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ARTICLE INFO ABSTRACT

Available online 13 August 2013 This paper presents a time line visualization approach, which allows users to study
temporal relationships through encoding their interested data properties to time lines
with different shapes and locations. Specifically, our approach extracts key data features
as virtual words and uses them to encode various data properties. The distributions of
virtual words across time are further applied to study various temporal relationships by
generating time lines, which renders sampled time steps as points and temporal sequence
as a line. Our approach consists of the three following components. First, we select feature
points and collect feature descriptors to build a space of data properties, where virtual
words are extracted as representative vectors. Second, the virtual words are applied to
characterize feature points and their distribution statistics are used to measure temporal
relationships. Third, we demonstrate several methods to visualize time lines flexibly for
different data visualization and analysis purposes. We present several case studies to
visualize time lines for different data visualization and analysis purposes. Our time line
visualization can be used for both summarization and exploration of overall temporal
relationships. We demonstrate with examples that time lines can serve as effective
exploration, comparison, and visualization tools to study time-varying datasets.
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1. Introduction temporal events, which are hard to describe or measure.

Efforts have been made to analyze temporal events or data

The explosion of large-scale time-varying datasets has
created critical challenges for scientists to understand
them effectively. With new computing technologies, scien-
tific simulations nowadays can easily produce huge data
volumes for a significant long duration. While previous
visualization techniques can be used to study individual
time steps, users often find it impractical to explore
complex temporal relationships when facing large-scale
datasets. The main challenge comes from the variations of
data features that range from static object shapes to
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relationships for time-varying datasets from different
perspectives [1-3]. Different from previous methods, this
paper presents a new approach to generate meaningful
time lines and demonstrates their usages on several
exploration and visualization tasks.

One critical challenge for large-scale time-varying data
visualization is to abstract the temporal evolutions to under-
standable visual forms at different scales. We have designed a
time line visualization which handles large-scale volumetric
data visualization from three aspects. First, complex temporal
evolutions are abstracted as succinct time lines, which are
easy for studying changes and extreme locations. Second, a
statistical mechanism is incorporated to handle large-scale
datasets with extremely long time duration at different detail
levels. Third, individual time steps are analyzed separately,
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Fig. 1. Our approach consists of stages to select feature points and feature descriptors, extract virtual words and label feature points, and sample their
distribution statistics across time to produce meaningful time lines for studying temporal relationships.

which can be easily accelerated with parallel processing and
importance-based techniques.

Specifically, our approach is to treat temporal data as a
collection of “virtual words”. Different collections of virtual
words can be used to represent data features from a time
step; and transitions of virtual words can indicate tem-
poral changes. As shown in Fig. 1, our approach consists of
several stages. First, we select feature points by detecting
the extrema locations at individual time steps of a time-
varying volumetric scalar dataset and collect interested
feature descriptors. Second, we extract a set of virtual
words, which are in a flexible form to describe various data
features, by performing clustering in the space of feature
descriptors. Third, the distribution statistics of virtual
words from different time steps are measured to produce
meaningful time lines with a modified method of locally
weighted bag of words (Lowbow) [4]. We present several
time line visualization methods and demonstrate with
examples that our approach can be used flexibly to explore
and compare time-varying datasets. Case studies are
provided to demonstrate that our approach can be used
flexibly to explore and compare time-varying datasets.

The main contribution of this paper is a novel means of
generating time lines based on extracted virtual words for
characterizing data properties. Our approach to construct-
ing virtual words provides a flexible framework for users
to choose their desired data properties by combining a set
of independent feature descriptors. We modify the Low-
bow algorithm to suit the needs of time-varying data
visualization and extend it to incorporate existing knowl-
edge or hypothesis into the process of time line genera-
tion. Our approach ensures that the combination of time
lines and feature descriptors provides a succinct visualiza-
tion tool for data exploration, comparison, and summary
when studying temporal relationships.

The remainder of this paper is organized as follows.
We first review the related work of time-varying data
visualization, scale-invariant feature transform (SIFT) [5],
and Lowbow algorithms in Section 2 We then describe our
approach to selecting virtual words in Section 3 and
generating time lines in Section 4. Section 5 presents
several methods to expand the concept of virtual words
and visualize time lines for exploring and analyzing time-
varying datasets. Section 6 provides example results, case
studies and discussions on the usages of time lines for

different visualization purposes. Finally, we conclude this
paper and discuss future work in Section 7.

2. Related work

2.1. Time-varying data visualization

Time-varying 3D data visualization [6] has created
many critical challenges due to the fast expanding size of
time-varying datasets. A popular solution is to visualize
temporal changes using time curves, which have been
presented in several forms during the past years. Particu-
larly, time-activity curve (TACs) [7] has been used to
identify regions with similar temporal patterns through
generating temporal functions for voxels in the volume
and measuring their similarities. Later, Woodring and Shen
[8] designed a global time view spreadsheet, which groups
similar activities that are clustered using wavelet trans-
form along time. Also, Wang et al. [2] presented an
importance-driven method, which derived an importance
curve for each data block based on the formulation of
conditional entropy from information theory and clustered
importance curves to visualize temporal trends.

These time curves are usually 1D time curves, which
use horizontal axis to represent time and vertical axis to
present a “property” of the dataset. In this paper, the time
line is expanded to 2D space, where geo-locations are used
to represent data similarities. Also, approaches time curves
often requires a number of curves, as each curve only
represent a data voxel or block. Our time line approach
allows users to visualize dominating temporal trends with
just one line.

