and volume propor-



Figure 3: (a) A liver source volume. (b) An example cropped from
the examples of Figure 10(b). (c)-(f) The color transfer results from
(b) to (a) with different cluster numbers. (g)-(h) The clustering
results of (a) and (b), while blue shows color histograms, and red
and black show the clusters.

tions. Therefore, we assume that object distributions are sim-
ilar between the sources and examples. This assumption is
exhibited by most illustrations and we only need a rough cor-
respondence for the mapping step.

3.2 Color Transfer Process

During the clustering step, we find color cluster sets using color dis-
tribution information from the example image and source volume,
respectively. The color histograms are gathered from the whole
texture for the 3 channels of the lαβ color space [22]. We use
this color space because of the independence between the lumi-
nance and two chrominance channels. Since the color transfer is
based on the means and variances of the clusters, a set of Gaussian
functions is fit onto the color histograms. These functions corre-
spond to the color clusters in the textures. For example, Figure 3(g)
and (h) show the clustering results for the liver volume (a) and an
illustration example (b), in which the red line corresponds to the
liver body and the black line corresponds to the veins and arter-
ies. Therefore, each function must have the same area on the three
color distributions, although different shapes are possible. The best
parameters for the set of quantized Gaussian functions (center loca-
tions, weights, and heights) are searched under this area restriction.
The algorithm starts with the set of one function and stops when
the maximum error is smaller than a user-specified threshold (e.g.,
5%). Based on the first assumption, the color distribution of the
source has at least as many clusters as the example. Therefore, we
first fit the example image, then the source volume until both the er-
ror threshold is satisfied and the number of clusters is greater than
or equal to that of the example. For the clustering process, the color
histograms are scaled from 0 to 1.

The mapping step finds a correspondence map from the source
color clusters Gs = {Gsi, i = 1 · · ·Ns} to the example color clusters
Ge =

{

Ge j, j = 1 · · ·Ne
}

. Based on assumption one, each source
cluster only corresponds to one example cluster; therefore, Ns ≥ Ne
and there exists such a multiple to one mapping from Gs to Ge.

Based on assumption two, this mapping should satisfy similar ob-
ject distributions between the examples and sources. Assuming
S = {si = Area(Gsi)} and E =

{

e j = Area(Ge j)
}

are the normal-
ized area sets of the color clusters of the source and example, re-
spectively. The mapping problem can be described as finding a
multiple-to-one mapping f (S)→ E for the minimization of the fol-
lowing mapping error:

MError =
Ns

∑
i=1

(si− f (si))
2, where

Ns

∑
i=1

si = 1,
Ne

∑
j=1

e j = 1, and Ns ≥Ne.

(1)
When Ns = Ne, this map is a one to one correspondence. The map-
ping errors from the Ns factorial combinations are calculated to find
a solution with the minimum error. Because of the algorithm com-
plexity, a greedy algorithm can be used to produce a relative op-
timization solution. The two cluster sets S and E are sorted sepa-
rately, and then the two clusters are mapped from the source to the
example directly if they share the same sequence in their clusters,
as f (s′i) = i. The mappings are designed randomly if multiple items
with the same value exist, which rarely happens with real data.

When Ns > Ne, the map is a multiple to one correspondence,
which means the examples omit some of the details by merging
multiple real objects into the same region. We generate intermedi-
ate source cluster set S′ with size Ne by merging clusters together.
Then, we use the Ns = Ne case to find the mapping error for each
intermediate cluster set, and choose the mapping f ′ with the min-
imum mapping error. The mapping function f can be easily built
from f ′ by reversing the merging sequence.

After building the correspondence map, we perform the color
transfer on the three lαβ channels at the same time, since they are
combined in the color cluster sets. For each voxel ~cv in the source
volume, we first calculate the distance ~di from ~cv to each center of
the source color clusters ~Esi in 3D. The norm Di is calcuated by
using the value ranges ~V to balance the three channels. Then, we
calculate the transferred color ~ci to every source cluster from the
corresponding example cluster. The final transferred color vector ~C
is calculated by using an inverse function q() of the distance Di.

