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Abstract
Wormhole attacks in wireless networks can severely deteriorate network
performance and compromise security through spoiling the routing pro-
tocols and weakening the security enhancements. This paper develops an
approach, interactive visualization of wormholes (IVoW), to monitor and de-
tect such attacks in large-scale wireless networks in real time. We characterize
the topology features of a network under wormhole attacks through the
node position changes and visualize the information at dynamically adjusted
scales. We integrate an automatic detection algorithm with appropriate user
interactions to handle complicated scenarios that include a large number of
moving nodes and multiple wormhole attackers. Various visual forms have
been adopted to assist in the understanding and analysis of reconstructed
network topology and to improve the detection accuracy. Extended simula-
tion has demonstrated that the proposed approach can effectively locate the
fake neighbor connections without introducing many false alarms. IVoW does
not require the wireless nodes to be equipped with any special hardware,
thus avoiding any additional cost. We have performed user studies to eval-
uate the effectiveness of our approach and demonstrate that visual analysis
can be successfully combined with network security mechanisms to greatly
improve intrusion detection capabilities.
Information Visualization (2007) 6, 3--17. doi:10.1057/palgrave.ivs.9500144
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Introduction
The intrusion detection system (IDS) in wireless networks1 has played an
important role in network security by providing an additional level of pro-
tection to the network topology and applications beyond the traditional
security mechanisms such as encryption and authentication. It detects at-
tacks and isolates malicious nodes by matching the patterns of known in-
trusions or discovering anomalies2–5 in network activities. Its application
environments cover almost all wireless networking scenarios such as ad hoc
networks,1 wireless LANs,6 and sensor networks.2,3 A good survey can be
found in Zhang et al.7

With the fast increases in data scale, available bandwidth and protocol
diversity in wireless networks, intrusion detection mechanisms must un-
cover the patterns of known attacks or the anomalies caused by unknown
intrusions from a continuous, multivariate data flow in real time. There-
fore, effective representation of the data is essential for users to understand
the hidden information and for IDS to preserve detection accuracy and
efficiency. Visualization techniques, which enable the derivation of in-
sights from massive and dynamic data, provide a powerful tool to satisfy
these requirements. In addition to information representation, visualiza-
tion techniques also provide highly interactive interfaces to accelerate
visual analytics. There has been pioneer research done on visualization
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for computer security. The adopted methods include
multi-resolution data details,8 visual correlation among
different parts of the data,9,10 and time-varying
patterns.11,12

Most of the existing IDS approaches depend on the
measurements of some network parameters (e.g. packet
delivery ratio, end-to-end delay) to identify the attacks.
Therefore, the detection capabilities will be restricted by
acquirement delay and accuracy of these measurements.
Since many attacks on wireless networks target the net-
work topology (e.g. neighbor discovery and routing), new
approaches are expected to detect such attacks based on
more direct ‘evidences.’
In this paper, we explore the development of ap-

proaches that can detect attacks on wireless networks
directly based on their impacts on the network topology.
To demonstrate the proposed method, we choose a spe-
cific attack, the wormhole attack,13–15 as our research
problem. In a wormhole attack, malicious nodes will
tunnel the eavesdropped packets to a remote position in
the network and retransmit them to generate fake neigh-
bor connections, thus spoiling the routing protocols and
compromising some security mechanisms. The impacts of
wormhole attacks on the reconstructed topology of a 2D
wireless network are illustrated in Figure 1. The simulation
results in Hu and Evans16 and Kong et al.17 have shown
that when there are more than two wormholes in the net-
work, more than 50% of the data packets will be attracted
to the fake neighbor connections and get discarded.
A preliminary approach, MDS-VoW, to wormhole de-

tection using visualization techniques was proposed by
Wang and Bhargava.18 This approach uses multidimen-
sional scaling (MDS) to reconstruct the topology of a
wireless network and locates the wormholes and fake
neighbor connections by identifying distortions in the

Figure 1 Visualization for wormhole detection. The two red
circles indicate suspicious regions. We have combined interac-
tive visualization into the wormhole monitoring, representation
and detection processes to analyze the potential wormhole at-
tack regions in a large-scale wireless network.

reconstruction result. Although effective as a proof-
of-concept prototype, MDS-VoW has several deficien-
cies when it is applied to real wireless environments.
First, the authors only evaluate MDS-VoW in a net-
work containing a few hundred nodes. Its performance
and detection accuracy in a larger scale environment
(e.g. thousands of nodes) remain undetermined. Sec-
ond, MDS-VoW assumes that all nodes are static. There-
fore, its detection capability in mobile wireless networks
has not been investigated. Finally, the experimental re-
sults focus on the scenarios when only one wormhole
exists in the network while the research in Hu and
Evans16 and Kong et al.17 has demonstrated that multi-
ple wormholes put more severe impacts on the network
performance.
The method introduced in this paper, interactive

visualization of wormholes (IVoW), provides a visual
approach through which users can detect multiple worm-
holes in a large-scale, mobile wireless network. It first
reconstructs network topology based on themeasured dis-
tances among neighboring nodes. To reduce the network
reconstruction overhead caused by node movement, in-
cremental MDS19,20 is adopted. Adaptable representation
of the reconstruction result with attack-dependent level-
of-detail will assist users to identify the ‘suspicious areas’
under wormhole attack. Multiple rounds of detection
with false-alarm reduction methods are developed to im-
prove the detection accuracy when multiple wormholes
coexist in the system.
As we demonstrate, the proposed visualization