Other techniques have been proposed with new visuali-
zation and comparison capabilities too [9-11]. For example,
Sukharev et al. [9] studied data correlation through perform-
ing data clustering and segmentation using K-means and
graph partitioning algorithms. Joshi et al. [11] proposed an
illustration-inspired technique to visualize the structure and
evolution of hurricanes. Lee and Shen [1]| presented an
algorithm called SUBDTW to identify trends appear and
vanish during a time series. Cabane et al. tracked features
over time by analyzing local textural properties and finding
correspondent properties in sub-sequent volumes [12].
Kumar et al. used the frequency information of extracted
features to color a bitmap. By visualizing the similarities of
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these bitmaps using MDS, they can quickly discover clusters,
anomalies and other regularities [13].

These methods are often designed to visualize or
compare a small number of time steps. This is different
from our goal of visualizing global temporal trends for
general time-varying datasets. Especially when millions
of time steps are involved, most of the methods require
downsampling in space or in time. Our approach can
flexibly visualize time-varying datasets in different sizes
at various scales because of the statistical mechanism.

2.2. Feature extraction

In this paper, we include volumetric SIFT algorithm
to select feature points for 3D datasets. The SIFT algorithm
was originally proposed in image processing community
to detect and describe local features in images. It has been
applied successfully to different applications, such as
object recognition [5], point tracking [14], panorama crea-
tion [15], medical imaging [16,17], and knowledge-assisted
visualization [18].

Some approaches of feature tracking are also related to
this topic, since they can provide the frame-to-frame
correspondence between objects-of-interest to reveal the
temporal trend of a time-varying dataset. The tracking
information can be further studied to detect significant
data changes. Currently, most feature tracking approaches
are based on pre-defined feature models or user-specified
regions-of-interest. The matching of data features is gen-
erally achieved by the following two mechanisms. First,
based on selected regions-of-interest for feature tracking,
either data features are matched based on their corre-
sponding positions [19] or topological features are tracked
using high dimensional geometries [20]. Critical points of
geometry models have also been studied in many applica-
tions [21-23]. Second, feature attributes, such as position
and size, are derived from data models and used to
measure data changes. For example, Samtaney et al. [24]
introduced several evolutionary events and tracked 3D
data according to their feature attributes. Banks and Singer
[25] used a predictor-corrector method to reconstruct and
track vortex tubes from turbulent time-dependent flows.
Reinders et al. [26] matched several attributes of features
and tracked feature paths based on the motion continuity.

We extend the design of feature descriptors to a set of
independent local data properties. More importantly, we
derive our concept of virtual words from feature descrip-
tors as representative key local data properties.

2.3. Locally weighted bag of words

Another important algorithm used in this paper is
Locally weighted bag of words(Lowbow). Lowbow was
originally presented for document visualization using
curves [4]. By treating a document as a discrete categorical
time series dataset and locally averaging a word histogram
at different location in the document, a local version of the
global histogram can be obtained to describe local word
distribution. By viewing the histograms geometrically,
a smooth curve is generated which summarizes the
progression of the semantic and statistical trends within

the document. Similarly, Assa et al. [27] presented human
motions in succinct line drawings by selecting key poses
based on the analysis of a skeletal animation sequence. We
modifies the Lowbow algorithm for time-varying data
visualization and keeps the advantages of Lowbow algo-
rithms on sampling data from distribution statistics.
Matthew et al. [28] proposed a similar technique, mapping
the temporal information into a glyph and then position-
ing the glyph via PCA in a shape space. In this way, the
visualization can reveal a wide variety of features in the
data, including cycles of varying duration and anomalies
and trends at different scales.

3. Generation of virtual words

To explore various temporal relationships, our
approach is to treat data as a collection of virtual words,
which describe key data features. This approach allows us
to visualize large-scale time-varying datasets effectively
through statistically analyzing the distributions of virtual
words/data features. Since the set of virtual words is
significantly smaller than the size of the original dataset,
the performances of analysis and measurements can be
greatly improved. What's more, the statistical aspect of our
approach allows us to handle extremely large datasets
with millions of time steps, which is impossible for direct
comparison methods.

We define “virtual words” as data properties, in the
form of high-dimensional vectors, at feature locations in
the 3D space. Therefore, the first two steps of our approach
are to select feature locations and to collect feature
descriptors. We build our approach based on the SIFT
algorithm, as it provides robust feature tracking which is
invariant to rotation, scaling, noise or changes in illumina-
tion. These characteristics make it appropriate for extract-
ing features from volume datasets. Later, we describe
our method to generate a set of virtual words from the
collected information. The following describes the details
of these three stages respectively.

3.1. Selection of feature points

The first step is to select special 3D locations in a
volume as feature points. While the definition of feature
points varies, we select feature points through combining
two criteria: one is the local extreme locations from
volumetric SIFT algorithm [29], and the other is boundary
points. By selecting feature points independently for each
time step, this approach potentially allows different selec-
tion criteria or feature extraction methods to be applied
for different time steps.

For 3D scalar datasets, we use volumetric SIFT algo-
rithm to select feature points with three main steps: scale-
space establishment, extrema location detection, and point
filtering.

Scale-space establishment: We first build a scale space of
difference-of-Gaussian (DOG) as follows. The original
volume is scaled at several different levels: x 2, original
size, [2, /4, etc. Similar to the method introduced in [16],
each of these volumes is convolved with a set of 3D
Gaussian filter G(x,y,z k°a), where p=[0,1,2,....n], to
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Fig. 2. Selection of feature points (shown on the first row) according to the choices of transfer functions (shown on the second row).

generate a scale space. A volume pyramid is built by
subtracting the differences between volumes generated
with adjacent p values. The choice of k is relevant to the
scale of data features, as larger k" results in smoother
effects. For all the results in this paper, we use 4 volume
levels and 12 DOG scales (n=12), and 2'/'? for k. We
further detect our extrema locations in the DOG space.