~C =
∑Ns

i=1(~ci ∗q(Di))

∑Ns
i=1(q(Di))

, where Di =

√

∑
j=l,α,β

(di, j/V j) (2)

and ci, j =
(cv, j −Esi, j)∗ (σe f (si), j)

σsi, j
+Ee f (si), j, j = l,α,β (3)

Since scalar volumes only have a luminance distribution, the
cluster set of the source is searched using this channel, and the
mapping is still built based on cluster area proportions. During the
transfer step, Di is calculated as |cv −Esi|. The color vector ~cv is
composed by the source scalar value as [cv,cv,cv] and so are the
mean ~Esi and deviation ~σsi. The final transferred color ~C is cal-
culated using the rest of the equations (2) and (3) as for a colored
volume.

3.3 Color Transfer Results and Discussions

Figure 3 (c)-(f) show the color transfer results from (b) to (a) with
different source and example cluster numbers. Since (e) and (f) save
some color blending by transferring colors between the correspond-
ing regions, they produce more vivid colors than (c, d). The result
(e) is dependent on the matching of the correspondences, which
requires user interaction to achieve a satisfying result. With an au-
tomatic process to detect the clusters from color distributions, the
cluster numbers and parameters can be calculated more accurately;
thereby producing a natural color range in (f) which matches the
average color tone of the examples. Using the two assumptions



Figure 4: The sources, examples, and color transfer results of colored
volumes (top: fat and vessel) and scalar volumes (bottom: spleen
and kidney).

based on the similarity between examples and sources, we are able
to build the correspondence between the clusters automatically to
save user interaction. As the 4 other results for colored and scalar
volumes shown in Figure 4 illustrate, this method can be used to
generate 3D textures for a wide range of examples and source vol-
umes, including artificial 3D textures [14]. Figure 9 and 10 demon-
strate 13 results (6 for the hands and 7 for the abdomen) on 10
different objects. Although we only transfer colors between one
example and one source, multiple examples or sources will also
work since our method only needs the color distributions.

While texture synthesis methods may produce more continuous
textures, they are not practical for small examples. We choose to
use a color transfer approach instead of texture synthesis because
of the similarities between scientific illustrations and real objects
(Figure 2), and these results also demonstrate the effectiveness of
illustrations capturing at the subject features. This approach may
be used for other types of source images, with the requirement of
the similarities between the sources and examples. However, the
two assumptions impose some limits on their application. For in-
stance, if the blood vessels in CT data have the same values, the
color transfer process works, but cannot separate veins from arter-
ies automatically.

4 TEXTURE SYNTHESIS FOR WANG CUBES

The requirements of large memory space and long synthesis time
for high-resolution 3D textures limit their use in volume applica-
tions. Therefore, we use Wang Cubes, the 3D extension of 2D
Wang Tiles, to overcome both issues and create non-periodic tex-
tures for our illustrative renderings. In this section, we present an
automatic cube synthesis method from a 3D sample volume, dis-
cuss an edge discontinuity problem with Wang Cubes, and give two
methods to solve the problem.

4.1 Automatic Cube Synthesis

Wang Tiles are square tiles with “colored” edges. They are placed
on a plane edge-to-edge only if the adjacent edges share the same
“color”. Similarly, Wang Cubes are cubes with “colored” faces in
the sense that two cubes can be put together only if the adjacent
faces have matching “colors.” Let’s denote the cube faces as N, S,
W, E, F, and B, as shown in Figure 5(h). Since Wang Cubes are
not supposed to be rotated, two faces in the same direction (NS,
WE, and FB) must share one set of colors, while the face colors
on different directions are independent. Figure 5(a)-(d) show the
usage of a 16 Wang Cube set. (a) shows a set of Wang Cubes with
colored faces and 2 colors for each NS, WE, FB direction. (b) is a
83 tiling generated with the Wang Cube set in (a). We render each

Figure 5: (a) A set of 16 Wang Cubes with 2 colors on each face.
(b) A 83 cube tiling with each cube a color. (c) A set of synthesized
cubes. (d) A composed 3D texture. (e) Tile generation using dia-
mond samples. (f) Cube generation using an octahedron for the W
cube face. (g) Cube generation using “face volumes” with two ellip-
tical spheroids to restrict the synthesis shape for the W cube face.
(h) The cube face directions.

cube with a color to show the tiling is non-periodic. (c) shows the
same set of Wang Cubes (a) filled with 3D textures and (d) shows
the composed larger volume texture by putting the cube contents
(c) into the corresponding positions of the cube tiling in (b). The
essential point of using Wang Cubes is that the cube face colors are
only used to generate the non-periodic tilings, while the contents of
the cubes can be filled with arbitrary textures. Once the cube con-
tents are generated, new non-periodic 3D textures can be quickly
generated using these cube tilings.