approach can effectively identify the fake neighbor con-
nections. The contributions of this research can be sum-
marized as follows: (1) We characterize the topology
features of the network under wormhole attacks and
present a real-time visualization approach to effectively
visualize and monitor topology changes. (2) We integrate
interactive visualization into multiple steps of intrusion
detection procedures, including representation, monitor-
ing and detection. This approach significantly accelerates
the detection procedure by taking advantage of the visual
analysis capabilities of human experts. (3) IVoW directly
uses the topology information to detect attacks on wire-
less networks, thus avoiding the overhead and inaccuracy
caused by the network measurements. (4) The proposed
approach does not depend on any special hardware, thus
avoiding any additional deployment cost.
The remainder of the paper is organized as follows: the

next section provides the background of wireless network-
ing, how wormhole attacks are conducted, and the re-
search challenges. Then the previous research efforts that
contribute to our approach are reviewed and an overview
of IVoW is described. Three principal components of the
proposed mechanism, efficient network reconstruction,
adaptive visualization and interactive wormhole detec-
tion, are described in detail in further sections, respec-
tively. Then the experimental results that demonstrate the
improvements of IVoW over MDS-VoW are presented. We
describe our user study design and analysis for evaluating

Information Visualization



Interactive wormhole detection and evaluation Weichao Wang and Aidong Lu
5

the effectiveness of our approach in the penultimate sec-
tion. Finally, the last section concludes the paper and
discusses future extensions.

Background
In a wireless network, the nodes communicate with each
other through radio transmissions. A simplified model
to describe the connectivity among wireless nodes is the
unit disk graph21: a pair of nodes u and v can directly
communicate with each other if the Euclidean distance
between them is shorter than r, where r is defined as
the communication range. Since the neighbor relations
among wireless nodes may change because of various rea-
sons such as nodemovement, device malfunction, battery
exhaustion and unreliable transmission medium, a node
must be able to detect its active neighbors dynamically. A
widely adopted approach is to let every mobile node pe-
riodically broadcast a short message containing its iden-
tity (called ‘beacon’ packet), and the neighbors receiving
this packet will add the node into the neighbor lists. The
awareness of localized network topology and route choices
is usually based on the correct establishment of and up-
dates to the neighbor list.
The features of wireless communication enable the ma-

licious nodes to conduct wormhole attacks. As shown in
Figure 2, when a legitimate node u in the network sends
out a beacon, the malicious node M1 can use its antenna
to eavesdrop the packet, and tunnel it through a dedicated
long range channel to its colluder M2. When M2 retrans-
mits the beacon, another legitimate node v will receive
this packet and add u into its neighbor list. Fake neigh-
bor connections are generated through wormholes. Later,
when data packets need to go through the wormhole, the
malicious nodes may choose to discard them. Therefore,
a wormhole fabricates a fake connection between u and v
that is under the control of the attackers.
Wormhole attacks are difficult to detect since the mali-

cious nodes only eavesdrop and retransmit the beacons.
The adoption of a stronger encryption or authentication
method will not solve the problem since the attackers
act as the clone of the legitimate nodes. At the same
time, the fake ‘short’ path between u and v may attract
many data packets from their neighbors, thus deteri-
orating the delivery ratio and network performance.

u1

u2

u3

u4

v3
v1

v2

M2M1

u
v

Wormhole Tunnel

Figure 2 Wormhole attack between two nodes u and v.

Therefore, new approaches must be developed to stop
these attacks.

Related work
MDS and its applications in wireless networks
Multi-dimensional scaling was originally a technique de-
veloped in behavioral and social sciences for studying the
relationships among objects. The inputs to MDS are the
measures of the difference or similarity between object
pairs.22 The output of MDS is a layout of the objects in a
low-dimensional space. In this paper, the input is the dis-
tance matrix between the wireless nodes. The mechanism
can reconstruct the network and calculate a virtual posi-
tion for every node. We adopt the classical metric MDS
in the proposed mechanism since the distances are mea-
sured in a Euclidean space. More details of MDS can be
found in Davison22 and Torgeson.23

MDS has been adopted to solve the localization and
positioning problems in wireless networks. In Shang et
al.,24 a solution using classical metric MDS is proposed to
achieve localization from mere connectivity information.
The algorithm is more robust to measurement errors and
requires fewer anchor nodes than previous approaches. A
distributed mechanism for sensor positioning using MDS
has been presented in Ji and Zha.25 It develops a multi-
variate optimization-based iterative algorithm to calculate
the positions of the sensors. Another approach26 to sensor
network localization adopts semi-definite programming
relaxation to minimize the errors for fitting the distance
measurements.

Wormhole detection in wireless networks
Wormhole attacks on mobile wireless networks were in-
dependently discovered in Dahill et al.,13 Hu et al.14 and
Papadimitratos and Haas.15 Below, we describe several ap-
proaches that have been developed to defend against such
attacks.
If the wireless nodes are equipped with directional

antennas,16 a pair of nodes can examine the directions
of the received signals from each other and a shared
third node to confirm the neighbor relation. In Hu
et al.,14 extra information is added into a packet to re-
strict its transmission distance. In geographical leashes,
the location information and loosely synchronized clocks
together verify the neighbor relation. In temporal leashes,
the packet transmission distance is calculated based on
the propagation delay and signal transmission speed. In
addition to the approach using scientific visualization,18

a wormhole prevention mechanism based on graph the-
ory is proposed in Poovendran and Lazas.27 Using the
geometric random graphs induced by the communication
range constraint of the nodes, the researchers present the
necessary and sufficient conditions for detecting and de-
fending against wormholes. They also present a defense
mechanism based on local broadcast keys.

