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ABSTRACT
This paper addresses the problem of collaborative analy-
sis in a distributed setting via a network security applica-
tion. Network security analysis often requires accurate and
timely results, which is very challenging to achieve in large
dynamic networks with a single user. To address this issue,
we design and develop a collaborative detection mecha-
nism for complex intrusion detection applications. We also
establish a set of collaboration guidelines for team coordi-
nation with distributed visualization tools. These collab-
oration guidelines cover the designs of coordination roles,
workflow, collaborative environments and human computer
interactions. We apply them to generate a prototype system
with interactions that facilitates collaborative visual analy-
sis. According to the expert feedback acquired for assess-
ing our approach, we propose directions for improving the
efficiency of collaborative analysis.
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1 Introduction

Collaborative analysis can benefit many large scale appli-
cations where a small group of users discuss and negotiate
their interpretations of the data with which they are work-
ing. These techniques are often required for application
fields where task complexities can easily overrun comput-
ing power and algorithm intelligence [12, 16, 14]. Espe-
cially in security applications, collaboration mechanisms
are crucial to provide time efficient solutions for process-
ing a large amount of data in real time. While approaches
have been explored for assisting individual analyst with de-
tection tasks, the problem of collaborative analysis for such
applications is still open.

In this paper, we concentrate on exploring a suitable
solution for complex intrusion detection applications. Our
motivation comes from the fact that important networking
environments are always protected by security teams. Tra-

ditionally, such teams would use an algorithm-based Intru-
sion Detection System (IDS) to warn them of threats, but
IDSes are prone to give false alarms. Since every alarm
must be verified, security teams end up wasting much time
investigating events that turn out to be false alarms. Col-
laborative analysis can provide a practical solution to over-
come the ineffectiveness of automatic detection algorithms,
limits of computing resources, and complexity of advanced
malicious attacks. Especially for intrusion detection, where
new or unknown attacks are often introduced, having a
group of experts analyzing data in real time is crucial to
provide accurate and time critical results.

Since most previous detection approaches have been
designed from a single-user perspective, it is usually not
possible to apply them directly to team coordination. Rel-
evant studies, such as ones exploring teamwork theories,
have been extensively performed in the fields of artificial
intelligence and robotics. However, the proactive collabo-
rative problem-solving feature of the security domain dif-
ferentiates it from multi-agent coordination in their appli-
cations. To build an effective collaborative visualization
model, various aspects related to the collaborative problem
solving process, such as knowledge sharing and social fac-
tors [20], should be considered. However, it is not yet un-
derstood how interfaces and interaction techniques should
be designed to specifically address the needs of distributed
collaborative analysis.

In this paper, we design and develop a collaborative
detection mechanism for defending against complex mali-
cious attacks in wireless networks. The goal of our collab-
oration teams is to identify any hidden attacks and remove
malicious nodes from the network. Here we concentrate
on defending against a particularly harmful attack known
as the Sybil attack, which has numerous variations. We
first analyze the challenges and requirements for designing
such coordinated systems. Later, we describe a web-based
prototype system, which is built based on our design princi-
ples and heuristics. Our system supports multi-user input,
shared and individual views on detection findings, and flex-
ible workspace organization to facilitate group analysis.

The main contribution is that our work explores the



area of collaborative analysis in a distributed setting, which
to our knowledge has not been explored in significant
depth. Our approach incorporates results from several re-
search fields, including models of human behavior, team-
work theory, and interface design. We also provide a de-
tailed discussion of different collaboration aspects. We give
practical solutions for security applications in real-life for
defending against various attacks, assuming that a reason-
able detection algorithm is provided for each representative
attack. The web-based prototype system and networking
data collections provide a testbed for other researchers to
explore and evaluate the effectiveness of different coordi-
nation aspects, which are hard to access without a working
example.

2 Related Work

2.1 Distributed Collaborative Visualization

The concept of distributed visualization was first intro-
duced by Anupam et al. [1] in 1994. The collaboration
in distributed visualization environment is often based on
systems [3] which can be deployed on different computers.
On the human level, collaborative visualization is defined
as multiple users working together using visualization sys-
tems to achieve the same goal [3]. Distributed collaborative
visualization combines these two concepts both at the sys-
tem level and human level. Many distributed collaborative
visualization applications are web-based [15, 26, 24].