For 2D Wang Tiles, Cohen et al. [4] construct each tile by finding
cutting paths to combine the four sample diamonds that correspond
to the edge colors of the tile, as shown in Figure 5(e). Sibley et
al. [24] and Lu et al. [16] extend the 2D tile generation to 3D cubes
by using an octahedron to correspond to a face color and synthesiz-
ing a cube with 6 octahedra (Figure 5(f)). Four different corner-to-
corner synthesis processes are needed to distinguish the synthesis
directions during the cube generation. Here, we make the follow-
ing modifications to simplify this method. Replacing the octrahe-
dra, a “face volume” is randomly chosen from the sample volume
and corresponds to a cube face color. The face volumes have the
same size as the Wang Cubes and are used in a similar way as the
octahedra to compose a cube. Similar to the generation of 2D tiles,
the usage of the face volumes changes the synthesis problem along
the cube faces into synthesis inside each cube. Since the cutting sur-
faces inside a cube do not need to follow a special synthesis shape,
two half elliptical spheroids are used to restrict the quilting regions
between an initially randomly selected cube and a face volume for
each cube face. Figure 5(g) shows this process for the W face of a
cube. As in Sibley et al. [24] and Wang and Mueller [31], we adopt
the graph cut algorithm which uses max-flow (min-cut) [2] for 3D
texture synthesis. This process is repeated for each face of every
cube until the accumulated synthesis errors Ei along all the cutting
surfaces inside the cubes are below a desired threshold.

4.2 Edge Discontinuity Problem

However, both direct and simplified cube generation methods have
an edge discontinuity problem, where the textures are discontinuous
on the cube edges along the cube faces. As the 2×2×1 cube tiling
in Figure 6(a) shows, the adjacent faces of the four cubes share the
same colors and, therefore, the same textures. Since A(E) and C(E)
come from two randomly selected samples, they are not necessarily
continuous at the edge a1 along this cube face. Figure 6(b) shows
that this problem generates a texture with obvious discontinuities on



all the cube edges, although the textures are continuous inside each
cube and within the adjacent faces. Therefore, considering only the
face colors is not sufficient to generate an everywhere continuous
3D texture for Wang Cubes.

For the synthesis of general Wang Cube sets, we add an addi-
tional modification phase for the face volumes to ensure edge con-
tinuity. Since the 6 faces of a cube are independently designed, an
edge in the cube tiling may be adjacent to any face color in the two
vertical directions. When the joints of 2 arbitrary faces are not con-
tinuous, the cube tiling cannot guarantee edge continuities. Because
of this face independence, the cube edges must be made the same
in each direction to assure edge continuity. Therefore, for each of
the NS, WE, and FB directions, an “edge volume” is randomly cho-
sen from the sample volume and tied to this direction. For the face
volumes that correspond to the colors in the WE directions, the NS
and FB edge volumes are used to modify the 4 edge regions of
the WE middle plane. Figure 6(c) shows the NS edge volumes for
this case. Similar to the synthesis of a cube with face volumes, a
quilting surface is searched within the two half cylinders between
the face and edge volumes. The face volumes corresponding to the
colors on the NS and FB directions are synthesized with WE-FB
and NS-WE edge volumes respectively. The newly generated face
volumes are used to generate the cubes using the previous method,
thereby guaranteeing texture continuity.

An alternative method for textures without sharp boundaries is
to introduce an edge error factor into the synthesis process. The ac-
cumulated synthesis errors, Es, for a cube set are the weighted sum
of the inside errors, Ei, decided previously and the newly added
edge errors, Ee: Es = pi ×Ei + pe ×Ee. Ee is used to measure the
average edge discontinuties for the composed textures. We assume
each cube is equally randomly picked during the cube tiling gen-
eration. Since the discontinuities along an edge come from the 2
vertical pairs of adjacent cube faces, for example, A(E)-C(E) and
C(N)-D(N) for the edge a1−b2− c3−d4 in Figure 6(a). For each
face of a cube, the errors of the 4 edges are calculated from all the
cubes which have the same color on the adjacent face, so that the 2
face errors of the 12 edges from all the combinations are collected
once and only once. To balance the inside and edge errors, their
weights pi and pe are set as the inverse of their cutting path size.
This simple modification works well for many example textures.