Information Visualization
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Distance estimation among wireless nodes
Since MDS uses the measured distances among wireless
nodes that can hear each other as inputs to reconstruct the
network, we briefly introduce several distance estimation
methods. The existing solutions include using received
signal strength,28 Time-of-Arrival and Time Difference of
Arrival,29,30 and triangulation.31

One point that we must clarify is that the measured
distances cannot be directly used to prevent wormholes.
For example, if the received signal strength is used to es-
timate the distance, the receiver cannot distinguish the
resent packet by the malicious node from the real beacon.
Similarly, if the nodes use the propagation delay of acous-
tic signals to measure the distance, the malicious nodes
can easily hide the tunneling delay if radio transmission
is used in the wormhole.

Visualization for computer security
With the fast development of computer security mecha-
nisms, the scale and complexity of the security data put
ever-increasing challenges to the representation and un-
derstanding of the information. Visualization techniques
have been adopted by the researchers to bridge the gap.
For example, it is usually difficult for the system adminis-
trators to read a text-based log file recording the traffic pat-
terns and anomalies that happened in the past 24h. The
researchers have developed mechanisms that can provide
an overview of the traffic patterns of thousands of hosts.32

The latest approaches provide a more scalable representa-
tion capability that can cover multiple class-B IP address
ranges and the intrusion alarms in them.8,33,34

Network scans are probably the most common and
versatile intrusions. Researchers have developed a visu-
alization methodology to characterize the scans based
on their patterns and wavelet scalograms.12 Another

Figure 3 System overview of IVoW: A distance matrix (A) acquired from a large-scale wireless network is used to reconstruct the
3D positions of the nodes using the incremental MDS method (B), and modified through our feature point sampling (C), feature
line selection (D), primitive assignments (D), and interactive detection (E) to defend against the wormhole attacks (F).

approach uses IP address and port number histographs to
detect and analyze the scan attacks.10 VisFlowConnect-
IP35 achieves detection of anomalous traffic through a
link-based network flow visualization tool.
Undermany conditions, the security data acquired from

different methods must be investigated jointly to improve
the detection accuracy and efficiency. The research efforts
in Fink et al.9 provide a visual correlation between the
host processes and network traffic. In both Ren et al.10 and
Muelder et al.,12 the approaches can identify the similarity
among different scan attacks or NetFlow signatures.
While many visualization approaches to network se-

curity require large amounts of finely detailed, high-
dimensional data, several mechanisms focus on the big
picture. For example, the mechanism in McPherson
et al.36 takes very coarsely detailed data to help uncover
interesting security events. The mechanism in Rafiei and
Curial37 overcomes the scalability issues inherent in visu-
alizing massive networks through sampling. In Goodall et
al.,11 low level textual data are provided in the context of
a high-level, aggregated graphical display. Disparate logs
are also visualized to show the correlation of network
alerts based on what, when, and where.38

Overview
An overview of working procedure of IVoW is illustrated
in Figure 3. After deployment, a wireless node will esti-
mate the distances to the other nodes that it can hear and
send the measurement results to IVoW. Some fake neigh-
bor connections throughwormholesmay be included. En-
cryption and authentication methods can be adopted to
protect the integrity and authenticity of the information
and prevent impersonation.
The proposed approach will use the measurement re-

sults to build the distance matrix among the wireless
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nodes and reconstruct the network topology using incre-
mental MDS. A normalized wormhole indicator value will
be calculated for every node to identify those ‘suspicious
areas’ under wormhole attack (see the next section).
When the scale of the network and number of nodes

are considered, the user may be overwhelmed by the in-
formation in the visualization. We integrate the feature
element selection and attribute assignment methods to
develop an adaptive visualization method. Only a part of
carefully chosen nodes and their neighbor relations are il-
lustrated while the network topology is preserved so that
the suspicious areas under attack can be easily located (in
section, Adaptive network visualization).
The proposed mechanism takes advantage of the users’

expertise to accelerate the wormhole detection pro-
cedure and improve the detection accuracy. A set of
interaction interfaces are designed to allow the users
to identify the suspicious areas and activate more ef-
fective but complicated detection methods. Therefore,
interactive visualization not only helps improve infor-
mation understanding but also assists problem solving
through visual analysis (in section, Interactive wormhole
detection).

Efficient network reconstruction
Fast network reconstruction
The proposed mechanism uses MDS to reconstruct the
network topology. First, every pair of nodes that can
hear each other will estimate the distance between them
and report it to IVoW. IVoW will calculate the average
value and put the result at the suitable positions in the
distance matrix. After that, a classical shortest-path al-
gorithm, such as Dijkstra’s algorithm,39 can be used to
calculate the shortest distance between every node pair.
Using the distance matrix, MDS can rebuild the net-
work layout and a virtual position for every node will be
generated.
The computation complexity of traditional MDS is

n3 when there are n nodes in the network. If IVoW
reconstructs the whole network from scratch after every
neighbor relation change, the computation overhead will
become overwhelming when n is large, thus impacting
the scalability and efficiency of the proposed mechanism.
To achieve efficient network reconstruction, we adopt the
incremental MDS proposed in Basalaj,19 Williams and
Munzner,20 Chalmers40 and Morrison et al.41

The fast network reconstruction method is based on
Chalmers40 andMorrison et al.,41 for which the computa-
tion complexity is n2. Since the distances among wireless
nodes seldom experience radical changes, the reconstruc-
tion result of the previous round is a good initial layout
of the nodes. Single scaling will then be executed for the
nodes for which neighbor relations change. The final step
will include several MDS iterations upon the entire node
set to refine their positions. An example of incremental
MDS is illustrated in Figure 4.

Figure 4 Example of incremental MDS: a pair of nodes slowly
move to each other, thus leading to changes in network topol-
ogy.

