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Abstract: Ultra-scale data analysis has created many new challenges for visualization. For example, in climate

research with two-dimensional time-varying data, scientists find it crucial to study the hidden temporal relationships

from a set of large scale images, whose resolutions are much higher than that of general computer monitors. When

scientists can only visualize a small portion (< 1/1000) of a time step at one time, it is extremely challenging to

analyze the temporal features from multiple time steps. As this problem cannot be simply solved with interaction

or display technologies, this paper presents a milli-scaling approach by designing downscaling algorithms with

significant ratios. Our approach can produce readable-sized images of multiple ultra-scale visualizations, while

preserving important data features and temporal relationships. Using the climate visualization as the testing

application, we demonstrate that our approach provides a new tool for users to effectively make sense of multiple,

large-format visualizations.
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Introduction

The difficulty we encounter in the current influx of large
complex data has prompted many novel initiatives in
visualization research. In this paper, we address the
challenge where limited display resolutions do not even
allow one pixel per datum, as demonstrated by Fig. 1.
Unlike many other technological constraints, the gap
between limited display resolutions versus increasing
data sizes will likely persist in the foreseeable future
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or continue to widen.

For example, satellite observation data crucial
for validating today’s climate modeling research,
such as NASA’s MODerate resolution Imaging

(b) Seam carving

(a) Downscaled image
g on

(c) An example region (d) The same region in (a)

Fig. 1 An example to show that downscaling and seam
carving cannot preserve object shapes and textures, which
are important aspects of perceptual image features.
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Spectroradiometer dataset (MODISM, s publicly
available. In the 500-meter resolution MODIS data
set, the entire globe is covered by a spatial grid of
86000 by 43000. In the meantime, datasets at ultra
high resolution are also appearing in communities
such as digital pathology, where two-dimensional
(2-D) datasets are being produced at 40 000 by 40 000
resolution. It is very difficult to visualize such ultra
high resolution data at full scale using today’s display
technology.

In this work, we develop a visualization method,
which we call “milli-scaling”, to downscale an image
by roughly a factor of 30 x 30 (both horizontal and
vertical dimensions). Using milli-scaling methods, we
can visualize MODIS caliber datasets at resolutions
which are commonly available today. In addition, we
design our milli-scaling approach to handle multiple,
instead of just one, large-format visualizations. The
large-format visualizations are considered together as
a collection, which can represent geo-spatial data
captured by satellites at different instances of time
or pathological data recorded from sequential cutting
planes.

Specifically, our approach downscales a small
collection of ultra-scale images by converting them
consistently for effective data comparison and analysis.
Our method leverages both image-space features as
well as collection-wide relationships. We first divide
the image space into regions with a gap searching
algorithm that measures imagery saliency and data
similarities. A space reorganization method is then
applied to emphasize important regions and maintain
meaningful background. The important regions are
further downscaled through a multi-scale texture
mapping method under the constraint of a feature-
aligned mesh to preserve perceptually important
image features. We demonstrate our results at several
commonly used resolutions. Both example results and
discussions are provided to show that our milli-scaling
approach can achieve arbitrary downscaling suitable
for data visualization purposes.

The main contribution of this paper is our milli-
scaling approach for visualizing ultra-scale images from
a 2-D data collection at readable resolutions. Our
approach allows arbitrary downscaling and preserves
perceptually important image features with a mesh
constrained texture mapping approach. Different from
image editing techniques, our approach considers image
features as well as collection-wide data relationships.

Our automatic downscaling results can be used to
visualize, compare, and document 2-D data from
different fields or time steps directly.

1 Related Work

1.1 Image resizing

Image resizing tools uniformly resize an image to a
target size and are available in many image processing
applications. To obtain image features, simply applying
existing techniques like cropping or down-sampling
does not often work. Especially when they are applied
to images with complex objects, important image
features may be lost or deformed, thereby changing
their original meanings.