Figure 6 shows two synthesized volumes of a liver (d) and a heart
(e) with a set of 163 cubes in a 83 cube tiling. The liver uses the
extra edge volume fixing phase and the heart uses the edge error
factor approach. Both methods take around 10 to 20 minutes to
generate a 16 cube set with 163 cubes, while arbitrary sized new
3D textures are composed with a few seconds.

Instead of faces, the cubes can also be colored by corners. We
can choose “corner volumes” that correspond to the corner colors
and synthesize a cube with them in a similar way as the “face vol-
umes.” While this ensures texture continuity for the whole space,
the minimum cube set will be increased to 128 cubes [16].

The tradeoff of using Wang Cubes to save texture memory is the
repetitive appearance of the synthesized textures. Since a set of
Wang Cubes has only a limited number of samples, it is inevitable
that these samples will repeat themselves somewhere in the volume.
This issue is also discussed for Wang Tiles in [4]. Therefore, Wang
Cubes are especially useful to generate textures with similarities
because of their non-periodic tiling. The synthesized volumes using
Wang Cubes are not limited to homogeneous textures [16], and this
repetitive appearance issue can be improved by larger cube sets.

5 VOLUME APPLICATIONS

Simulating scientific illustrations, we have developed two volume
applications that use our synthesized non-periodic 3D textures to
enrich the details of the original datasets: a 2D slice viewer and

Figure 6: (a) A 2x2 cube tiling. (b) A result showing the edge
discontinuity problem along the cube faces. (c) Edge volume usage
for the FB edges of a WE face volume. (d) A liver texture generated
using edge volumes. (e) A heart texture generated using the edge
error factor.

a direct volume rendering system. The systems basically use the
voxel values in the volumes to be visualized to provide the shape
and opacity for each material and object. The user-chosen exam-
ple illustration provides the colors and textures to generate three-
dimensional textures used for rendering. To generate these detail
textures for each object, a high-resolution 3D scalar or color vol-
ume corresponding to a representative real object is chosen. For
segmented volume datasets, the segmentation masks containing one
object ID for each voxel can be used to specify the texture index.
For unsegmented datasets, we can select the desired texel value
using transfer functions to generate voxel opacities that are then
blended with the texel values. Moreover, transfer functions can al-
ways be used to modify the shape and opacity of an object for both
segmented and unsegmented datasets.

Once the illustrative detail textures are generated, they are used
for visualizing any scalar volume containing similar objects (e.g.,
abdominal CT scans for all patients). The rendering style is mainly
determined by these color transferred textures, but can be modi-
fied by several selected rendering parameters and transfer functions.
For example, using interactive 2D transfer functions, we usually
make the skin transparent, so that both the skin and the volume in-
terior can easily be seen. Comparing our method with traditional
volume visualization, the illustrative 3D textures are used to color
the scalar volume, replacing the traditional color transfer function.
Therefore, our method preserves the fidelity of the original datasets
and provides informative additional detail. The design of both ap-
plications preserves the flexibility of the direct volume rendering
approach to interactively select which objects in a volume are visu-
alized through simple user interaction.

Our sample texture volumes are chosen from high resolution vol-
ume datasets, such as the full colored Visible Woman photographic
and CT datasets [1]. The datasets we used in Figure 7, 9, and 10
are segmented CT scalar volumes. Figure 8(b) is an unsegmented
CT feet dataset. The selection of 3D texture samples proceeds by
automatically searching the largest sample volume from the whole
dataset, matching several standard statistical texture features with
the user-selected sample images. The 3D texture samples can then
be used directly to synthesize sets of cubes (producing rendered



Figure 7: A series of hand slices as the cutting plane moves through
the volume.

texture emulating the high resolution source volume), or after color
is transferred from 2D example illustrations. We use one minimum
Wang Cube set with 16 cubes for all the textures. Since all of them
have the same cube face color set, one cube tiling for the whole
volume is shared by all the synthesized cube sets.