Estimating wormhole indicator value for wireless nodes
The analysis in Wang and Bhargava18 has shown that the
wormholes can be viewed as an extra force that will lead
to the distortions: the distances and angles among the
neighboring nodes in the reconstructed network will be
very different from the values in the real layout. Subse-
quent research17 has shown that the distortions in angles
can be used to locate the fake neighbor connections.
For every angle formed by three neighboring nodes u1,

u2, and v with v as the vertex, two values can be deter-
mined: (1) �M−u1vu2 , which can be calculated based on
the measured distances among them; (2) �R−u1vu2 , which
can be acquired from the reconstructed network. The dis-
tortions in angles can be measured by the difference be-
tween these two values.
We define a new variable, wormhole indicator (wi), for

every node v based on the differences in angles:

wormhole_indicator(v)=
∑

�diff−uivuj
q(q − 1)

,

(i, j = 1 . . . q, i �= j)

�diff−uivuj =
{
0 if ‖�M−uivuj − �R−uivuj‖ ≤ �th,
1 if ‖�M−uivuj − �R−uivuj‖>�th,

(1)

where v, ui and uj are neighbors, and q is the degree of con-
nectivity of v. From the definition we find that the worm-
hole indicator is a normalized variable with the value
range [0,1].

�th in Eq. (1) represents the threshold that is used to
distinguish the changes in angles caused by the distance

Information Visualization
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measurement inaccuracy from the distortions caused by
the wormholes. We adopt a format of c(derr/0.5r) for �th,
in which derr represents the distance measurement inac-
curacy, r is the communication range, and c is a con-
stant. When the distance estimation errors are not large,
derr/0.5r roughly describes the change in angles caused
by the inaccuracy. Our simulation shows that a value not
smaller than 4 should be assigned to c to preserve the de-
tection accuracy.
While the wormhole indicator values measure the im-

pacts of thewormholes in a single network reconstruction,
we also take the time factor into consideration by moni-
toring the distance changes among the node pairs in dif-
ferent reconstructions. For example, if a pair of nodes were
far away from each other in the previous reconstruction
and suddenly were to become neighbors, the link between
themwould be examined carefully to prevent wormholes.

Adaptive network visualization
With the reconstructed topology and initial wormhole
indicator values, we can visualize a wireless network to
monitor and detect wormhole attacks. In this section, we
describe our feature element selection and attribute as-
signment methods to effective visualization of a large-
scale wireless network.
Intuitively, we use points to represent wireless nodes,

lines to strengthen the network topology, and render-
ing settings to reveal the intrusion detection information.
This point-and-line-based visualization method is devel-
oped to satisfy the real-time rendering requirement and
to provide an effective framework for illustrating network
topology and security information.
Choosing a suitable resolution is one major problem for

visualizing a large-scale network topology. It is difficult to
observe any abnormality when there are a large number of
points and lines overlapping on the screen. Multiple ren-
dering resolutions can be used to alleviate this problem.
However, it is not practical for users to adjust the suitable
resolution manually, since the interaction would be too
tedious for a real-time network monitoring task. There-
fore, we propose to develop a self-adapted visualization
method to automatically select sample points and lines.

Feature points selection
We select feature points based on their wormhole indica-
tor values and location information to reduce the over-
lapping issue and preserve major topology features. Next,
we discuss our ideal point distance measurement based
on wormhole indicator values, the location information
calculation and our feature point selection procedure.
Since the wormhole indicator is one significant feature

for monitoring and detecting network attacks, we use this
value to adjust the ideal point distance for each node.
We draw all the points whose indicator values are larger
than the threshold �wi, which is defined in the previous

work18 and can be adjusted by users, and keep a large
point distanceDl for points with low indicator values. This
results in a low point density on smoother surfaces and
more detailed changes for abnormal regions. Practically,
we use 5% of the rendering space width as Dl.

dis(v)=
{
Dl ×

(
1− wi(v)

�wi

)
if wi(v)< �wi,

0 if wi(v) ≥ �wi.
(2)

We also include the location information in the selec-
tion procedure for preserving the network topology shape,
including a boundary indicator and a surface rough-
ness measurement. We adopt the approach proposed by
Rao et al.42 to identify the boundary nodes of the net-
work and assign their boundary indicators to ‘1’. We
intend to select these points since they are important to
represent the shape of the entire network. For each node
v in the reconstructed topology, its normal direction �v
can be calculated using the best fitted plane within a lo-
cal region.18 If the set of neighbors of v is represented as
Nv , the surface roughness value can be calculated using
the average normal direction changes, as

rough(v)=
∑
u∈Nv

(1− �v · �u)
2q

,

where q is the number of neighbors in Nv . We intend to
keep higher point density for rough surfaces, since they
are more likely to contain abnormal information.
The feature value of a node is calculated as the weighted

sum of the three factors: wormhole indicator, boundary
indicator and roughness value. We keep the sum of the
weights wwi + wb + wr = 1 for saving the normalization
process and we use 0.5, 0.3, 0.2 for wwi, wb and wr , respec-
tively, favoring the wormhole indicator values.

Feature(v)=wwiwi(v)+wbbound(v)+wr rough(v). (3)

The procedure to select feature points can be viewed as
choosing a point subset that approximates the ideal point
distances and achieves the maximum feature sum value.
Since a greedy algorithm produces very similar results in
representing the topology information, we adopt a fast
algorithm by using the following selecting and updating
phases.
A node with the maximum feature value is first selected

through traversing the point list and added to the feature
point set. Then, we update feature values of all the local
points by a factor according to distance d to the selected
point using Feature(v)= f(v)× Feature(v), where

f(v)=


1 if d ≥ dis(v),(

d

dis(v)

)2
if d <dis(v).

(4)

We repeat this process until all the remaining points have
been modified at least by a factor of f(dis(v)/2). This en-
sures the completeness of the network topology.
We can further accelerate this selection process by se-

lecting multiple points at each time. For the points with
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Figure 5 Point density is reduced to a smaller scale for clarity
through feature point selection.

feature values larger than �wi/2, we randomly select mul-
tiple points into the feature set. We can also directly use
the point distance from the original distance matrix in
the previous section to accelerate this process. As shown
in Figure 5, the point density is reduced to a smaller scale
for clarity.