For security analysis, collaboration between multiple
work groups is often required in time-critical situations.
Thus it is necessary to improve the incident response pro-
cess. When dealing with security events in large amounts
of data, collaborative analysis can help analysts find mean-
ingful information [25], which could then help administra-
tors formulate a quick response [8]. However, based on our
knowledge, we have found no effective collaborative solu-
tions for security analysis.

2.2 The Mechanics and Social Aspects of Collabora-
tion

Collaborative teamwork includes two important compo-
nents: the mechanics and social aspects of collaboration.
The mechanics of collaboration include common actions
which team members must take to complete a shared task
in the collaboration process. For example, Gutwin and
Greenberg [13] identified several major actions including
communication, coordination, planning, monitoring, assis-
tance, and protection.

Ma and Wang [20] have pointed out that knowl-
edge sharing and the social aspects of collaboration should
be considered; particularly to better support collaborative
work for large scientific projects using visualization. So-
cial aspects are inevitable in collaborative work. The study
of social aspects often involves exploring the structure of
participant roles, awareness, and trust. Furthermore, social

aspects include both social and cognitive presences. “So-
cial presence reflects the ability to connect with members
of a community of learners on a personal level. Cognitive
presence is the process of constructing meaning through
collaborative inquiry” [11]. Social and cognitive presences
are also needed for online collaboration [22].

3 Design Guidelines and Heuristics

This section describes several guidelines for assisting a
small team (3-15 members) on monitoring and defending
a network collaboratively with a distributed environment.
Our design references knowledge from multiple fields, in-
cluding social science, psychology collaboration models
and teamwork theory; and our observations of team dynam-
ics in security applications.

3.1 Designing the Roles

The structure of participant roles can directly affect the effi-
ciency of a collaborative problem-solving team. In real ap-
plications, the privilege of making final decisions can only
be given to a small number of participants; thus we need to
separate the roles of participants into at least two groups:
administrators who supervise the collaboration process and
analysts who handle individual detection tasks.

In our design, analysts are treated as the main players
in the collaborative analysis process. Analysts can actively
choose their tasks and coordinate with each other to com-
plete the detection process. On the other hand, administra-
tors have the responsibilities of monitoring team progress
such as reviewing the results from analysts, adjusting task
rewards, adding new tasks to the task list, monitoring an-
alyst performances, drawing final conclusions, and remov-
ing malicious nodes from the network.

3.2 Designing the Workflow

Workflow is a powerful tool to guide collaboration and
monitor overall team performance [9]. Our efforts are fo-
cused on designing a mechanism to smooth the coordina-
tion and communication among analysts.

As Figure 1 shows, the workflow starts from a server,
which collects and stores data from the network in real
time. For generality, we only collect network topology,
which is one of the most commonly used information
sources in network security. Once the detection process
starts, the server automatically generates a list of tasks by
dividing data into equal time durations. We define the set
of tasks as T := T1, ...,Tp, where p is the number of tasks
defined in the system. Each task has an associated estimate
cost of time and a reward value R(Ti), which changes with
time and detection results to promote early selection of im-
portant tasks.

In the workflow, administrators can access all the data
and findings from individual analysts. The administrators



Figure 1. The workflow of coordinated detection. A list of analysis tasks is generated in real-time at the server and can be
accessed by both administrators and analysts. Analysts handle the detailed detection process, while administrators overview
the team performance and make final decisions on action. The workflow provides administrators with the flexibility to monitor
and adjust the team progress and analysts capabilities of collaborative analysis.

are the decision makers who review findings from analysts
and draw final conclusions by considering the whole de-
tection process. They are also responsible for monitor-
ing overall team performance and improving the team ef-
ficiency by actively assigning tasks to analysts, modify-
ing reward values, and suggesting the involvement of ad-
ditional analysts.