5.1 2D Slice Viewer

The 2D slice viewer uses the synthesized 3D textures and segmen-
tation masks to generate illustrative slices. From the object ID of
the segmentation masks, the pixel color is fetched from the cor-
responding composed 3D textures by using the transformed world
position. Although 2D images can be generated with Wang Tiles
or other 2D texture synthesis methods, extra operations, such as
smoothing adjacent images, are needed to avoid jumping and pop-
ping effects when the user moves through the slices. 3D textures
provide smooth transitions naturally and the slice can be rotated
into any view direction at any position in the volume. Gradient in-
formation from the dataset can also be used in the lighting to create
a relief texture effect. These illustrative slices are generated and
rendered in real-time. Figure 7 shows a series of hand slice images
as the slice moves through the volume.

5.2 Direct Volume Rendering

We also built a GPU-based volume rendering system (slicing) to di-
rectly illustrate volume datasets. Since the cube tiling has the same
size as the volume data, it is combined with the volume data and
segmentation masks into one texture unit to save texture memory.
Assuming M sets of cubes are used and C is the length of the cube
side, all the cube textures are grouped into a grid of 4C×4C×MC,
where each cube is still stored as a volume so that tri-linear inter-
polation can be achieved. One problem that can occur is that the
details from the composed textures may be too small to be seen if
we only allow each cube to map onto one voxel. Therefore, we add
a rendering scale parameter for each cube set, which corresponds
to the voxel numbers in each direction. Additionally, some textures
might not be seen clearly after rendering, mainly because of the
lack of texture variations from the sample volumes and the usage
of specific rendering settings. We sharpen the cube textures while
maintaining the average colors to overcome this problem.

The main difficulty in implementation is the calculation of tex-
ture coordinates in the fragment program. Since the composed 3D
textures (scaled by the rendering scale parameter) are stored sepa-
rately as the synthesized cubes and a cube tiling, we need to cal-
culate the transformed coordinates for each fragment. Also, since
the cubes for all the textures are packed into one texture unit, the
texture coordinates must be accurately mapped inside a cube in-
stead of between the cubes. For each fragment, we calculate two
positions from the world coordinates: the voxel center position and

Figure 8: (a) Two CT slices of the hand and feet show the limited
resolution of the original datasets. (b) Volume illustration of the
unsegmented feet dataset. The skin and bone textures reuse the
cube textures generated for Figure 9(c).

the relative shift of the current world position to the left-down-back
corner of the voxel. Then, the current segmentation mask is used to
retrieve the render scale for this object. The voxel center position
and the render scale are used to calculate the cube index from the
cube tiling. Finally, the relative position and the render scale are
used to retrieve the color of the current position in the cube.

After retrieving the cube color, we can use silhouette enhance-
ment and lighting effects [9], which are commonly used in illus-
trations, in addition to transfer functions to calculate the final color
for the current world position. Figure 9(a) and 10(a) are gener-
ated from the full colored slices of the visible human by synthesiz-
ing cube textures directly from the input textures. Figure 9(b, c)
and 10(b) are illustrations with color transferred textures from the
corresponding illustrative examples. All the results share the same
data resolution, but differ in style. To generate the image in Fig-
ure 9(c), an elliptical spheroid is used to gradually cut away the fat,
while parallel cutting planes are used in generating Figure 10(b).
The two examples of the hand come from [25] and the abdomens
are from [27]. The rendering time for these final, high-resolution
renderings is around 1 second per frame for 500x500 images and
500 slices on a Nvidia Quadro FX 3400 graphics card.

The illustration in Figure 1 includes more object details than the
right MR image although they have the same size. Similarly, in our
rendering, the source volume data has limited information, while
we generate cube textures from high-resolution data and use them
to enrich the previous volume data. To provide meaningful infor-
mation, we usually choose corresponding cube textures for each
object/region in a volume. For example, we choose liver textures to
render the liver, while skin textures are used to render skin. These
corresponding textures contain the information about object appear-
ance, color, component, and shape and can be used to improve the
understanding of the data for education and training.

To further simulate the example illustrations, we interactively
adjust the rendering parameters. For instance, we add silhouettes in
the volume rendering if there are silhouettes in the example, and we
use more transparent skin in the volume rendering if the skin region
is not the focus point in the example. In our direct volume rendering
approach, the users can interactively adjust the lighting direction,
transfer functions for opacities, and four rendering parameters (1
for render scale, 2 for lighting, and 1 for silhouette) per object.
Figure 8, 9, and 10 have 2, 3, and 8 objects respectively. After the
cubes are generated, it takes a skilled user a few minutes to visualize
an unknown dataset.



