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Abstract. The focus of this paper commences with an examination of three (not obviously
related) pages in Ramanujan’s lost notebook, pages 336, 335, and 332, in decreasing order
of attention. On page 336, Ramanujan proposes two identities, but the formulas are wrong
– each is vitiated by divergent series. We concentrate on only one of the two incorrect
“identities,” which may have been devised to attack the extended divisor problem. We
prove here a corrected version of Ramanujan’s claim, which contains the convergent series
appearing in it. The convergent series in Ramanujan’s faulty claim is similar to one used
by G. F. Voronöı, G. H. Hardy, and others in their study of the classical Dirichlet divisor
problem. This now brings us to page 335, which comprises two formulas featuring doubly
infinite series of Bessel functions, the first being conjoined with the classical circle problem
initiated by Gauss, and the second being associated with the Dirichlet divisor problem. The
first and fourth authors, along with Sun Kim, have written several papers providing proofs
of these two difficult formulas in different interpretations. In this monograph, we return to
these two formulas and examine them in more general settings.

The aforementioned convergent series in Ramanujan’s “identity” is also similar to one that
appears in a curious identity found in Chapter 15 in Ramanujan’s second notebook, written
in a more elegant, equivalent formulation on page 332 in the lost notebook. This formula
may be regarded as a formula for ζ( 1

2
), and in 1925, S. Wigert obtained a generalization

giving a formula for ζ( 1
k

) for any even integer k ≥ 2. We extend the work of Ramanujan
and Wigert in this paper.

The Voronöı summation formula appears prominently in our study. In particular, we
generalize work of J. R. Wilton and derive an analogue involving the sum of divisors function
σs(n).

The modified Bessel functions Ks(x) arise in several contexts, as do Lommel functions.
We establish here new series and integral identities involving modified Bessel functions and
modified Lommel functions. Among other results, we establish a modular transformation
for an infinite series involving σs(n) and modified Lommel functions. We also discuss certain
obscure related work of N. S. Koshliakov. We define and discuss two new related classes
of integral transforms, which we call Koshliakov transforms, because he first found elegant
special cases of each.

2010 Mathematics Subject Classification. Primary 11M06, 33C10; Secondary 33E30, 11N37.
The first author’s research was partially supported by NSA grant H98230-11-1-0200 and a Simons Foun-

dation Collaboration Grant.
The second author is funded in part by the grant NSF-DMS 1112656 of Professor Victor H. Moll of Tulane

University and sincerely thanks him for the support.

1



2 BRUCE C. BERNDT, ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Contents

1. Introduction 2
2. Preliminary Results 8
3. Proof of Theorem 1.1 10
4. Proof of Lemma 1.2 12
5. Coalescence 17
5.1. The Case m = 0 21
6. Connection with the Voronöı Summation Formula 23
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1. Introduction

The Dirichlet divisor problem is one of the most notoriously difficult unsolved problems in
analytic number theory. Let d(n) denote the number of divisors of n. Define the error term
∆(x), for x > 0, by ∑′

n≤x
d(n) = x log x+ (2γ − 1)x+

1

4
+ ∆(x), (1.1)

where γ denotes Euler’s constant. Here, and in the sequel, a prime ′ on the summation sign
in
∑

n≤x
′a(n) indicates that only 1

2a(x) is counted when x is an integer. The Dirichlet divisor

problem asks for the correct order of magnitude of ∆(x) as x → ∞. At this writing, the

best estimate ∆(x) = O(x131/416+ε), for each ε > 0, as x → ∞, is due to M. N. Huxley [49]

(131416 = 0.3149 . . . ). On the other hand, G. H. Hardy [45] proved that ∆(x) 6= O(x1/4), as
x → ∞, with the best result in this direction currently due to K. Soundararajan [76]. It is

conjectured that ∆(x) = O
(
x1/4+ε

)
, for each ε > 0, as x→∞.
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The conditionally convergent series

x1/4

π
√

2

∞∑
n=1

d(n)

n
3
4

cos
(

4π
√
nx− π

4

)
(1.2)

arose in G. F. Voronöı’s [82, p. 218] work on the Dirichlet divisor problem, and its impor-
tance was further emphasized by Hardy [45, equation (6.32)]. Moreover, J. L. Hafner [44]
and Soundararajan [76, equation (1.8)] in their improvements of Hardy’s Ω-theorem on the
Dirichlet divisor problem also crucially employed (1.2).