Content-aware resizing has gained popularity lately.
These approaches generally use important measures
like image gradients, saliency and entropy, as well as
high level cues such as face or motion detection. For
example, Chen et al.l?! presented a visual attention
model for resizing an image. Setlur et al.’l presented
an image retargeting method that resized an image by
constructing a topologically constrained epitome of an
image. Avidan and Shamir[¥! presented a seam carving
approach that supported content-aware image resizing
for both reduction and expansion by repeatedly carving
out or inserting seams to retarget the image to a new
size. Later, Rubinstein et al.l’l showed that seam
carving did not preserve object shapes or appearances
and presented a multi-operator approach that combined
seam carving with cropping and scaling to find an
optimal resizing solution. Simakov et al.lo] presented
an approach based on optimization of a bi-directional
similarity measurement. Dong et al.’l designed a
method based on optimization of a well-defined image
distance function to preserve both important regions and
the global visual effect. Wang et al.18] presented a scale-
and-stretch warping method that preserved visually
prominent features by diverting the distortion due to
resizing to image regions with homogeneous content.
This approach has also been extended to volumetric
datasets recentlyl®].

Resizing techniques have also been explored for
videos, such as video carving[m], video retargeting[“],
improved seam carving'?, integrated
(131 and motion-aware constraints!14!,

content-
aware

1.2 Milli-scaling related work

Due to the degree of downscaling, the problem of milli-
scaling cannot be solved by general image resizing
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approaches effectively. There are very few works that
address similar problems. For example, Liu et al.['?]
presented an automatic image browsing strategy with
an image attention model to display large pictures
on mobile devices. Liu and Gleicher!'® presented a
fisheye-view warping method to use image salience
and object recognition to preserve information content
while displaying an image on a small display. Setlur et
al.13! pointed out that a comprehensible and size varying
approach was suitable for display-critical applications.
Similar to this approach, we also segment an image
into regions, identify important regions, and treat the
background differently. Some of the recently published
approaches, such as the scale-and-stretch[®] and the
bidirectional similarity methodsm, could also resize an
image to arbitrary sizes.

However, none of the previous approaches has really
downscaled an image to the extent of milli-scale
addressed in this paper. Also, since many of them
iteratively remove a line each time, they are either
impossible or inefficient for this application. The
measurement of image features is also different, as
milli-scale downscaling has to remove significant image
portions. Generally these image editing approaches
handle images from 1024 x 754. Our data resolution
is 20705 x 12 000.

2 Approach and Application Overview

Milli-scaling is different from general image and
video scaling problems from two aspects.  First,
due to the extreme degree of milli-scaling, it is
inevitable that a significant portion of image details
may be lost or deformed during the downscaling
process.  Second, milli-scaling is for a group of
images. A good downscaling algorithm in such a
scenario should preserve key information in the input
images, such as important details from regions-of-
interest. It should also maintain meaningful background
for understanding the global picture. This requires
the identification of important regions that are related
to significant data features and different downscaling
methods for treating important and background regions.
Our milli-scalling approach consists of the following
stages.

Selection of important regions We segment the
image space considering data features and relationships
among multiple images with a gap searching method.
An interactive function is also provided for users to
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specify interesting regions manually.

Reshaping of image space  We reorganize the
image space as foreground and background through
selecting important regions and calculating their ideal
target resolutions.

Image scaling Important and background regions
are handled separately. We design a feature preserving
method to downscale each important region to its target
resolution. The background is generated with an image
warping and morphing method to provide meaningful
context.

Our test cases are collections of images resulting
from the NASA MODIS data with a flexible query
method!!”!, which allows the exploration of various
temporal relationships by testing queries abstracted
from different events. Our inputs can be viewed as
small groups of grey scale images in the resolution
of 20705 x 12000. According to an input query, a
score is calculated for each pixel by measuring the
correspondence degree of local data to the represented
event. Generally, regions with high values draw more
attention from users. Therefore, the pixel values can
indicate important locations on the image plane. One
special feature of our input images is that most of
them are composed of discrete points, since features are
usually sparse by nature. The image groups we use in
our experiment include no more than eight images from
different time steps. Preserving individual data features
as well as the temporal relationships are both important
to this application.