Figure 9: Volume rendering of a hand dataset. (a) is rendered with the cubes synthesized from the Visible Woman photographic dataset.
(b) and (c) are rendered with recolored textures using their respective example illustrations. The three small images are cropped from the
corresponding example regions and show the textures of fat, vessel, and bone, respectively. The silhouette colors in (b) and (c) are also selected
from the examples and shown as the box colors around the samples.

5.3 User Interaction and Storage Requirements

Because of the ability to emulate examples by transferring their
color distributions, our method requires much less user interaction
than traditional rendering approaches. Only the 2D illustration and
sample examples need to be selected by the user and the 3D tex-
tures are automatically generated. Our approach can render both
segmented and un-segmented datasets; therefore, most user inter-
action occurs when adjusting the transfer functions and limited ren-
dering parameters. Moreover, once the cube set is synthesized, it
can be used to generate textures for the same or similar subject of
any size and the cube sets are usually reusable. For example, the
skin, vessel, and bone textures generated for the hand data (Fig-
ure 9) can be used to render the feet data (Figure 8(b)). What’s
more, once the cube set is synthesized, arbitrary sized 3D textures
can be composed quickly.

Another advantage of Wang Cubes for volume rendering is that
these non-periodic textures occupy much less texture space. Since
the cube tiling is combined with the volume data and segmentation
masks into one texture unit, it does not use an extra texture unit.
The main memory difference is for storing the 3D textures. With
Wang Cubes, the texture space of M sets of 16 cubes is M×16×C3.
To achieve the same effect of non-periodic textures without Wang
Cubes, M volumetric textures having the same size of the dataset
are needed using M ×V 3 space. Therefore, the difference of the
space requirement is 16C3/V 3. In Figure 9 and 10, both datasets
are 256×256×128 and the cubes are 163. Therefore, the required
texture memory with Wang Cubes is only 1/128 of that required
without Wang Cubes.

6 DISCUSSION AND FUTURE WORK

This paper employs 3D textures to improve the visualization of vol-
ume datasets by enriching meaningful details and achieving illus-
trative styles. Based on the methods from scientific illustrations for
conveying object features, we have built an automatic process to
simulate illustration “rendering styles” using color transfer and il-
lustration similarities. These “rendering styles” capture important
illustration information, such as accepted conventions and usage of
colors. By simulating these styles, the proposed method can gener-
ate expressive and pleasing rendering results with a much simpler

process than by manual adjusting all parameters and colormaps.
To synthesize 3D textures from 2D examples is a very challeng-

ing task. By carefully observing the features of scientific illustra-
tions, we use color transfer methods and available volume datasets
to automatically generate illustrative 3D textures, which can gener-
ate high resolution 3D textures from small 2D examples with little
user efforts. The usage of Wang Cubes significantly alleviates the
issue of limited texture space. These synthesized 3D textures can be
used in both surface-based methods and direct volume rendering.
Our new rendering method keeps the advantage of direct volume
rendering that a user can arbitrarily choose the object/region shape
with transfer functions and change their focus of intent.

Since many medical anatomy textbooks and atlases uses illustra-
tions in addition to medical images (such as CT or MR), we believe
that this method is useful for educational applications. This method
can be extended to several areas of 3D texturing and color transfer,
including video synthesis and texture generation for other types of
models.

We plan to further analyze and simulate the abilities of scien-
tific illustrations to extract important object features and render
volumetric datasets in a coherent and artistic way, such as highly-
structured textures and illustrative lighting effects. Since the subtle
effects of lighting and color usage around different portions of an
object, some examples have inhomogeneous properties that affect
the texture synthesis results. We plan to investigate new methods to
remove or balance these issues. We also plan to explore artistic and
scientific composition principles for adjusting rendering parameters
to achieve the desired effects with much less user interactions.

Since texture memory size is a limited resource, we will further
explore texture usage for volume rendering to provide more ren-
dering styles for different applications, while accelerating the ren-
dering speed by avoiding irrelevant texture memory accesses and
texture coordinate manipulation.
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Figure 10: Volume rendering of an abdomen dataset. (a) is rendered with the cubes synthesized from the Visible Woman photographic dataset.
The three slices on the right show the lung, liver, and kidneys respectively. (b) is rendered with recolored textures using the corresponding
examples from the two right illustrations.
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