Let σs(n) =
∑

d|n d
s, and let ζ(s) denote the Riemann zeta function. For 0 < s < 1, define

∆−s(x) 1 by ∑′

n≤x
σ−s(n) = ζ(1 + s)x+

ζ(1− s)
1− s

x1−s − 1

2
ζ(s) + ∆−s(x). (1.3)

The problem of determining the correct order of magnitude of the error term ∆−s(x), as
x→∞, is known as the extended divisor problem [58]. As x→∞, it is conjectured that for

each ε > 0, ∆−s(x) = O(x1/4−s/2+ε) for 0 < s ≤ 1
2 and ∆−s(x) = O(xε) for 1

2 ≤ s < 1.
In analogy with (1.2), the series

∞∑
n=1

σk(n)

n
5
4
+ k

2

sin
(

4π
√
nx− π

4

)
, (1.4)

for |k| < 3
2 , arises in work [73, p. 282], [52] related to a conjecture of S. Chowla and H. Walum

[22], [23, pp. 1058–1063], which is another extension of the Dirichlet divisor problem. It is
conjectured that if a, r ∈ Z, a ≥ 0, r ≥ 1, and if Br(x) denotes the r-th Bernoulli polynomial,
then for every ε > 0, as x→∞,∑

n≤
√
x

naBr

({x
n

})
= O

(
xa/2+1/4+ε

)
, (1.5)

where {x} denotes the fractional part of x. The conjectured correct order of magnitude in
the Dirichlet divisor problem is equivalent to (1.5) with a = 0, r = 1.

Our last example is as famous as the Dirichlet divisor problem with which we opened this
paper. Let r2(n) denote the number of representations of n as a sum of two squares. The
equally celebrated circle problem asks for the precise order of magnitude of the error term
P (x), as x→∞, where ∑′

n≤x
r2(n) = πx+ P (x).

During the five years that Ramanujan visited Hardy at Cambridge, there is considerable
evidence, from Hardy in his papers and from Ramanujan in his lost notebook [71], that the
two frequently discussed both the circle and divisor problems. For details of Ramanujan’s
contributions to these problems, see either the first author’s book with G. E. Andrews [4,
Chapter 2] or the survey paper by the first author, S. Kim, and the last author [17].

It is possible that Ramanujan also thought of the extended divisor problem, for on page
336 in his lost notebook [71], we find the following claim.

1We use ∆−s(x) instead of ∆s(x), as is customarily used, so as to be consistent with the results in this
paper, most of which require Re s > 0.



4 BRUCE C. BERNDT, ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Let σs(n) =
∑

d|n d
s, and let ζ(s) denote the Riemann zeta function. Then

Γ

(
s+

1

2

){
ζ(1− s)

(s− 1
2)xs−

1
2

+
ζ(−s) tan 1

2πs

2xs+
1
2

+

∞∑
n=1

σs(n)

2i

(
(x− in)−s−

1
2 − (x+ in)−s−

1
2

)}
= (2π)s

{
ζ(1− s)
2
√
πx
− 2π

√
πxζ(−s) tan 1

2πs

+
√
π
∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)}

. (1.6)

In view of the identities for (1.2) and (1.4), it is possible that Ramanujan developed the
series on the right-hand side of (1.6) to study a generalized divisor problem. Unfortunately,
(1.6) is incorrect, since the series on the left-hand side, which can be written as

∞∑
n=1

σs(n) sin
((
s+ 1

2

)
tan−1

(
n
x

))
(x2 + n2)

s
2
+ 1

4

,

diverges for all real values of s since σs(n) ≥ ns. See [13] for further discussion. In this paper,
we obtain a corrected version of Ramanujan’s claim, where we start with the series on the
right-hand side, since we know that it converges.

Before stating our version, we need to define a general hypergeometric function. Define
the rising or shifted factorial (a)n by

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n ≥ 1, (a)0 = 1. (1.7)

Let p and q be non-negative integers, with q ≤ p+ 1. Then, the generalized hypergeometric
function qFp is defined by

qFp(a1, a2, . . . , aq; b1, b2, . . . , bp; z) :=

∞∑
n=0

(a1)n(a2)n · · · (aq)n
(b1)n(b2)n · · · (bp)n

zn

n!
, (1.8)

where |z| < 1, if q = p+ 1, and |z| <∞, if q < p+ 1.
We emphasize further notation. Throughout the paper, s = σ + it, with σ and t both

real. We also set Ra(f) = Ra to denote the residue of a meromorphic function f(z) at a pole
z = a.

Theorem 1.1. Let 3F2 be defined by (1.8). Fix s such that σ > 0. Let x ∈ R+. Let a be the
number defined by

a =

{
0, if s is an odd integer,

1, otherwise.
(1.9)

Then,

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)

= 4π

(
ζ(1− s)
8π2
√
x

+
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
− 2−s−3

πs+
3
2

Γ(s+ 1/2) cot
(
πs
2

)
ζ(−s)

xs+
1
2

)
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+

√
x

πs

{∑
n<x

σs(n)

ns+1

[
−
√
nΓ
(
1
4 + s

2

)
√

2xΓ
(
1
4 −

s
2

)
−
aΓ
(
s+ 1

2

)
cot
(
πs
2

)
2s+1
√
π

(n
x

)s+1
{(

1 +
in

x

)−(s+ 1
2)

+

(
1− in

x

)−(s+ 1
2)
}

+
n2−s

x sin
(
πs
2

)
Γ(1− s)3

F2

(
1
4 ,

3
4 , 1

1−s
2 , 1− s

2

;−n
2

x2

)]

+
∑
n≥x

σs(n)

ns+1

[
−
nΓ(s) cos

(
πs
2

)
2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}

−
i
√
nΓ
(
s+ 1

2

)
2s+1
√
πx

{
sin
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2
)

−
(

1− ix

n

)−(s+ 1
2
)
)

+ i cos
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2
)

+

(
1− ix

n

)−(s+ 1
2
)

− 2

)}]}
, (1.10)

where, if x is an integer, we additionally require that σ < 1
2 .