3 Milli-Scaling Approach

This section describes the details of our milli-scaling
approach. Let’s denote the input image collection as
1 ={M{,M,,--- ,M,}, where n is the number of
images.

3.1 Region division with gap searching

The first step of milli-scaling is to find a suitable
division of the image space, so that we can preserve
data details from one or several important regions and
generate the background as context. Since our objective
is to explore temporal events or relationships among the
input image collection, the region division should be
operated on the input image set, instead of an individual
image. Also, an important region is defined as a sub-
image space that contains crucial and continuous data
patterns or significant temporal events.

We have developed two methods for identifying
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important regions. First, an interactive method is
provided for a user to specify important regions
by manually drawing a map over their interested
regions. Second, we design an automatic method to
divide the image space according to data features and
relationships. Both methods enable easy selection of
important regions with various shapes and sizes. The
following describes the details of our gap searching
algorithm for automatic region division.

Since many datasets used in scientific visualization
are composed of discrete points, it is difficult to
distinguish local seams and global gaps.
of identifying important regions directly, we design
a succinct algorithm that searches for obvious gaps
between regions with continuous local and temporal
patterns. This can produce a near global “optimized”
division result for various inputs. Our approach consists
of three steps: we first generate a significance map
through measuring image and temporal features; then
a gap search algorithm is performed based on the
significance map; finally a list of important regions is
derived according to the region gaps.

Instead

3.1.1 Measuring pixel significance

To measure pixel significance, we calculate a
significance map by combing two data features:
gradients for representing the degree of data changes
and score values for indicating the correspondence
degrees to a querying event. Since the original data is
often composed of discrete points, the gradient map is
calculated from a downscaled image that averages pixel
values, which measure the data changes better. From
our experiments, different scales do not matter much

to the final results. Therefore, we use 1/8 x 1/8 of

the original resolution (closest to the typical resolution
of computer monitors) for the significance map. This
can significantly improve the performance of our
next step, search of obvious gaps. Also, a Gaussian
smoothing operator is applied prior to the gradient
calculation to reduce noise in data. Correspondingly,
we generate a score map at the same scale. Since
each pixel represents a region in the original data,
we choose the maximum score value as the result for
the score map. The significance map is measured by
multiplying the values from the gradient map and score
map. Figure 2 shows examples of significance maps
where regions with high score values and variations
are more obvious. To calculate pixel significance
for the input set, we normalize significance maps for
individual image before summing them so that they
have equal effects on the final region division. The final
significance map for every pixel p is calculated as:
sig(p) = >_i_, (gradient(p) x maximum score(p)).
To incorporate data relationships among the input
set, we measure pixel similarities for comparing the
temporal trend at each pixel location. Specifically,
a 1 xn vector tr is generated for each pixel by
concatenating the score values at the location from all
the images according to their temporal order. During
the division, the pixel similarities can be used in the
same way as the significance map, meaning that pixels
with similar temporal trends should be considered as the
same region.
3.1.2 Searching for gaps
The region division is achieved through utilizing the
significance map and pixel similarities to search for

obvious gaps. We define gaps as the horizontal or

Downscaled images

Significance maps

Segmenting seams Region maps

Fig. 2 Examples of region division. Our gap searching method divides the image space by identifying obvious gaps between
local and temporal continuous regions. We add a red frame to the results of segmenting seams to clarify the locations of some

white seams around the image boundaries.
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vertical passes with the minimum energy sums, similar
to the definition used in the seam carving approach[4].
This design is from the observation that adjacent
regions are often separated by a gap with different
data properties, which can be measured with the
differences of values from the maps of final significance
and temporal trends.
and vertical seams allows complex gaps that are not
available in the original seam carving approach.

Specifically, we search for obvious gaps by
modifying the seam carving approach from two
aspects. First, we combine differences of adjacent
significance values sig and temporal trends tr as
follows, which extends the energy definition of the
original seam carving approach.

The combination of horizontal

s* =min E(s) = minZ (sig; — sigy) X (|try — tra])

ey
This modification incorporates the requirements of
milli-scaling and achieves simultaneous region division
among the input image collection.