Extrema location detection: From this scale space, we
automatically select a set of candidate points by detecting
local extrema locations. Generally the DOG value of each
candidate point is compared to all its neighbors, of which 3 x
3 x 3—1 =26 voxels in the same volume, and 3 x 3 x 3 =27
voxels in each of the two adjacent volumes on the same level
in the scale-space. A location is selected as a candidate only if
it is larger than all of its neighbors or smaller than all the
neighbors. This location is considered as a feature candidate.

Point filtering: The third step is to filter out inappropri-
ate candidates, such as points that are poorly localized
within an edge or with low contrast. As described in [16],
a poor candidate feature point has a high principal value
along the edge direction but a small value in the perpen-
dicular direction. We calculate the curvature values
M, 72,43 using the method from [30], where 1; <1, < 43.
A candidate point is valid if 13/4; is smaller than a user
specified threshold.

We use 15 as the threshold of 43 /4; for all our results in
this paper based on observation.

During the process of interactive visualization, users
often choose some sub-regions, e.g., through adjusting
transfer function. Ignoring this interaction may miss fea-
ture points on the object boundaries. We accordingly
complement the volumetric SIFT algorithm by considering
the influence of boundary locations. Specifically, when the
transfer function is adjusted, we modify the volume
pyramid by keeping only the selected regions. The other
regions are not considered during the process of scale-
space extrema detection. This simple modification ensures
that all the feature points inside the selected regions are
preserved and extrema locations on the object boundaries
can also be detected. We accelerate the process of feature

point selection by pre-computing all the feature points
and building the volume pyramid.

Fig. 2 shows example results of interactive selection of
feature points, where the 2D transfer functions of voxel
data values and gradient magnitudes are used. The first
column shows all the feature points when the entire
histogram is selected. The other three images demonstrate
the results of point selections when different transfer
functions are determined.

3.2. Collection of feature descriptors

To describe various local data properties, we extend the
feature descriptors presented in the original SIFT algorithm [5]
from the following two aspects. First, we add the components
of gradient orientation for rotations and the object center
location for movements in the feature descriptor. Second, we
add components from texture analysis measurements for
describing local data statistics. As each component describes
a different data property, our construction method guarantees
the independency among all the components of feature
descriptors. This allows users to combine these components
freely to describe the data properties under exploration.

The advantage of the SIFT feature descriptor is that it is
invariant to orientation, scale, and location of feature points.
We utilize this advantage of the SIFT algorithm to generate
multiple independent components of feature descriptors.

The gradient orientation is built as follows. Assume we
represent the gradient orientation in 3D by two angles, ¢
and ¢. For each feature point, we rotate its neighborhood
region by the angle of #=¢ =0 when computing its
feature descriptor. The rotation matrix is defined as

cos § cos¢  sin Ocos¢p  sing
R= —sin@ cos o 0 1
—cos@sing —sind sing cosq¢

With this matrix, we sample a 4 x4 x4 sub-region
around the feature point in the rotated neighborhood.
At each voxel of this sub-region, we generate a feature
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Fig. 3. Time lines generated with different feature descriptors for a time-varying energy simulation dataset. Overall, the time lines suggest two different
data portions: the initial period (rendered in blue to cyan) and the end period (rendered in yellow to red). Different feature descriptions yield different
shapes of time lines. (a) SIFT, (b) data value, (c) value hist, (d) value var, (e) mag, (f) mag hist, (g) mag var, (h) location, (i) orientation, (j) combined.

vector according to € and ¢. To quantify the value space, we
use 8 bins for ¢ and 4 bins for ¢. The gradient magnitude,
weighted by a Gaussian window function centered at the
feature point location, is added to the corresponding bin for
the gradient orientation. In this way, the component of
gradient direction has 4 x 4 x 4 x 8 x 4=2048 dimensions.

We use the vector (0, ¢) as the second descriptor
component and the location vector (x,y,z) as the third
descriptor component. This is necessary for time-varying
data visualization, otherwise when an object moves or
rotates across time, the time line will be just a point.

We have also explored other factors that can benefit
time-varying data visualization. We mainly apply the first
order of statistics for texture analysis to collect informa-
tion of local data properties, such as variance and histo-
gram [31]. Since this information is collected on the data
after the rotation, it is independent to the gradient
orientation. Obviously, it is also independent to location
and time steps. Therefore, we can arbitrarily choose a
combination of these descriptor components. The genera-
tion of time lines described below in Section 4 also allows
users to select different weights for each descriptor
component.

Fig. 3 shows the time line results from different feature
descriptors for a time-varying energy dataset. Overall, the
time lines suggest that the data changes gradually during
the initial period (rendered in blue to cyan) and data
properties are similar during the middle and end durations
(rendered in yellow to red). We can see that the resulting
time lines can be very different for these descriptor
components, as they visualize different aspects of data
properties. The first row shows the results of the SIFT
descriptor, voxel value, histogram of value, magnitude of
value, and gradient magnitude. The second row shows the
results of histogram of gradient magnitude, variance of

gradient magnitude, location, gradient direction, and the
average combination of these nine descriptors. Therefore,
it is important to provide users both the results of time
lines and the choices of feature descriptors, so that they
are aware of the meanings of time lines.

3.3. Extraction of virtual words

From the collection of feature descriptors, we extract
virtual words as representative data properties. Here we
use the “applicable components” of feature descriptors to
refer to all the components except the location. Our first
step is to cluster each applicable component of feature
descriptors independently. This clustering step is sup-
ported by the fact that, similar to the color space, we can
use a set of virtual words to describe the entire feature
space. Also, the required number of virtual words is often
limited, because it is bounded by the dimensions of feature
descriptors. Specifically, we use K-means [32,33] since it is
flexible to operate on any dimension. The choices of the
clustering numbers should be different for various cases.
From our experiments on both synthetical and real time-
varying datasets, we find that the results are very similar
as long as the cluster number is large enough. The
statistical prospective of Lowbow algorithm used in
Section 4 allows large sampling size. Therefore, we use
15 times the average number of feature points per time
step as our clustering number. As shown in Fig. 4, The
results of 1000 and 1500 clusters are similar and close
to the real scenario. In this way, a set of virtual words
is selected for each applicable component of feature
descriptors.