Feature lines selection
We use feature lines to further strengthen the topology
information by connecting selected feature point pairs.
Since a wireless network usually forms a highly connected
topology, we cannot illustrate every neighbor pair because
of the intersecting issue. Instead, we select a small number
of lines that can be used to enhance the major topology
features.
To generate a succinct line drawing, we summarize three

criteria for selecting feature lines.

• Intersection: Any two lines should not intersect on a
smooth surface.

• Connectivity: At least one line is connected to each fea-
ture point.

• Cell areas: Small areas composed by the surrounding
lines should be avoided for better representation.

Under these three criteria, we choose feature lines by us-
ing the Delaunay triangulation algorithm.43 Our first two
criteria are satisfied automatically and the third criterion
can be approximated from the Delaunay triangulation,
since it maximizes the minimum angle of all the trian-
gles. The result of the 3D Delaunay triangulation method
is used to select the feature lines between the correspond-
ing point pairs. As shown in Figure 6, the selected feature
lines enhance the main surface information in the net-
work topology.

Attributes assignment
To effectively visualize the network features, we assign ren-
dering attributes, including size, color and transparency,
for the selected feature points and lines according to the
wireless node properties.
Point size is adjusted to represent the local point den-

sity. Since the feature point selection process changes the

Figure 6 The automatically selected feature lines can signifi-
cantly enhance the visualized network topology.

original point density, we use the ideal feature point dis-
tance to approximate real point density, which is decided
from the wormhole indicator value.
Here maxsize represents the maximum point size in the

rendering and we use 10 in our system.

size(v)=
{
1+maxsize ×

(
1− wi(v)

�wi

)
if wi(v)< �wi

1 if wi(v) ≥ �wi
(5)

Therefore, larger points represent smoother surfaces in the
visualization; while smaller points indicate more abrupt
changes in the topology.
The point color is assigned from blue to red to reveal

the wormhole indicator value from low to high.

color(v)=wi(v) ∗ Cred + (1−wi(v)) ∗ Cblue. (6)

The point transparency is also calculated from its indi-
cator as wi(v)pt , since the users are most interested in the
potential attacked regions. Pt is set as 1.5 in our imple-
mentation. The transparent points also allow users to see
through a complex topology, as shown in Figure 7.
For the situations where color is not available, a varia-

tion of Eq. (6) can be adopted to calculate the point size
using a linear function between the minimum and maxi-
mum point sizes, with large points indicating the poten-
tial attackers. We still use the point transparency as above
to increase the see-through effect. Figure 8 shows the two
visualizations of the same data in Figure 7.
The line attributes are simply adjusted according to the

attributes of the neighbor points, sincewemainly use their
positions to suggest the network topology. Their color and
transparency are interpolated linearly between the two
connecting points. We use the same thin line width to
render all the lines for the least overlapping.

Interactive wormhole detection
We propose to integrate interactive visualization with in-
trusion detection algorithms to accelerate the detection
process and improve the algorithm accuracy. Our previous
work achieves a high success ratio at detecting wormhole
attacks in an experimental environment. Problems occur
when we apply the mechanism to networks at a larger

Information Visualization
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Figure 7 The primitive attributes are adjusted for effectively
visualizing the node properties. Red color suggests potential
attack regions.

Figure 8 In black-and-white situations, node sizes are adjusted
to indicate the potential attackers.

scale. As shown in Figure 14(a), the detection accuracy
can decrease drastically with an increasing environmental
complexity caused bymultiple attackers. Therefore, we de-
velop an interactive visualization system to handle these
large, complex wireless environments. The following de-
scribes our interface design and an interactive detection
procedure for wormhole detections.

Interface design
We combine the tasks of monitoring and detecting worm-
hole attacks into one unique system interface. Our basic
idea is to visualize the network topology and potential at-
tacks in a manner that is convenient for users to associate
all the relevant information.
As shown in Figure 9, our interface is composed of three

windows: topology window (bottom middle), target win-
dow (right) and history window (top left). The topology
window visualizes the current network topology, where
users can interact with the topology with several routine
tasks, including zooming, rotating and selecting region-
of-interest. The target window lists the nodes with worm-
hole indicator values larger than the threshold �wi. We
also collect the information of each node for analysis, such
as neighbor relationships, traffic history, etc. On the top
left, we arrange a history window that illustrates the net-
work topologies of previous time steps for observing the
topology changes.

Interactive detection
To handle a large, complex network environment, we
need to integrate user interaction with our wormhole
detection and visualization methods. Our approach is
to use the user inputs to guide the automatic detection
procedure for further analysis. This allows the users to
achieve a high success ratio with only a limited amount
of simple interactions.
During the detection, the users are only required to

draw a cube roughly around their region-of-interest. This
cube is located by the left, back, top corner and the right,
front, bottom corner. These two 3D points can be specified
through the combined inputs of mouse movement and
hot keys. Generally, only several operations are required
to achieve a satisfying detection result.
Once the region-of-interest is located, the system will

automatically process the interaction information, pro-
vide detailed analysis results, and use this information
to update the network topology for further detection.
Let us define the nodes within the region-of-interest
as candidate nodes. Since these user-selected candi-
date nodes may indicate the existence of wormholes,
we propose a progressive procedure to analyze them
automatically.
First, we reconstruct the network topology without all

the candidate nodes and calculate the stress value s1 of
MDS.
Second, we sort all the candidate nodes in a decreasing