Since the gaps between regions can face any direction
in an image, our second modification is to search
for optimal seams from all four edges of the image
space. All the seams are combined in one map with
a binary mask, as shown in the third column of Fig. 2.
Original seam carving uses an iterative process to
remove a horizontal or vertical seam each time. The
seam is located by finding a pass with the minimum
accumulative energy value. Our improvement avoids
the inertia of the algorithm that tends to be bounded
by the seam direction and starting edge, which can still
be seen by the white margins on the left of the image
space. This modification also allows complex gaps that
consist of both horizontal and vertical seam segments.
To prevent an image from being overly divided, we
terminate the algorithm when the accumulated energy
value of a seam is beyond a threshold of 1/10 of the
corresponding dimension.

3.1.3 Generating important regions

After finding important gaps, we generate a list
of regions with the Connected Component Labeling
(CCL) approach['8].  Specifically, we first mark all
the gaps with 1s and the others with Os. The CCL
approach is then applied to identify each region with
continuous 0s. We calculate the importance of each
region by summarizing all the scores inside the region
and sort them according to their importance values.
Further, we reduce fragmented areas by treating all the
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gaps as empty regions and discard regions with small
sizes or importance values. To assist the exploration
of the input set, we also provide interactions for users
to select important regions and adjust their degrees of
importance.

It is worth mentioning that our problem is different
from object recognition. What we are looking for is
a quick space segmentation approach that can divide
ultra-scale images into smaller pieces. Due to the
discrete property of our datasets, it is difficult to use
approaches like region growing or texture analysis
for good segmentation results. Also, we need to
consider the similarity of temporal trends during the
segmentation so that our results can keep important data
relationships. The presented region division approach
fits our query data quite well. As shown in Figs. 2 and 3,
this method can locate several significant gaps between
regions and segment the image space succinctly.

3.2 Reorganization of image space

With the list of segmented regions, we select important
regions and determine their level-of-detail given a target
resolution. The image space is then reorganized as
foreground and background regions, which are treated
differently to emphasize important data features. For
arbitrary downscaling, we automatically select all the
parameters, including the number of important regions

and their final resolutions.
3.2.1 Determining parameters for

downscaling

arbitrary

We summarize the ideal reorganization of the target
image space with the following criteria. First, important
regions are scaled equally in both dimensions to best

Fig. 3 Segmentation example from multiple images. The
top rows are a set of 6 images. The bottom row shows the
segmenting seams and resulting region map.
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preserve their perceptual features. Second, important
regions are relocated on the target image without
much overlapping. Third, it is ideal to keep some
gaps between important regions to provide background
context. Fourth, important regions should be scaled as
large as possible while satisfying the previous criteria.

We first sort all the regions according to their
degree of importance, calculated as IM(region) =
> peregion Sc0re(p). The degree of importance is also
used to calculate the relative scales between important
regions. For example, the final resolutions of two
regions i and j will be proportional to IM(7) : IM(j).

We design our approach to adapt its parameter
selection automatically according to the target
resolution by changing the number of important
regions. The results concerning working memory from
cognitive science'”] have clearly indicated that the
human mind can only process the information from
a very limited number of objects at the same time.
Referring to the number of objects used in these studies
and considering that our regions are often complex,
we choose only one region when the downscaling ratio
is smaller than 1/500 (e.g., for handheld devices) and
four regions at most when it is larger than 1/50 (e.g.,
for computer monitors). A linear function is used
with these two key points to calculate the number of
allowable regions for arbitrary target resolution. This
selects 1-4 regions for typical computer monitors,
which is consistent with our design.

We then calculate the final resolution of selected
important regions. Since the proportions of important
regions have been determined, we just need to find
a final scale Fc that can satisfy the criteria of our
ideal choices. A simple iterative process can be
used to calculate this scale quickly. Starting from
a large number, such as the largest scale to fit a
region on the target image, represented as Fc =
min{Dimepace/ Dieregions DimYspace/ Dieregion},
we perform a halfway search process until
Y DimXiegion < DimXgpaee and Y DimYiegion <
DimY pace. For simplicity, we use the bounding box
of each region as its boundary. The final resolution
of a selected important region is then settled as
Fc x IM(region).