Fig. 5 provide examples of automatically extracted
virtual words. Since virtual words are vectors in the high
dimensional space of data properties, they are hard to
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Fig. 4. Results with different clustering numbers. When the clustering number is large enough (1000 and 1500), the time lines results are similar.

Fig. 5. Example of virtual words. They are feature descriptors located at the colored points.

visualize directly. We illustrate them in Fig. 5 by marking virtual words often appear at representative locations with
their locations in the volume. The counterparts of virtual large gradients or on the object boundaries. In Fig. 6, the
words are the feature descriptors at these locations. The automatically selected feature points are the eight corners

colors represent different virtual words. We can see that of the cube. They are also the virtual words that describe
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Fig. 6. Time lines can describe various types of events in time-varying datasets. Different Cube synthetic Datasets are used from (a) to (e): (a) and (b) cube
moving around in the 3D space along the same path at different speed, (a) cube moving at 1 voxel per timestep, (b) cube moving 2 voxels per timestep. The
densities of points in the time line reflect the speed of the movement. (c) scaling of the cube(the cube is expanding through the time), (d) deformation of
the cube(the bottom half of the cube keeps changing position during the time), and (e) cube moving around under noises. The moving paths of (a), (b), and
(e) are the same, which can be detected with time lines easily. The figures below the time lines illustrated the path of the movement.

several different types of temporal events. This result is
consistent with our understanding of the cube dataset.

All the feature points are then categorized according
to virtual words. For each applicable component of feature
descriptors, we use the closest virtual word (determined
by the distance in the space of feature descriptor) to
represent each feature point. This is actually achieved
from the clustering process simultaneously.

4. Creation of time lines

Since the virtual words are in the high-dimensional
space of data properties, they cannot be visualized directly.
Therefore, we transform the relationships among virtual
words to time lines, which visualize time steps as points
and adjacency relationships of time steps as lines. This
transformation not only assists the analysis of temporal
evolutions, but also allows us to sample time steps flexibly
to satisfy the requirements of performance and accuracy.
For this purpose, we adopt the mechanism from the
Lowbow algorithm to sample time windows. Since the
locations of sample time steps on a time line are calculated
carefully based on data features, time lines can be used to
analyze temporal relationships.

We achieve this goal with the following three steps.
First, histograms are generated to record the distributions
of virtual words for each time step. Second, we use these
histograms to calculate dissimilarity matrices of different
time steps. The distances are calculated based on Eucli-
dean Distance. We also use time windows to group several
timesteps into one histogram for sampling purposes. The
resulting histogram of a time window can represent the
distribution of virtual words within a time duration. Third,
time lines are produced by feeding the resulting dissim-
ilarity matrices to MDS method [34,35]. We project the
Lowbow representation to the 2D plane, since 2D lines are
more intuitive to understand.

As shown in Fig. 6, time lines can present a variety of
temporal events, such as object movement, changing

speed, object scaling, shape deformation, and effects under
noise. The dissimilarities between each time steps are
changing linearly in both scaling and deformation, there-
fore the changes of these two movements are similar. By
observing the distance of points in the two time lines,
users can see the changes of these two movements are
different. We often use colors to indicate the temporal
sequence. Most of our results use a blue to red colormap
corresponding to the start to end of a time duration.

One advantage of Lowbow is the sampling feature.
It allows us to sample time steps arbitrarily and emulate
their histograms using different Gaussian windows. To
ensure the smoothness of a time line, we can overlap
adjacent time windows. For each applicable component
i of feature descriptors, Lowbow is used to generate a
dissimilarity matrix DM;. We then combine all these
matrices to a final dissimilarity matrix DMjnq as the
MDS input. Assume ST, and ST, are sample time steps.
Here we allow users to assign weights w(i) to the compo-
nent i of feature descriptors, so that the effects of different
data properties can be adjusted. When we assign larger
weights for some descriptors, the combined time line is
more affected by these factors.

DMﬂnal(STla STz) = ZW(I) X DM,‘(ST] . STz) (2)
i

Specifically, for each applicable component of feature
descriptors, one histogram is generated for each sample
time step by collecting the distribution of all the virtual
words in the sampling window. The values of each feature
descriptor component are calculated independently for
individual time steps. They are further collected for each
sample time step. Some feature component only contains
one value, such as the data value component used in Fig. 3
(the average data values of virtual words are calculated for
each time step); while the other feature components are
high dimensional vectors, such as the components of SIFT

. _—
and histogram of data values. Let us define f;(tp,v) as the
value of component i of virtual word v at time t,. Then, we
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can generate a dissimilarity matrix for the sample time
steps by calculating the Euclidean distances between

values f;(tp,v). The difference value DM;(ST¢,ST,) of two
sample time steps ST; and ST, is calculated using these
equations:

DM;(ST4,5T2) = ) Ydif(tq, 2, v) 3)

t1 €ST1,t, eST, V

dif(t1, t2,v) = |fi(t1, V) —fi(t2, V)| - (num(ty,v) + num(tz, v)) (4)

where num(tp,v) is the number of feature points corre-
spond to virtual word v at time ¢, and | represents the
L2 norm.

For the location component, we calculate the average
location of each virtual word from a user specified com-
ponent of feature descriptors for each sample time step.
An important component according to the data features
under exploration can be selected for this purpose. For
example, the SIFT component is chosen for the example in
Fig. 3. The Equation (4) can be modified as follows:

dif i(t1, t2,v) = [L(t1,V)=L(t2, V)| - (num(ty, v) + num(ty, v))
()

—_—>

where L(t,, V) is the average location of virtual word v at
time t,. The rest is the same as the applicable components.