Analysts must detect and explore hidden attacks by
studying various matrix patterns generated from different
time periods and investigate suspicious activity. Analysts
first either select a task from the generated task list by con-
sidering its reward value or find that they have been as-
signed a set of tasks by an administrator. At this point, the
analysts explore this assigned task via the provided visual-
ization and interaction tools. During this analytical process,
sharing information is needed. Analysts can share their
conclusions and suggestions through images or text stored
in a repository on the server. Thus, other analysts can ref-
erence historical findings for the task in order to make a
more comprehensive decision regarding suspicious activ-
ity. Finally, the server automatically updates the task list
and reward values based on the analysts’ conclusions.

3.3 Designing Collaborative Detection

The following describes the interaction and collaboration
regarding three aspects: detection, coordination, and com-
munication.

3.3.1 Detection

Our design of collaborative analysis is applicable to gen-
eral intrusion detection tasks. In this paper, we concentrate
on detecting Sybil attacks, in which a malicious node ei-
ther steals or generates false identities. The detection of

such attacks often requires iterative exploration. In large
networks, there are normally several interrelated attacks,
which require collaborative analysis. In this section, we
introduce the Sybil attack detection briefly. For more de-
tails, please refer to the appendix of Sybil attacks and the
strategies of the three detection algorithms.

Due to the complexity of Sybil attacks, currently there
are no algorithms that can detect them automatically. In-
stead, interactive visualization tools have been explored
to suggest the existence of malicious nodes [19]. We use
matrix visualization to represent network topology. As
demonstrated in Figure 2, a matrix visualization of normal
network topology generally has an appearance of random
patterns like the left image. While the middle and right
patterns, generated by reordering the node sequences, are
indications of potential Sybil attacks. The white nodes lo-
cated on the left bottom corners are suspicious in such pat-
terns.

In this system, we adopt three independent detection
algorithms which exploit different aspects of Sybil attack
features to reorder the node sequences. Each algorithm
generates an image like the examples in Figure 2. As long
as one of the images demonstrates the suspicious patterns,
users can identify Sybil attacks in a respective time period.
Furthermore, what makes the detection task complicated is
that Sybil attacks do not demonstrate anomalies in simple
neighbor relationships at individual time steps. Analysts
need to test different combinations of time durations and
detection methods to explore potential attacks. The setup
of this detection strategy allows us to introduce additional
detection methods and detect other attacks in the future.

As the users of our system are security experts,
we also provide a knowledge-based reordering interaction
method, which allows users to input their assumptions or
conclusions by specifying benign nodes in blue and ma-



Figure 2. Left: General statistical topology matrix does not
reveal any suspicious patterns; Middle and Right: A suit-
ably reordered topology matrix with a certain time range
can reveal traces to identify malicious nodes.

licious nodes in red. With the provided information, the
algorithm reorders topology patterns automatically. This
can often better reveal suspicious patterns and help users to
gradually locate all suspicious nodes.

3.3.2 Coordination

As described in [17], “coordination is the attempt by mul-
tiple entities to act in concert in order to achieve a com-
mon goal by carrying out a script/plan they all understand.”
Thus building up such a good “script” for team members is
the key point for the whole collaboration process. For dis-
tributed collaborative environment, Neale et al. [21] have
pointed out that coordination should be defined by the com-
bination of procedures, tasks, tools, and communication. In
this section, we discuss the procedures of coordination in-
cluding the division and allocation of task, the updating of
reward values and performance scores, and decision mak-
ing. In section 3.3.3, we discuss communication.

Collaboration style: We define two stages in the de-
tection process: detection and monitor stages. The detec-
tion stage is the duration from the announcement of the first
suspicious node to the time step in which all known attack-
ers have been removed. The monitoring stage is time dur-
ing which there are no obvious attacks occuring. In our
distributed security environment, collaborators switch their
collaboration styles between types of loose style in moni-
tor stages and close style in detection stages. Collaboration
style is also related to the division of tasks.

Task reward: In order support efficient collaboration
among the analysts, providing a guide for them to target
at time-critical tasks is necessary. Therefore, we design a
reward value metric that is associated with each task. All
the tasks are initially assigned reward values of 0s. The re-
ward values are updated according to analysts’ findings of
suspicious nodes. Its value increases by 1 when any new or
additional suspicious nodes are found, or conflicting con-
clusions for the same tasks are drawn.