3.2.2 Generating background

After selecting important regions, we reorganize the
target image space to emphasize important regions.
We first locate important regions on the target image

and use the feature preserving approach from the next
section to downscale them. To preserve the relative
locations of important regions, we use their center
locations as directly downscaled. Since we keep
the same proportion of X and Y dimensions for an
important region, with the center and final resolution,
we can locate all the pixels belonging to this region.
We also allow users to adjust the locations and final
resolutions of important regions to achieve their desired
effects. In case important regions overlap, which
mostly happen around region corners, we apply the
image quilting algorithm!?%! to synthesize overlapped
regions. This algorithm finds a pass with minimum
accumulated energy through overlapped regions, which
is very similar to the basic idea of gap searching.
Therefore, we can use the same energy function defined
in Eq. (1).

Background regions are used to provide the context
of important regions. It is desirable to keep the
correct correlation of important regions to their
surroundings, so that the background can still provide
useful information to identify locations and global data
changes. We use an image warping and morphing
With the boundaries of
important regions on the source image space, we first

method to achieve this.

build a triangle mesh to divide the background region.
As shown in Fig. 4, every vertex of this source triangle
mesh is located on either the boundaries of important
regions or the edges of the image space. We can easily
map the source triangle mesh to the target image space
according to the reorganization result. Then, given the
coordinates of vertices for both a target triangle and a
source triangle, we can get the affine transformation

matrix H?!]

. To maintain a smooth pattern, we apply
the inverse affine transformation H~! to each point
in the target triangle to locate its projection on the
source image. Then, as described in Refs. [22,23], we
calculate its intensity by interpolating the nearest four
pixels on the source image bilinearly.

The usage of a transformation matrix can guarantee
the smooth transition of downscaling ratios between
important regions as well as important regions to the
space boundary. As shown in Fig. 4, the examples of
our background generation show that the background
region in each triangle is correctly warped and preserves
the continuous texture appearance.
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After deformation

Before deformation

Downscaled images Our results

Fig. 4 Example results of background generation to provide context for important regions. The first two images compare the
background meshes before and after deformation. The second two images show the directly downscaled images and our results.

3.3 Perceptually feature preserving downscaling

Since milli-scaling is designed to assist the visual
analysis of data distribution and temporal relationships,
it is essential to preserve perceptually important image
features, such as object boundaries, layouts, and
textures. As Fig. 1 shows, simple downscaling can
lose much detailed information, while image editing
techniques like seam carving cannot always preserve
object shapes. Our approach is to build a feature-
aligned triangle mesh to constrain image deformation
during the downscaling process and a multi-resolution
texture mapping method to preserve similar object
appearance.

3.3.1 Building a feature-aligned triangle mesh

We first build a feature-aligned triangle mesh so
that we can constrain texture deformation under the
downscaling process. Our mesh is generated from
two sets of feature points which are selected through
detecting object boundaries and local data statistics.

Specially, we use either the Sobel filter!24]

or canny
edge detector®!] on the binary mask image to get
boundary points, which controls the overall shape of
the region. The points shown on the second row of
Fig. 5 are the response to the filters — the locations
of local maxima as the feature points. The local texture
feature points are detected using variance gradients and
histograms. Feature points are also located by finding
the local maxima. Due to the problem of milli-scaling,
a multi-level detection procedure is used to search for

feature points on different scales, including 1/4 x 1/4,

1/8 x 1/8, and 1/16 x 1/16. The locations where
score values change significantly on different scales are
also included, since they indicate pixels that are mostly
affected by the downscaling process. All the feature
points from different scales are summarized on the
target resolution. Starting from the smallest resolution,
we record the locations of feature points. Extra points,
that are adjacent to already identified feature points, are
removed since they may produce poor triangles.