To ensure the correctness of time lines for visualizing
time-varying datasets, we need to handle the problem that
different sample time windows may contain different
numbers of time steps. If we simply follow the original
Lowbow algorithm, the histograms for the sample time
steps containing more feature points may collect informa-
tion from smaller time durations, yielding an unequal
property of the time lines. Therefore, we make the follow-
ing changes to ensure equal window size everywhere.
We can first calculate a histogram for each time step and
normalize them using the numbers of feature points. Then,
we operate sampling windows on time steps instead of
feature points. All the applicable components of feature
descriptors can be treated in this way. Similarly, the
average location should be calculated for each time step,
instead of every sampling window. This process results in
an effect that sampled time steps may have different
numbers of feature points, meaning that feature points
from different time steps have different weights on the
resulting time curves. We believe that this is a necessary
change to keep consistent local statistics of data distribu-
tions for time-varying data visualization.

5. Time line visualization

This section describes several methods to visualize time
lines for different exploration and analysis purposes.

First, an approach of parallel time lines is provided for
simultaneous visualization of related information. Second,
we describe a hybrid time line generation approach, which
mixes input datasets, for comparing data from different
time duration or attributes. Meanwhile, a focus+context
method is employed to allow users to adjust the details of
different time durations flexibly.

5.1. Parallel time lines

We explore parallel time lines to visualize the relation-
ships between different data properties. Parallel time lines
are generated by shifting the original time line along a
certain direction on the 2D plane. This provides a visuali-
zation of multiple data properties simultaneously. It can be
used to analyze the relationships between several data
properties or different data fields across time.

We first determine the shifting direction to reduce the
overlapping issue of parallel time lines. With the locations of
sample time steps, we apply the principal component analysis
(PCA) algorithm [36] to calculate the main directions of point
distribution. The shifting direction is identified as the second
(less important) direction of the PCA result. Second, we allow
users to adjust the amount of shifts to achieve their ideal
effect. Since the rendering parameters of a time line are very
limited, we also explore controlling parameters of time line
visualizations. For effective comparison, we need to limit the
number of parallel time lines and the choices of different
rendering parameters. For instance, the number of colors for
visualizing different time lines can not be too large to ensure
that the result is easy to recognize. Fig. 7 shows an example of
parallel time lines for two types of information simulta-
neously. It is obvious to see the time durations when these
data values are different.

5.2. Hybrid time lines for data comparison

To visualize the relationships between different time
durations or data fields, we can also mix their datasets in
the generation process of time lines. In this way, sample
time steps from different data can be distributed on the
same 2D plane according to their dissimilarities calculated
from Lowbow. This allows users to compare their relation-
ships across time closely. To distinguish different time
durations or data fields, we generate separate time lines and
render them with different parameters. Fig. 8 compares two
pairs of different time durations (January 11-21 and 16-26) of
attribute NH3 in an air quality datasets. We use different line

Fig. 7. We use parallel time lines to visualize the amount of feature points
(the wider line) and average density (the thinner line) for an energy dataset.
A green to red color map is used for values from min to max.
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widths to differentiate the two time durations. The time line 5.3. Multi-scale visualization

from (a) shows that the two time durations are similar, and

the time line from (b) indicates that the two green portions in A multi-scale visualization is provided to users for adjust-
the middle are significantly different. ing the details of different time durations. We separate the

Fig. 8. With the time lines, we can easily compare different datasets or time durations. The snapshots from separate volume renderings provide details of
the selected time steps.

D e N

N -“"2‘“ ?/;.* /
S .-‘;::/
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Fig. 9. Multi-scale visualization results of the storm surge dataset illustrated in Fig. 11. All the three subfigures (a)—-(c) show time lines on the top and time
importance degrees on the bottom. The colors of the time axis indicate the importance degrees of time steps, the darker the more important. Snapshots
from user selected time steps are also provided.
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visualization process into two independent steps: determin-
ing sample time windows and generating time lines.

In the first step, we initialize the importance values
with 1 for all the time durations. Then, we update it
according to user selections. Users can select the amount
of sample time steps and adjust the importance values of
different time durations respectively. With this informa-
tion, we compute the number of sample time steps for
each time duration, yielding an even distribution of
importance of duration t as follows:

Avgip(8) = n(t)/(imp(t) x length(t)) ©6)

where n(t) is the number of sample time steps, imp (t) is
the importance value, and length (t) is the length of the
time duration t. We then distribute sample time steps
evenly within each duration.

To smooth a time line, adjacent time windows are over-
lapped. Generally we use five times the distance between two
sample time steps as the size of time window. This parameter
can also be interactively adjusted. The second step is to
generate a time line with a histogram from each sample
window. Time durations with larger importance values
obtain higher values of Avg;,, thus revealing more details of
the time durations.

Fig. 9 shows three time lines from user interaction.
The time line (a) enlarges the time duration in the middle
around the extrema location in orange. The time line
(b) enlarges the portion in blue to yellow to observe the
subtle details of the normal periodic trend. The time line
(c) demonstrates that our approach allows flexible selec-
tion of important durations. By increasing the number of
sample time windows, we can see more details in the time
lines, reflecting more accurate information of the temporal
durations.

6. Results and discussions

In Figs. 8, 10, 11, 12, and 15, the time lines are produced
by our approach; the snapshots and arrows are added
manually for illustrating selected time steps. Any other
volume rendering method can also accompany our time
line approach to visualize individual time steps.

6.1. Case studies

In the following case studies, we apply time lines to
understand the major temporal relationships in the time-
varying datasets.