Therefore, task reward value is the sum of the number
of suspicious nodes and the times of all the conflict results.
If the reward value is high, it indicates the task is in high
risk and needs to remove the malicious nodes as soon as
possible, or the task is too complex to make a clear conclu-
sion by only two or three analysts, it needs more analysts
to double check. Administrators can use reward value to

control the task allocation. They can assign the task with
high value to more analysts as well.

Division of task: Division of tasks is one of the most
basic aspects in collaboration work. However, it is not triv-
ial to parallelize an entire workflow into proper indepen-
dent units [14]. The data we use in our system is temporal
network data, so we divide tasks based on time duration.

The choice of task duration d(t) at the time step t
can be adjusted through two factors: the response duration
of analysts and their collaboration styles. We require that
each task be engaged by several analysts simultaneously.
Thus response duration is the time costs between the selec-
tion and conclusion of a task from all the analysts for all
the tasks during a recent history. We calculate the average
ar(t) of these response durations. Generally, a Sybil attack
can cause severe damage within a certain time T Dmax. The
maximum change is defined as Dmax. Thus, we design an
equation 1 for division of tasks. The second factor is col-
laboration style, meaning that a longer duration for mon-
itoring stages and a shorter duration for detection stages
when communication is more frequently needed. We use
half d for the detection stage.

d(t)=

[
−Dmax × ( 2ar(t)

T Dmax
−1)3, i f T Dmax >= ar(t)>= 0

−Dmax, i f ar(t)> T Dmax

]
(1)

Allocation of task: Effective division of task is not
sufficient for successful collaboration, the efficient alloca-
tion of tasks is also necessary. In order to allocate tasks to
proper individuals, analysts in our design can choose new
tasks on their own with the information of reward values
and their own task history. Allowing analysts to manage
their work independently can bring benefits, in contrast to
assigning their task passively [7]. The latter approach re-
quires a central planner to control each analyst’s workload,
and thus the central planner must know much precise in-
formation about the whole network state and the analysts’
respective productivity capacities. In such a management
structure, even small mistakes made by the planner can
drastically affect the entire organization. Allowing ana-
lysts to actively select tasks avoids this problem. Addition-
ally, every analyst can concentrate on his or her own tasks
without concerning about what tasks the other analysts are
working on. Furthermore, administrators in this model are
able to adjust and take action on the incoming results from
the analysts. This model may slightly reduce the output of
the analysts, since they must take time to select their own
tasks. However, we believe that the time gained by admin-
istrators and the benefits brought by analysts having a say
in their task allocation outweighs this small time loss for
the analysts.

Task coordination: An important aspect of collabo-
ration among analysts is referring to the regions deemed
suspicious by the other group members through a spatial
context [14]. Clark [4] grouped many forms of spatial ref-
erence into two categories: pointing and placing. Pointing



means that using some vectorial reference to direct atten-
tion to specified regions or objects. Placing means that
moving some information into one shared-space. In our
system, we provide a task list and the corresponding sus-
picious node list to promote coordination among all partic-
ipants. Analysts can point out their discoveries of suspi-
cious nodes or regions in generated images after detection.
Afterwards, they can upload their conclusions to the server,
and others can verify these conclusions. Analysts test con-
clusions from others by reordering topology patterns ac-
cording to their assumption of suspicious nodes.

Performance measurement: As described by Shipman
and Wholey [23], “Performance measurement is the ongo-
ing monitoring and reporting of program accomplishments,
particularly progress towards pre-established goals”. In our
design, we build quantitative performance standards to im-
prove the accountability of each analyst and the general ef-
fectiveness of coordination. To do this, we collect correct-
ness and performance scores for each analyst. Correctness
can be measured by comparing the analysts’ conclusions
for each task with the administrators’. The percentage of
correctness increases when the conclusions are identical,
and otherwise decreases. Thus the suspiciousness degree of
any given task can be modified by administrators according
to the correctness scores of the analysts who processed the
task’s data. Likewise, we measure the performance score
by accumulating all the final reward values of the tasks an
analyst has processed. We can assess productivity of each
analyst by this score. The performance list is only available
to administrators.