order based on their numbers of neighbors. A node with
the maximum neighbor number will be added back into
the network and we use incremental MDS to fast recon-
struct a new topology, which produces the stress value s2.
Third, the change between the current and previous

topologies is measured by using their stress values as
(s2 − s1)/s1. If the change is below a threshold (10%), the
candidate point is viewed as a ‘good’ node, will be added
back to the network, and we go back to step 2. Other-
wise, at least one of its neighbor connections belongs to
a wormhole. We continue to step 4.
Fourth, since all the neighbor connections of the can-

didate point are independent, we reconstruct the network
topology using incremental MDS by adding each neigh-
bor line back and compare the topology change from the
previous step. For each line causing the stress value to in-
crease beyond the threshold, a warning packet will be sent
to both nodes connected by this line to indicate that this
is a false connection and should be removed immediately.
Figure 10 illustrates our detection procedure, which suc-

cessfully analyzes and identifies all the attacked regions
in a distorted network topology. Only several simple user
interactions are involved in handling complex wormhole
attacks.

Experimental results
The detection accuracy and overhead of the proposed
mechanism are evaluated through simulation using net-
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Figure 9 Our wormhole detection interface. The left top locates the history window, left bottom includes parameter window and
topology interaction window and the right lists the identities and information of the potential attackers.

work simulator ns2,44,45 which is widely adopted by
wireless networking investigators. To enable the compar-
ison between IVoW and MDS-VoW and demonstrate the
improvements, we adopt a relatively small-scale wireless
network. We assume that 600 nodes are randomly and
roughly uniformly deployed in a square area with the
size of 2 km × 2km. The communication range among
wireless nodes is r = 180m and the average degree of
connectivity is 10.35.
We first investigate the relationship between the num-

ber of neighbor connection changes and the interval of
network reconstructions, so that the tradeoff between the
communication and computation overhead of IVoW can
be achieved. To enable the comparison between IVoW
and MDS-VoW, the same network topology and worm-
hole attack scenarios are provided to both mechanisms.
The detection accuracy is measured by the false alarm
rate. Two parameters are of special interest: the fraction
of wormholes that are detected, and the number of real
neighbor connections that are wrongly labeled as worm-
holes. Every data point in the following figures represents
the average value over 15 trials under different network
setups.

Determining the frequency of network reconstructions
The frequency of network reconstructions has a direct
impact on the overhead of the proposed mechanism.
As we have discussed in the fifth section, incremental

MDS uses the previous reconstruction result as the ini-
tial layout of the nodes. If too many neighbor relations
have changed, more iterations will be required to refine
the nodes’ positions. On the contrary, every round of
reconstruction requires the nodes to measure the dis-
tances to their neighbors and send the results to IVoW,
which will cause more communication overhead. In this
group of experiments, we investigate the relationship be-
tween the number of neighbor connection changes and
the interval of network reconstructions.
The average lifetime of a neighbor relation is impacted

by various factors including the movement model, radio
range and moving speed of the nodes. In our simulation,
we use the random way point model46 to describe the
movement of the nodes. If the highest moving speed of
the nodes is vmax, a randomvalue drawn from the uniform
distribution [0, vmax] will be used as the speed of a node.
To compensate the impacts of the differences in moving
speeds, we define a unit time = radio range r/vmax. The
simulation results are illustrated in Figure 11.
We investigate different highest moving speeds ranging

from 5 to 20m/s. From the simulation results, we find
that the lifetime of a neighbor connection has a close re-
lationship to the radio range and the moving speed of
the nodes. It takes about two units time for every node
to change almost all of its neighbors. Therefore, the ad-
vantages of incremental MDS can be better demonstrated
when the interval of network reconstructions is shorter
than two units time.
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Figure 10 The interactive wormhole detection procedure is
shown from top to bottom with two views for each user input
and the consequent detection result. A user simply draws a
transparent red cube around a potential attack region and a
progressive algorithm is performed to analyze the details.
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Figure 11 Relationship between neighbor changes and inter-
val of network reconstructions.

Robustness against distance estimation errors
Since network reconstructions are conducted based on
the measured distances among wireless nodes, the mea-
surement accuracy has a direct impact on the detection
capability. In our simulation, we model the distance esti-
mation errors as uniform noises. If the real distance be-
tween two nodes is d(d� r) and the error rate is em, a ran-
dom value drawn from the uniform distribution [d × (1−
em),min(r, d× (1+em))] will be used as the measured dis-
tance. We examine different values of em from 0 to 80%.
We assume that only one wormhole exists in the network
and the victims of the attack are randomly selected. The
simulation results are illustrated in Figure 12.
The results show that IVoW can greatly improve the de-

tection accuracy when the distance estimation errors are
relatively large. The improvements are primarily realized
through the user interactions. They take advantage of the
expertise and judgments of the user to drastically reduce
the size of the suspicious area so that the more compli-
cated detection method described in section Interactive
detection can be applied to a localized network.
The false positive alarms will lead to the breaks of real

neighbor connections and an increase in the average path
length. If all connections of a node are broken, an isolated
node will be generated. To examine the impacts of the
false positive alarms, we show in Figure 13 the increase in
the average path length between all node pairs. Since the
degree of connectivity in the original layout is relatively
large, the increase in the average path length is small. We
do not detect isolated nodes in the experiments.