A feature-aligned mesh is then built with all
the feature points using the delaunay triangulation

algorithm!?>!,

which tends to avoid skinny triangles
by maximizing the minimum angle of all the triangles
in the mesh. Since this mesh captures the relative
locations and distances of feature points, controlling
its deformation can preserve a portion of important
image features, including object boundaries and layout.
What’s more, when a suitable number of feature
points is selected, this mesh divides a whole important
region into small triangle pieces with simple point
distributions. It allows us to divide a milli-scaling
problem for a large region into independent small scale
tasks. For visualizing important regions, since we keep
the proportion of X and Y dimensions, we restrict the
location of this feature-aligned mesh to best preserve
object appearances.

3.3.2 Preserving textures for perception

Another important step to preserve perceptually
important image features is through texture mapping.
Since our input images are often composed of discrete
points, the image textures can indicate important
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Fig. 5 Example results of our feature preserving downscaling method. Each column shows the directly downscaled image,
feature points from boundary detection, feature points from local data statistics, feature-aligned triangle mesh, our downscaling
result, seam carving result, and cropping result. These four example sets demonstrate that our approach can handle various
regions, ranging from sharp edges to smooth homogeneous regions.

features of data distribution. Therefore, it is crucial
for milli-scaling results to retain similar textures as the
original images. We can use texture mapping to achieve
this.

Specifically, every triangle Tiye in the downscaled

image has a counter-part in the original resolution
Toriginal- In order to collect the texture for Tiyree from
Toriginal, we allow a triangle Tieaenwith the same size
of Tiarger t0 SWeep across Torigina. During the sweeping
process, a similarity measurement of the triangles
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is recorded into a score value map ScoreMap, ..
The similarity measurement takes two aspects into
consideration. The first aspect measures the constituent
similarity of score values. Since the measurement is
taken under triangles with different resolutions, we use
Bhattacharyya distance. Given two histograms of score
values Noriginal from Toriging and Agearch from Tiearcn,
let B be the number of bins in the histogram. The
Bhattacharyya coefficient is

B
BhaC(Toriginala Tscarch) = Z \/ Z horiginal ; Z hsearch_,—
j=1

2

The Bhattacharyya distance between Togina and

Tscarch 18

diStB(Toriginalv Tsearch) = _ln(BhaC(Toriginalv Tsearch))
3)
The second aspect measures the distribution
similarity of two triangle textures, which is the
Euclidean distance of the two triangles. Let P be the
number of pixels in Tiyrger.

P
diStE(Toriginalv Tsearch): Z (Toriginal(j) - Tsearch (] ))2

Jj=1
“)
All the Euclidean distances are normalized to the
range [0,1] and the score map ScoreMap, is
generated by multiplying the values from the two
aspects of similarities as follows:

ScoreMapy, e (1) = diStE(Toriginat, Tsearch) *
diStB(Toriginal, Tsearch) (5 )

Therefore the final mapping is achieved by searching
for the minimum distance score in the ScoreMap:

1* = argmin(ScoreMap,, ) (6)

The sampling frequency can be used to adjust the
performance by modifying the number of Tearch.

We further design a multi-resolution texture mapping
method to achieve arbitrary downscaling. The original
image is downscaled at several resolutions, 1/2 x 1/2,
1/4 x 1/4, 1/8 x 1/8, until it reaches the target
image size. Correspondingly, a feature-aligned triangle
mesh is scaled for every resolution. We perform the
above texture mapping for all adjacent resolutions,
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starting from the largest 1/2 x 1/2. Due to the original
image size, this step is time-consuming and can be
pre-processed. Given a target resolution, we can use
the closest large scale to perform the texture mapping
method. This can reduce the number of possible choices
and accelerate the texture mapping process. Also, with
two close scales, we can find good matchings to both
our score map and the histogram of score values.

Figure 5 provides several results of our approach.
We compare them to the results of direct downscaling,
seam carving, and cropping. Our results show that
direct downscaling removes data details, seam carving
changes object shapes, and cropping misses important
regions. Overall, our approach produces the best results
by preserving both object shapes and textures.