Decision Making: Decision making is a comprehen-
sive procedure. In our approach, administrators can make
final decisions about action by examining analysts’ results,
the task reward values and analysts’ performance scores.

The administrators do not need to know the details of
each analyst’s work, but the system allows them to change
task reward values and assign tasks to analysts when they
can not make final conclusions by unclear sources such as
the tasks contain uncertain suspicious nodes.

3.3.3 Communication

Sharing information: Sharing information is important in
collaborative work groups [6]. Brennan et al. [2] built
a collaborative framework among multiple analysts. In
this framework, they focused on the idea of common
grounded [5] communication, which allowed multiple ana-
lysts to share information, especially the reasoning behind
the information, logically and graphically. Sharing infor-
mation in our system is based on this framework. Analysts
can point out their findings in generated images and send
their findings with conclusion and suggestion to a sharing
space in server. They can update the lists of malicious
nodes information with confidence values. They are also
permitted to write notes based on their own authority and
expertise.

Awareness: One important aspect of communication

is to provide the work status of each team member to the
others. For distributed work groups, it is difficult to main-
tain awareness of the other members’ work status [10] be-
cause of geographical distance. The traditional ways of
maintaining awareness in distributed work groups (such as
email) were demonstrated to be inefficient [18]. To mit-
igate this, we design a new way for analysts to maintain
situational awareness. In our system, the ongoing task list
and the analysts working on tasks are provided to further
enhance awareness. Analysts can view the examined and
unexamined tasks and the work progress of other analysts.

4 Collaborative Detection System

We apply the above design guidelines to develop a pro-
totype system. We choose a web-based solution, as it is
convenient for a group of people to monitor and defend a
network collaboratively in a distributed environment. That
is, through the web-based collaborative platform, multiple
network analysts and administrators can work collabora-
tively towards identifying suspicious network events. Intel-
ligent control mechanisms are also used for user manage-
ment, task management, and collaborative decision mak-
ing. The following describes the interface and implemen-
tation of such a web-based tool.

4.1 Interface Design

Figure 3 demonstrates the user interface design of the web-
based collaborative detection system. The functionalities
supported by the interface can be categorized into three
types: (1) Administrative functionalities: For the purpose
of effective user interaction, users are required to register
and login before utilizing the functionalities supported by
the system. An administrative interface is provided for ad-
ministrators. Administrators can check the tasks detail in-
formation(Figure 3(C)), report time and suspicious nodes
list (Figure 3(F)) and the performance list (Figure 3(B)).
They make final decisions by considering all the informa-
tion comprehensively. They can indicate the final conclu-
sion of the tasks by adding ‘Flag’ in working processing
board(Figure 3(A)). If the ‘Flag’ is ‘!’, it means that suspi-
cious nodes have been found. They also can remove ‘!’ if
they decide the task is safe. (2) Visual analytics functionali-
ties: The interface displays visual representation of abstract
network data to a group of users. Chart controls are pro-
vided to accept necessary user interactions, from moving
the mouse over a 2D location to clicking or double-clicking
on that location, for marking suspicious nodes under attack.
Analysts can also adjust sliders in Figure 3(D) to select dif-
ferent time ranges of the detected task and to select dif-
ferent algorithms. This interaction make analysts to get the
precise location of the suspicious nodes. In Figure 3(E), the
generated images by three different detection algorithms
locate at different rows. Analysts can get a scaled image
by double clicking the small one. In the scaled image, they



Figure 3. A demonstration of the graphical user interface for collaborative detection. (A) working processing board. (B)
performance list for administrators. (C) the task list. (D) a panel for selecting time ranges and detection algorithms. (E)
topology pattern window. The topology patterns are arranged into three rows which are results from three algorithms. When
analysts double click one pattern, an enlarge image will be shown in the right window. (F) suspicious nodes list which is
generated automatically based on suspicious nodes identified by analysts. Analysts can identify suspicious level and write
comments here.

can point suspicious nodes in red or good nodes in blue by
clicking them. (3) Communication and coordination func-
tionalities: The findings of each task can be shared among
analysts. They can click ‘report’ button to upload suspi-
cious node list with images and notes(Figure 3(F)) to tell
the other analysts the reasons of their findings. Our inter-
face also helps both analyzers and administrators manage
and maintain lists of ongoing tasks, and for each task, keep
its allocation status, its current reward value, and a list of
suspicious bad nodes.