Detection accuracy under multiple wormholes
One advantage of IVoW is that it can detect fake neighbor
connections when there are multiple wormholes in the
network. In this group of experiments, we fix the value
of em at 40% and examine the detection accuracy of the
proposed mechanism when the number of wormholes
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Figure 12 Detection accuracy of IVoW under different distance
estimation error rates. (A) Improvements in detection accuracy.
(B) Reduction in false positive alarms.
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Figure 13 Increase in the average path length caused by false
positive alarms.

changes. The victims of the attacks are randomly and in-
dependently selected as long as the distance between the
two ends of a wormhole is longer than the communica-
tion range. Since the increase in the average path length
is small in Figure 13, we focus on the false alarm ratio in
this group of experiments. The results are illustrated in
Figure 14.
The improvements are more obvious in this group of

experiments. Through the user interactions, the detection
procedure can locate the suspicious areas more accurately
and the impacts of multiple wormholes on the detection
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Figure 14 Detection accuracy of IVoW when the number of
wormholes increases. (A) Improvements in detection accuracy.
(B) Reduction in false positive alarms.

accuracy are reduced. From the results in Figures 12–14,
we find that the user interactions can improve both the
wormhole detection efficiency and accuracy, and the pro-
posed mechanism is robust against the distance estima-
tion errors and multiple wormholes.

User study
We have performed initial user studies to evaluate the ef-
fectiveness of our visualization approach. We are particu-
larly interested in assessing the acceptance of using visual
forms in network intrusion detection tasks. Therefore, we
design and analyze the user study focusing on the detec-
tion accuracy and duration factors. Below we describe the
details of our experiment setup, procedure, data analysis,
results, and discussions respectively.

Stimuli
The stimuli of the study are 50 independently generated
wireless network scenarios visualized by the proposed
approach. We equally divide the 50 trials into 10 groups
and introduce different numbers of wormholes into the
networks, resulting in five networks in each of the zero-
to-nine wormhole scenarios. Each network contains 600
nodes that are randomly and uniformly distributed in a
2km × 2km area. The radio range among wireless nodes
is 180m. To simulate real wireless network communi-
cations, the distance estimation errors are modeled as
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uniform noises and [−40%,40%] range errors are ran-
domly added to each measured distance.47 The two end
nodes of every wormhole are randomly and indepen-
dently selected as long as the distance between them is
longer than the radio range. The fake distances are also
randomly selected from [0, radio range].

Subjects and setup
The subjects of the study include eight volunteers (two
females and six males) who are research staff or graduate
students in computer science or electrical engineeringma-
jors. Half of the subjects have network and security back-
grounds while the other half do not. Most of the subjects
do not have graphics and visualization backgrounds. All
the eight volunteers have normal vision and are not color
blind.
The reconstructed network topologies are displayed on

a 19-inch LCD monitor with 1280× 1024 resolution. The
experiment runs in full screen mode with white back-
ground and with color, size, and line enhanced visualiza-
tions. A general Dell USB 2 button mouse and keyboard
are used as the interaction tools.

Procedure
We included a training session before the experiment,
since most of our subjects are not familiar with wormhole
attacks. During the training session, we briefly introduce
the background of this experiment and explain the dis-
tortions in the network topology caused by wormhole at-
tacks. Four examples of wormhole attacks, different from
all 50 trial data, are selected to arrange the training ses-
sion parallel to the real experiment. These examples are
selected to demonstrate how the attacks will lead to dis-
tortions in the reconstructed network and how they are
different from the changes caused by distance estimation
errors. The subjects are also trained to use our system in-
terface to rotate and move the reconstructed network and
select the suspicious areas under attack. There is no time
limit on the training session and questions from the sub-
jects are answered.
The experiment is performed right after the training

session. Before the experiment, subjects are informed that
there are a total of 50 trials. Some are under wormhole
attacks and some are normal network scenarios. A subject’s
task is to find a suspicious region under attack and move
the red box provided by the system to enclose it. We fix
the size of the red box for all subjects to avoid the effect of
a subject choosing a larger size to increase accuracy. A pilot
study is performed to determine the suitable cube size,
which is large enough to enclose the suspicious regions
for all 50 trial data, and as small as possible to measure
accuracy of the subjects.
Subjects are also informed that their performances dur-

ing the experiment will be recorded, although there is
no time limit on each trial. The left bottom corner of

D
et

ec
tio

n 
ac

cu
ra

cy
 (

%
)

Subject index

100

80

60

40

20

0
S1 S2 S3 S4 S5 S6 S7 S8

Figure 15 The detection accuracy of each subject over the 50
trials.

the system shows the current trial number during the
experiment. Since the whole experiment usually takes
20–30min, we have designed a pause/resume function,
which allows the subjects to have a break during the
experiment. The time between the pause and resume ac-
tions is removed from the recorded duration. The screen
turns blank during the break time to prevent the subjects
from working on the trial data.
During the experiment session, the 50 stimuli net-

work scenarios are presented to the subject in random
order. The subject can rotate and move the reconstructed
network with the provided interface to get a better un-
derstanding of the network structure. Since our proposed
detection mechanism is a progressive approach (section
Interactive detection), subjects are only asked to iden-
tify one suspicious area in each network scenario. Once
she/he has located a suspicious area, she/he can move
the mouse with the ‘m’ key pressed to move the fix-sized
red cube to enclose the area. When the subject is satisfied
with her/his input, she/he can click the ‘next’ button on
the toolbar, which will bring her/him to the next trial. If
the subject finds that no wormhole exists in the network,
a ‘zero’ button on the toolbar can be clicked to indicate
so, and the red box diminishes from the screen. This
process repeats until all 50 trials have been finished.
For each trial, the position of the red box and the indi-

cator of wormhole existence are recorded. The timestamps
at the start of the trial, the start of the red box movement
(the first time the ‘m’ key is pressed), and the click of the
‘next’ button are also captured.