4 Discussion

4.1 Performance evaluation

We ran our algorithm on a computer with an Intel Xeon
5560 2.80 GHz processor and 3 GB RAM. All of our
images are 20 705 x 12000 and each set contains 2-8
images. The memory requirement is directly linked to
the size of the images we are working with. Since we
take a multilevel approach in extracting textures from
large sized images and patch them to a target image
space, the memory size should at least match that of
our texture source.

The performances of several components of our
approach, including region segmentation, space
reorganization, and background warping, can be
finished within several minutes with the setup described
above. Table 1 provides example performance of our

Table 1 Gap searching performance

Resolution  SeamsCountX SeamsCountY TimeSpent (s)

750 x 1295 45 5 40.3812
750 x 1295 90 10 79.1216
1500 x 2589 45 5 358.7152
1500 x 2589 90 10 569.5020

Tabel 2 Background mapping performance

Resolution TimeSpent (s)
334 x 576 1.0621
467 x 810 1.2231
750 x 1295 1.8573
1500 x 2589 3.2774
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gap searching algorithm for region division and Table
2 provides performance for the background generation
method.

The performance of feature-preserving scaling is
highly affected by the choice of parameters, like the
radius for finding local maxima of feature points and
the number of feature points. Table 3 provides example
results. The step frequency is a parameter to control
the number of T,en and can be used to adjust the
running time according to performance requirements.
Generally smaller step size results in better texture
mapping effects.

4.2 Discussions

The judgement of interactivity should be relevant to
the data size. For ultra-scale datasets, only the 1/O
performance will be below interactive speeds. The
running time of our approach is neglectable compared
to the time to generate the datasets.

It is worth mentioning that milli-scaling is different
from previous image editing techniques. First, no
image editing approach has ever downscaled images
to such a level, taking special care to preserve
data features. Second, image editing techniques also
purposely distort homogeneous regions, while we try
to preserve important features of object appearances
for visualization purposes. Third, to preserve temporal
relationships, our milli-scaling approach considers
information from multiple images, while image editing
techniques just handle one image.

Our approach can be used for arbitrary downscaling.
The pipeline of our approach, region division,
independent region scaling, and space reorganization is
scalable to the size of input images. We also automate
parameter selections according to the target image
resolution. Our approach can also be applied to 2-D
time-varying or multi-field datasets directly by using
an image saliency map to replace the significance map.

As general image editing techniques, failure cases
may happen. For example, it is possible that our region
division stage results in only one important region,
whose size is close to the original image. This differs

Table 3 Texture mapping performance

StepFreq TriangleNum Area TimeSpent (s) Time/pixel (s)

25 16350 59697 1939.8672 0.0324
25 9734 32581 1039.0925 0.0319
50 16350 59697 4021.6841 0.0674
50 9734 32581 2106.6024 0.0619

from our ideal space reorganization scenarios which
enlarge important regions significantly compared to
their surroundings. Also, during our feature-preserving
scaling process, we may fail to find suitable texture
pieces, which can be improved by adding additional
feature points.

5 Conclusions and Future Work

This paper presents the problem of milli-scaling for
ultra-scale 2-D data visualization. We have designed a
new approach to downscale a set of images to arbitrary
target resolutions. Our approach preserves various data
features, including important regions, perceptual image
features, data distribution, and region relationships
among multiple images, which are not available from
image editing techniques. Our results can be used by
users to browse, compare ultra-scale 2-D datasets, and
document their findings directly.

In addition to the arbitrary milli-scaling of 2-D
data, our approach has two potential usages in volume
visualization and multi-field data visualization. First,
since many large scale datasets are in 3-D, we
are very interested in extending our approach for
time-varying 3-D datasets. It is likely that we can
achieve a 3-D arbitrary down-scaling approach with
a similar pipeline which produces volumes in sizes
that can be visualized interactively with available
volume visualization methods. The 3-D relationships
need to be considered as well. Second, we are
interested in extending our approach for multi-field data
visualization, in which more thought will be given to
allow users to study the relationships among different
data fields effectively.
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