4.2 Implementation Detail

Following the Model-View-Controller design pattern, for
reasons of flexibility, the implementation of the interface
supporting visual analytics functionalities consists of three
modules: the Data module, the Control module, and the Vi-
sualization module. For each user request, these three in-
teracting components always work together to produce vi-
sual representations of the network data in a user-specified
range. Specifically, the Visualization module sends re-
quests to the Control module for the display content while
the Control module sends requests to the Data module for
the network data that is required for satisfying the display
requests.

5 Discussion

Here we discuss several different scenarios of attacks: no
attack, simple attack, and complex attack. It is important
that a distributed collaboration system is able to handle all

the cases as each case has potential pitfalls.
In the case that there are no attacks in a network, all

analysts should be made aware of this fact. In a traditional
setting that relies on automatic intrusion detection systems,
false alarms are common. As a result, many analysts are
kept busy with verifying that false alarms are indeed false
alarms. In our system we rely on the strength and diversity
in abilities of a group of analysts to assess the state of a
network. As such, when the network is in a safe state, our
collaborative tools allow this fact to propagate to all ana-
lysts and administrators, who may then reduce the number
of analysts actively working on tasks and let them either
explore historical data or devote their time to other tasks.

The second case is where there is a simple attack.
A potential pitfall in this situation, particularly when sev-
eral analysts are processing the network data, is repeated
work. That is, in a system that employs several analysts
but fails to have adequate communication capabilities, sev-
eral analysts may go through the process of identifying the
simple attack. However, since our distributed system pro-
vides communicative functionality to both administrators
and other analysts, the analysts who have not yet processed
the attack will be made aware of the fact that an attack
has been identified, and may then assist in verifying this
conclusion. By verifying the conclusion, the analysts are
updating the suspiciousness degree, which will prompt fi-
nal action by an administrator more quickly than traditional
communication methods.

Finally, the case of a complex attack is when attack
nodes are migrating and exhibiting other complex behav-
iors. Such an attack may be first discovered by an analyst.
However, it is more likely that the administrators, who are



concerned with processing conclusions from the analysts,
will identify patterns based on the results submitted by the
analysts. At this point, administrators can produce and de-
ploy a verification and response plan using the provided
visualizations and tools. Our system gives administrators
the ability to respond rationally (with the correct amount of
analysts) and in a timely manner.

An additional example of a related complex scenario
is when conflicts arise among different analysts’ conclu-
sions for a task. For some nodes of the task, different ana-
lysts may draw different conclusions based on their respec-
tive expertise. For example, analyst A finds a malicious
node in some task’s data. As a result, analyst A will in-
crease the reward value of this task. Before A sends his re-
sults to the server, analyst B processes the same task. How-
ever, analyst B identifies the node that has been identified
as malicious by A to be benign. As a result, this task is
viewed as having conflicting results and the reward value is
increased further. Our goal then becomes to eliminate the
conflict. Administrators can identify such situations and as-
sign more analysts to process this task while updating the
respective performance and correctness scores of A and B.
Based on the results from additional analysts and their re-
spective performance scores, administrators will be able to
draw conclusions about the task in question.

Another interesting situation arises when the reward
value of the task is the same but different malicious nodes
are found. To address this in our design, we provide a task
list and corresponding suspicious node list with suspicious-
ness degrees to all participants. The administrator can as-
sign nodes with high suspiciousness degrees as tasks to an-
alysts for verification, and finally make decisions based on
the analysts’ conclusions.

6 Expert Feedback

As an important component of the evaluation procedure,
we have provided the prototype system to four researchers:
two visualization researchers, one wireless network secu-
rity researcher and one web-based collaborative analysis
researcher. The following summarizes the positive feed-
back from three aspects. Limitations and future work are
summarized in the next section.