Data analysis
Both detection accuracy and duration are calculated for
each trial of every subject. Statistical results are shown in
Figures 15–18. Our hypothesis is that subjects will respond
reasonably fast and accurately under different wormhole
attack scenarios. Therefore, we calculate the average and
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Figure 16 The average observation, operation and total time
duration of each subject over the experiment. The operation
duration does not include the data from the five trials without
wormhole attacks, since they do not require subjects to adjust
the red box position. The observation and total time duration
are over the 50 trials.
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Figure 17 The average detection accuracy under different
wormhole attack numbers over the eight subjects.
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Figure 18 The average observation, operation and total time
duration under different wormhole attack numbers over the
eight subjects.

standard deviation of the detection accuracy and duration
over both the 50 trials and the eight subjects.
The detection accuracy is measured using the recorded

indicator of wormhole existence and the position of the
red box. For each trial, the wormhole attack information
from the corresponding network setup is first compared
with the indicator value to see if there is a wormhole in
the network. If there exists at least one wormhole, the
positions of the nodes linked by wormholes are tested
to see if they are inside the red box. Only when both
nodes linked by a wormhole are enclosed, will the trial
be counted as accurate, otherwise it is considered to be
inaccurate.
The total duration of each trial is measured between the

beginning of the current and the beginning of the next
trial. During the experiment, a subject usually first rotates
the network visualization to detect and locate a worm-
hole. When there are multiple wormholes, some subjects
choose an obvious one for simpler operation and some
subjects choose the first one they see. Then, they will
move the red box to enclose the identified region. Since
the network reconstruction is in a 3D space, a subject
may rotate the network again to check if both ends of the
wormhole are in the red box until she/he is satisfied. Be-
cause of this general procedure, we roughly divide the to-
tal duration into an observation period and an operation
period by themoment the red box is first moved. Since the
network scenarios without wormhole attacks do not need
the subjects to move the red box, their operation times
are not included in the final statistical duration results.

Results and discussions
Since the proposed interactive wormhole detection
method incorporates the visual analysis capability of
users into the detection procedure, our hypothesis is that
our approach would achieve a high detection accuracy.
The results in Figure 15 show that all the subjects are
above 94% accurate and the average of the eight subjects
is 98.25%, which is significantly higher than the previous
method.18 Since the wormhole-free network scenarios
do not include any obvious distortions, we assume that
these trials are relatively easy to recognize. Figure 17
shows that all the subjects are 100% accurate under this
situation. Figure 17 also shows that the average detec-
tion accuracy under 1–9 simultaneous wormhole attacks
ranges between 92.5 and 100%, with variances of 0 to
0.1. This demonstrates that our detection method can
achieve a high detection accuracy under the scenarios of
multiple wormhole attacks.
Figure 16 shows that the observation durations of dif-

ferent subjects are similar and the operation durations
have a much larger variance. Since the observation du-
rations roughly measure the analysis process of a user,
their similarity demonstrates that the features of worm-
hole attacks illustrated by our visualizationmethod can be
identified by all the subjects. The average observation
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durations of the eight subjects in Figure 16 are between
3.1 and 6.8 s, and the average observation durations un-
der different numbers of wormholes in Figure 18 are be-
tween 3.9 and 7.8 s. This means that all the 8 subjects can
provide useful detection suggestions within 8 s even when
there are multiple wormhole attacks in the network. This
demonstrates that our method can be used to provide ac-
curate detection information rapidly.
The total duration is largely affected by the operation

time, since it is 2–3 times the observation duration. The
operation duration is mainly decided by whether the sub-
ject can fluently interact with the provided interface. For
example, subject S5, who has the longest operation du-
ration and still achieves 100% accuracy, claimed that he
had very little experience on using a mouse to control 3D
scenes. Since we concentrate on the effectiveness of the
visualization, the operation time under 30 s is acceptable.
We can shorten the interaction time by adopting more
intelligent interfaces or new tracking technologies.
Combining the results in Figures 17 and 18, we can see

that both the detection accuracy and the observation du-
ration under different numbers of wormhole attacks are
not significantly different. This demonstrates that the ob-
servation duration to identify a single wormhole and the
detection accuracy are robust against the attack complex-
ity (number of wormholes). These results indicate that our
method can be used to provide immediate and accurate
responses for defending against wormhole attacks.

Conclusions and future work
In this paper, we propose an approach that integrates
visual representation, user interaction and automatic
analysis algorithms to defend against wormhole attacks
in wireless networks. Through integrating interactive
visualization into multiple steps of IVoW including rep-
resentation, monitoring and detection, we show that vi-
sualization not only can be used to improve information
understanding, but also can be combined with domain
knowledge and user expertise to solve problems through
visual analysis.
Immediate extensions to the proposed approach in-

clude the following aspects. First, to further reduce the
overhead and false alarms caused by distance estimation
errors, we propose to explore the approaches that can
detect attacks on network topology solely based on the
connectivity information among wireless nodes. Second,
a distributed version of IVoW will be developed to avoid
the security problems such as single point of failure. Fi-
nally, since the terrain and shape of the area covered by a
wireless network can be very complicated, the robustness
and error-tolerance of IVoW need to be improved.
While the detection of one kind of attack is investigated

in depth, the basic ideas presented in this paper can be
extended to deal with other aspects of network security.
For example, the anomalies in the localized neighbor re-
lations caused by the fake identities can be used to detect
Sybil attacks.48,49 If the reconstructed network topology

is monitored together with the traffic flows, the black
holes of data transmission in wireless networks can be
located.50 The visualization techniques and interaction
interfaces enable the users to analyze and manage the
networks with an ever-increasing scale and complexity.
Furthermore, directly applying the network topology
information to attack detection avoids the overhead
and inaccuracy caused by the parameter measurement
procedures.
To better evaluate the proposed approach, we will apply

IVoW to real large-scale wireless network environments
such as underwater sensor networks, in which the nodes
canmove freely in 3D spaces. A more generic attack detec-
tion framework integrating visualization and interaction
techniques will be developed to enforce wireless network
security.
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