6.1.1. Test case

To demonstrate the effects of time lines, we concate-
nate three different datasets, air quality, flow tube, and
energy, to compose a time-varying dataset. As shown in
Fig. 10, the automatically generated time line clearly shows
three time segments with different colors. In this test,
the differences between the three datasets dominate the
shape of time line, resulting in three clusters on the time
line. When we focus on the main temporal change by
using a small number of sample time steps, shown in
Fig. 10 (b), we can identify the three time segments easily.
Larger numbers of sample time steps can be used for
revealing more details of each time duration, as shown in
(a) and (c).

6.1.2. Storm surge data visualization

We apply the time line approach to study the storm
surge data simulation of hurricane Isabel. The dataset we
use in this case study contains information around the sea
shore at North Carolina. All the snapshots in Figs. 9 and 11
are colored in the same way: green is used to render

Fig. 10. Three time durations can be identified easily with the time line visualization. We generate three time lines by choosing different parameters
(numbers of sample time steps, window sizes) for exploring different details: (a) (150, 10), (b) (60, 30) and (c) (90, 10).
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Fig. 11. The time line of a storm surge dataset demonstrates the effects of Hurricane Isabel to Outer Banks, North Carolina. The left portion (blue to yellow)
corresponds to the periodicity of tidal elevations that influence every 12.4 h. The right portion (orange to red) indicates significant data changes of ocean
surface from its normal distribution during the hurricane. The circle in the snapshots indicates the user specified regions.
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Fig. 12. (Left) Hurricane path is shown with three example time steps. (Right) The average heights of ocean levels are increasing before the hurricane,

which confirms the shifts on the time line.

terrain and the rest colors of blue to red represent the
heights of ocean.

As shown in Fig. 11, the time line visualizes several
important temporal trends, which are difficult to detect
otherwise.

First, we can detect a normal periodic feature (blue to
yellow) and the effect of hurricane (orange to red), which
corresponds to the abnormal high ocean levels in red as
seen from the two snapshots on the right. Second, the time
line suggests the starting time step of hurricane automa-
tically with the extrema curve location in orange. Around
the starting point, we can see a waiting period before the
abrupt of hurricane according to the dense point distribu-
tion. Third, the distance between adjacent sample time
steps increases, which indicates that the data changes
dramatically during hurricane. Fourth, the linear curve
shape of the hurricane duration is consist with the move-
ment of hurricane center roughly in a line, shown in Fig. 12
(left). This movement event is similar to the cube exam-
ples in Fig. 6 (a), which can be identified from the line
shapes as well. Fifth, the direction of the red portion at the
end indicates that the data changes back toward its normal

distribution after hurricane, as it moves toward the peri-
odic cycles.

We can continue to explore the details of temporal
trend by enlarging selected time durations, such as the
periodic cycles shown in Fig. 9. As the cycles moves toward
the hurricane portion, we can expect that the ocean levels
are increasing gradually, which is confirmed with the
average height per cycle measured from the data, shown
in Fig. 12 (right).

6.1.3. Air quality data visualization

We also apply time line in the study of air quality with
multi-field time-varying datasets. We use a continuous
air quality simulation from the CMAQ model [37] in 12
months, of which each location takes 25 attributes. All
attributes are collected 25 times every day. The data
attributes measure the density of different chemicals.

We first generate time lines of four attributes respec-
tively to visualize the data changes in a year. The number
of sample time steps for this figure is 365 and the window
size is 50. All the four time lines in Fig. 13 are colored from
blue to red, representing Jan to Dec. Each time line
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Fig. 13. Time lines for four attributes of an air quality dataset for a whole year suggests that NH3 is very different from the other three attributes. (a) NO,

(b) NO2, (c¢) SO2 and (d) NH3.

October ,(,A\e i

December

Fig. 14. To further inspect attribute NH3, we use 12 different colors to
represent 12 months in one year.

visualizes an important data property: pollution volumes
in the early spring and late winter are similar (the blue the
red segments), and are different in the summer and fall
(the green to yellow portion). This property is confirmed
by domain scientists. Also, simply taking the time lines
generated independently, we can detect that attributes
NO and NO2 are similar, while NH3 is very different.
This finding is consistent with the CMAQ model, since
NO?2 is generated according to the amount of NO.
Further, we focus on the special attribute NH3 and
apply different colors to represent the 12 months in a year.
As shown in Fig. 14, we generate the average 3D data
visualization to explore the temporal change according to
the time line. The four selected months provide visual
contexts to understand that the pollution volumes change
from the white and green bodies back and forth in a year.
We can further zoom into a smaller time range to study
detailed changes. For example, we explore the attribute
NH3 in June with a time line shown in Fig. 15. In this time
line, we increase the number of sample time steps to 180
and window size to 25, so that daily-level temporal
evolutions can be revealed. We also modify time line
visualization by omitting the line segments between
adjacent days, thus only the sample time steps belonging

to the same days are connected. This helps users to study
the temporal changes across different days, which are
shown with the line structure patterns. Generally each
line starts from outside, reach into the center at day, and
drop back at night. Such line patterns indicate that the
pollution volumes in the early morning and at late night of
a day are similar; the volumes during day time in this
month are similar. This finding is further confirmed with
the 3D visualization, shown on the right of Fig. 15. This
visualization reveals that the data variations of all the days
in this month are similar. Therefore, users do not need to
visualize all the time steps for every day in this dataset.
This demonstrates that the data distribution in a time line
can significantly shorten the exploration process for users.

We color the days from blue to red, so that we can tell
June starts with the blue days and ends with the red days.
The day colors do not show any obvious patterns, suggest-
ing that the pollution levels at night are randomly dis-
tributed. This is also caused by the selection of feature
points, which produces a large number of virtual words to
describe various small evening features.