First, the feedback shows that the hierarchical organi-
zation of the user roles matches the scenarios of many real-
life applications. A system administrator often has several
assistants in managing a complex wireless network. Once
the distribution of the work responsibilities among the as-
sistants is determined, they usually have a great degree of
flexibility in accomplishing their tasks. At the same time,
the administrators have the authority to integrate the results
from the analysts and make the final decisions. One feature
that distinguishes the proposed approach from several vot-
ing based attack detection schemes is that the analysts can
choose their own tasks based on their expertise, process-
ing capabilities, and rewards. It liberates the administrators
from the overhead of task assignment so that they can focus

more on the result integration procedure.
Second, the proposed approach provides a powerful

and convenient vehicle for communication among the an-
alysts. The system provides two channels for the analysts
to share their observations and localized detection results.
First, they can identify the suspicious areas in the network
so that other analysts can conduct detection at a finer gran-
ularity in the areas. Second, the analysts can directly share
the suspicious that they identify and assist other analysts in
their tasks. Sharing only the suspicious areas and the de-
tection results will greatly reduce the communication over-
head among the analysts.

Third, the proposed approach provides methods to
measure the performance of analysts. The schemes include
the reward incentives and the performance monitoring pro-
cedures. The reward incentives inspire the rational analysts
to carefully conduct the attack detection tasks to maximize
their evaluation effectiveness. At the same time, the cross-
comparison between the analysts’ results and the final deci-
sions of the administrators prevents the analysts from trad-
ing detection accuracy for response time. The two schemes
together can reduce the false positive and false negative
alarms. At the same time, the degradation of the perfor-
mance of any analysts can be easily discovered by the ad-
ministrators.

7 Limitations and Future Work

One limitation of the present work is that the communica-
tion among distributed team members is limited. We plan
to improve it for time-critical applications by allowing an-
alysts to share ongoing results through introducing uncer-
tainty visualization to our system. Another limitation is
that it is still challenging for administrators to make deci-
sions when conflict results occur. Thus additional decision
making tools are necessary for such case. We plan to study
relevant work from social science to improve the workflow
for this purpose.

We hope that our work will bring about a discussion
on exploring collaborative analysis methods for informa-
tion security applications, especially in distributed settings.
Our future work plan includes exploring the effects of dif-
ferent interaction and algorithm design aspects. We plan
to design a series of simulations for use in user studies.
The results of user studies will be used to adjust our ap-
proach and provide design guidelines for general collabo-
rative analysis in distributed environments.
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Appendix
Sybil attacks [19] are particularly harmful on distributed
systems and wireless networks. This attack has been
demonstrated to be detrimental to many important network
functions. Malicious nodes play the roles of multiple legit-
imate members of a network by impersonating their iden-
tities or claiming fake IDs. These fake nodes do not have
real physical devices like legitimate nodes and they often
claim to have direct or indirect connections with the mali-
cious nodes which generate them.

In our system, users study the accumulated global net-
work topologies. They detect Sybils by locating anomalies
in neighbor relationships and movement patterns of wire-
less nodes. With the tight integration of interactive visual-
ization and security algorithms, the system can be used to
detect Sybil attacks under more sophisticated scenarios.

Here we briefly describe the three detection algo-
rithms. Algorithm 1–Anchor Connection: The first al-
gorithm is designed based on the fact that there is usually
a lack of direct connectivity between Sybil and legitimate
nodes and long-time connections among Sybil nodes. This
method results as the middle pattern in Figure 2, empty re-
gions on upper left and bottom right.

Algorithm 2–Connectivity Frequency: The second
algorithm is designed according to the high connectivity
feature among fake identities. This method results a highly
connected region on the bottom left, which is shown to be
white blocks in target patterns in Figure 2.

Algorithm 3–Neighborhood Similarity: The third
algorithm is designed according to the neighbor similari-
ties of a node group. This feature results regions with band
patterns on the upper left and bottom right as the right pat-
tern in Figure 2.