Fig. 15 (left bottom) shows the results for the same
attribute in January and February. Comparing them with
the time line of June, we can tell that the data changes are
more irregular around these durations. The explanation
from an air quality scientist is that the pollution levels are
low in January and February, thus the data is more likely to
be affected by random events. While around June, when
the pollution levels are high, the main data trends play a
more important role and thereby showing a more obvious
line structure patterns.

6.2. Quantitative results and discussion

We run our algorithms on a PC with Intel Core2 CPU
6600 at 2.40 GHz and 2 GB RAM.
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Fig. 15. Time line of attribute NH3 in June, colored by the number of days, shows obvious line structures. Every day starts at green and ends at red. And the
middle of the day is located in the center of the figure. The snapshots shows the morning, noon and night renderings of three individual days. The three

days are colored in pink, blue and purple.

The performance of our algorithm varies from the data
size and complexity. First, the selection of feature points
depends on the data size and the number of time steps.
For the energy and air quality data, whose size is approxi-
mately 1283, the time spent on this step is around 80 s.
Second, the calculation of feature descriptors is linear to
the number of feature points. All the feature components
are very fast to compute, except the SIFT component,
which can be accelerated with PCA-SIFT and parallel
processing techniques. The clustering took several min-
utes. It took around 3h to compute all the feature
descriptors for the energy and air quality dataset. Third,
the extraction of virtual words can be adjusted by the sizes
of selected feature descriptors and the number of feature
points, which can be accelerated with importance-based
techniques. Fourth, the main algorithm used during the
visualization process is the generation of selected time
lines, which is less than a minute for the entire time-
varying dataset.

Overall, the performance and memory requirements of
our approach are linear in the number of time steps. The
most time-consuming stages can be pre-processed.

6.3. Discussion on visual design

The efficiency of the time line visualization comes from
the visualization of data relationships with 2D distances.
Cognitive science has shown that human beings can
effectively recognize object similarities from a representa-
tion by their distances [38]. Since the time lines distribute
sample time steps on the 2D space according to their data
features, users can easily identify some interesting events,
such as periodicity, similarity, and important temporal
events through extrema locations.

The major advantage of time line is its capability to
incorporate the entire time-varying dataset into one single
line to show its progression along the time. The modified
lowbow algorithm allows user to show the temporal

changes of dataset at different scales. For example, the
user can display the time line of the air quality data on a
monthly, daily or even hourly basis. This ensures that time
line can handle long time sequence of data. Other
approaches, based only on sampling through the entire
dataset, will lead to information loss and inaccurate
results.

Though our time line approach shows only the arbi-
trary shapes and does not have details as important
regions inside each volume, the line is generated based
on the features extracted from the dataset. It is easy for
users to identify abnormalities and further explore the
dataset to find events and features. It is impossible to
visualize the dataset without any kind of data reduction
when dealing with large-scale datasets. Without this step
of information reduction, it will be more time-consuming
to generate time lines. Note that, using feature points
can still capture a wide range of data changes, particularly
because we select feature points for each time step
independently. When objects change significantly from
previous time steps, new feature points often occur.
Successful cases, like face recognition, have already shown
that a few feature points can help reduce a large amount of
irrelevant information.

Our case studies demonstrate that time lines are a very
useful addition to rendering results for data exploration.
Visualizing data corresponding to locations on a time line
can help users understand the distribution and relation-
ships of different time steps. With a time line, users can
visualize just several time steps to obtain a quick under-
standing of the entire time-varying dataset. Our approach
is more efficient than snapshots or animation, since it does
not require rendering results from all the time steps.
This is especially important for analyzing datasets with a
large number of time steps. On the other hand, we realize
that it may take time for users to get familiar with time
lines. Our results of the cube dataset can be used as an
example.
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Generally, time lines are useful to visualize significant
data changes. Small details may be lost among the overall
temporal trend. Our approach allows users to choose
transfer functions, select descriptor components, adjust
the amount of feature points, and fine-tune level-of-
details. These interactions can assist users to explore a
complex dataset gradually.

6.4. Comparison

We compare our approach with four different methods.
Among which, time histogram and time activity curves are
popular approaches for time-varying data visualization. The
last method is a different design based on our extraction
method of virtual words.

6.4.1. Time histogram

Time histogram is a popular method to visualize the
distribution of data properties across time. Generally, the
horizontal axis represents time and the vertical axis
represents data properties, such as data values.

The left image in Fig. 16 shows time histogram gener-
ated based on density values with 100 bins. The right one
is generated using the extracted virtual words. Each
column represents one sample time step and each bin
represents one virtual word. There are 100 sample time
steps and 500 words in the vocabulary.

Advantages of Time Histogram: Time histogram is
simple to compute and straightforward for users to under-
stand. It has also been applied widely in many fields.
As shown in Fig. 16, the density histogram on the left
indicates that the flow becomes stable during the second
half of the time range. This is a great method when the
data size is small and important data features are related
to the voxel values directly.

Advantages of Time Line: Compared to time histogram,
time line can visualize general temporal trends; while time

histogram may miss many important temporal trends, as it
only suggests the similarity of value distributions. Time
line allows selection of data features beyond voxel values,
which is crucial for exploring datasets with complex
features. For datasets with long durations, time line can
statistically sample the dataset at different scales; thereby
producing visualization in a suitable resolution.

6.4.2. Time activity curves

Time curves are first used to reveal the temporal
changes of time-varying medical visualization. Given a
spatial place inside a body, the amount of activity mea-
sured is correlated to the biological function which is
imaged. Many forms of time curves are then proposed
and applied to scientific and volumetric datasets [7,8,2].
We have briefly described these approaches in the section
of related work.

As shown in Fig. 17, the curves are generated based
on L1 metric from Equation (1) in [7]. One hundred data
blocks are used to render the time activity curves.

Advantages of Time Activity Curves: Time activity curve
integrates the advantage of time histogram, which is
intuitive to understand; and advantage of time line, which
allows selection of various data features. Time activity
curves work well for some applications, such as identifying
functions of organs [7]. Since the location of organ is
known before visualization, all the voxels within that
spatial location can be clustered and calculated into one
curve to represent the biological function.

Advantages of Time Line: First, time line does not have
the clustering issue of time activity curves, which produce
a number of curves for data blocks. Also, time line
visualizes temporal trends directly; while time activity
curves, the same as time histogram, require users to
analyze temporal trends through similarity of curve values.
Further more, time line represents similarity of two time

Fig. 16. Left: Time histogram of an energy dataset; Right: Virtual word histogram of energy dataset.

Fig. 17. Example time activity curves of several blocks of voles from air quality dataset. Left: only two curves are shown. Right: one hundred curves

are shown.
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Fig. 18. Example visualizations of the energy data at two scales from the storyboard approach|3].

Fig. 19. Time window visualization of a hurricane dataset at early (left) and late (right) stages.

steps with distances on a 2D plan, which does not require
users with professional trainings.

6.4.3. Storyboard

The closest previous work to this paper is the inter-
active storyboard approach [3] for visualizing overall data
contents and relations of time-varying datasets.

Advantages of Storyboard: As shown in Fig. 18, the story-
board approach selects representative time steps from a time
line and embeds their snapshots in the storyboard visualiza-
tion. This design is convenient for users to understand the
overall data contents and changes through both the example
snapshots and changes of time lines.

Advantages of Time Line: First, the dissimilarity com-
parison of storyboard is based on data blocks. Every block
in a time step is compared with the data block at the same
location from all the other time steps, leading to n? (n is
the number of time steps) performance. While time line
can independently collect distribution of virtual words for
each time window and compare distributions of each two
time windows, leading to n + h? (h is the number of virtual
words) performance. Since h is much smaller than n
(ne[5,800] is generally much smaller than n), time line
is more efficient than the storyboard approach. Second,
the feature definition of storyboard approach only includes
simple measurements such as data density, gradient and
second order statistics. Time line allows feature selections
based on representative voxel features/virtual words.

6.4.4. Visualization of time window

As seen in Fig. 19, bags of local virtual words are shown
in histograms, which have time axis vertical and number
of words horizontal. The histograms show how each small

time duration are different from others. The brightness of
each row reflects the amount of the particular virtual word
inside the local time window. We can observe the differ-
ences between these two time stages.

Advantages of Time Window: The time window clearly
shows how many different words are with in this time
duration, which promotes the analysis of individual data
features..

Advantages of Time Line: Time line is scalable to the
number of time steps. Compared with time window, time
line can handle large datasets with its statistical sampling
component.

6.5. Discussion of choices

In our approach, we project the temporal differences
to a 2D space with MDS; therefore, the time line is an
approximation of the original difference measurement.
This is unavoidable when representing a high dimensional
data in the 2D space. Indicated by various studies that
apply MDS [34,35], the MDS-based dimensional reduction
scheme produces an optimal approximation of the tem-
poral differences. Our approach, includes the measure-
ment of temporal differences and later data visualization
and comparison, can be integrated with other dimension
reduction methods, such as PCA (Principle Component
Analysis) [39], LLE (Local Linear Embedding) [40], LDA
(Linear Discriminant Analysis) [41,42]. We choose MDS
because of two reasons: first it is widely used in informa-
tion visualization and graph visualization; second it is
based on a matrix of similarities and assigns a location to
each item in N-dimensional space, which matches our
requirements exactly.
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Some of steps in our approach can be simplified or
replaced with other algorithms. For instance, we can use
other feature extraction methods such as Harris Corner
detection [43], SURF [44], or simple dissimilarity measure-
ments like voxel values. All these methods are suitable for
some types of data features. In particular, SIFT algorithm
can capture gradient-based features and object boundaries
very well, which are often important features for scientific
datasets. We can adjust the parameters to concentrate on
different types of features: for example, reducing the
number of gradients in SIFT descriptor can point to
features related to data values. The choice of the feature
extraction methods should be finally determined accord-
ing to the data properties and domain knowledge.

7. Conclusions and future work

In this paper, we present an approach to generate
succinct time lines for visualizing the temporal trends of
time-varying datasets. This approach is derived from the
fact that human languages can describe various temporal
events effectively with a limited set of words. For time-
varying datasets, we characterize a set of virtual words
according to selected data features within a data volume
and treat the entire dataset as discrete descriptions with
these words across time. In this way, many important
temporal relationships can be detected through measuring
the distribution of virtual words. We further summarize
temporal relationships as time lines by projecting their
dissimilarities to the 2D space. With provided interac-
tion methods, our approach assists users to explore
and analyze a time-varying dataset with a simple, yet
effective tool.

We expect that our approach can be used for other
types of datasets, such as time-varying vector fields and
videos. We are interested in investigating solutions to
improve the effectiveness of time-varying data visualiza-
tion from the following aspects. First, we plan to expand
virtual words as space-time feature descriptors, instead
of corresponding to only a single time step, since they can
represent the temporal trends directly. Second, we
believe that the concept of virtual words can be used to
improve the understanding of time-varying datasets in
more flexible ways. We plan to design a multi-link inter-
face with 3D rendering view, time line view and virtual
words interactive views that can incorporate more infor-
mation from virtual words to provide new visual analytics
capabilities. Third, we are interested in embedding addi-
tional advanced comparison and analysis tools that use
time lines as an interface to visualize time-varying
datasets. Fourth, we are also interested in studying how
noise in the original dataset affect the visualization
results. We plan to use some quantitative measurements
to show the confidence and uncertainty in our final
visualization. Last, we plan to integrate some useful
information we have collected from feature points and
feature descriptors in our time line visualization. We are
also interested in improving the low-dimensional embed-
ding algorithms for time line generation.
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