The following lemma, which is interesting in its own right, is the main ingredient of our

proof. We use the notation
∫
(c) to designate

∫ c+i∞
c−i∞ .

Lemma 1.2. Fix s such that σ > 0. Fix x ∈ R+. Let −1 < λ < 0 and let a be defined by
(1.9). Define I(s, x) by

I(s, x) :=
1

2πi

∫
(λ)

Γ(z − 1)Γ
(

1− z

2

)
Γ
(

1− z

2
+ s
)

× sin2
(πz

4

)
sin
(πz

4
− πs

2

)
(4x)−

1
2
z dz. (1.11)

Then,
(i) for x > 1,

I(s, x) = − π

22−s

[
Γ
(
1
4 + s

2

)
√

2xΓ
(
1
4 −

s
2

) +
ax−s−1 cot

(
πs
2

)
2s+1
√
π

Γ

(
s+

1

2

){(
1 +

i

x

)−(s+ 1
2)

+

(
1− i

x

)−(s+ 1
2)
}
− 1

x2s sin
(
πs
2

)
Γ(1− s)3

F2

(
1
4 ,

3
4 , 1

1−s
2 ; 1− s

2

;− 1

x2

)]
; (1.12)

(ii) for x ≤ 1,

I(s, x) = − π

22−s

[
Γ(s) cos

(
πs
2

)
2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x2
)
− 1

}

+
iΓ
(
s+ 1

2

)
2s+1
√
πx

{
sin
(π

4
+
πs

2

)(
(1 + ix)−(s+

1
2
) − (1− ix)−(s+

1
2
)
)

+ i cos
(π

4
+
πs

2

)(
(1 + ix)−(s+

1
2
) + (1− ix)−(s+

1
2
) − 2

)}]
, (1.13)

where, if x = 1, we additionally require that σ < 1
2 .
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We note in passing that each 3F2 in Theorem 1.1, as well as in Lemma 1.2, can be written,
using the duplication formula for the Gamma function (see (2.4) below), as a sum of two

2F1’s.
If we replace the ‘+’ sign in the argument of the sine function in the series on the left-hand

side of (1.10) by a ‘−’ sign, then we obtain the following theorem.

Theorem 1.3. Fix s such that σ > 0. Let x ∈ R+. Then,

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4
− 2π

√
2nx

)
= 4π

(√
x

2
ζ(−s) +

ζ
(
1
2

)
4π
√

2
ζ

(
1

2
− s
)

+
Γ
(
s+ 1

2

)
ζ(−s)

2s+3πs+
3
2xs+

1
2

)

+
Γ
(
s+ 1

2

)
2sπs+

1
2

{∑
n<x

σs(n)

ns+
1
2

[
− sin

(π
4
− πs

2

)
+

ns+
1
2

2xs+
1
2

×

((
1 +

in

x

)−(s+ 1
2)

+

(
1− in

x

)−(s+ 1
2)
)]

+
1

2

∑
n≥x

σs(n)

ns+
1
2

[
cos
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2)

+

(
1− ix

n

)−(s+ 1
2)
− 2

)

+ i sin
(π

4
+
πs

2

)((
1 +

ix

n

)−(s+ 1
2)
−
(

1− ix

n

)−(s+ 1
2)
)]}

. (1.14)

On page 332 in his lost notebook [71], Ramanujan gives an elegant reformulation of a
formula for ζ

(
1
2

)
that appears in Chapter 15 of his second notebook [70], [12, p. 314, Entry

8].
Let α and β be two positive numbers such that αβ = 4π3. If φ(n), n ≥ 1, and ψ(n), n ≥ 1,

are defined by
∞∑
j=1

xj
2

1− xj2
=

∞∑
n=1

φ(n)xn

and
∞∑
j=1

jxj
2

1− xj2
=

∞∑
n=1

ψ(n)xn, (1.15)

respectively, then2

∞∑
n=1

φ(n)e−nα =
π2

6α
+

1

4
+

√
β

π
√

2

(
1

2
√

2
ζ

(
1

2

)
+
∞∑
n=1

ψ(n)√
n
e−
√
nβ sin

(π
4
−
√
nβ
))

. (1.16)

Recall that [47, p. 340, Theorem 3.10]

∞∑
n=1

d(n)xn =
∞∑
n=1

xn

1− xn
.

2Ramanujan inadvertently omitted the term 1
4

on the right-hand side of (1.16).
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A similar elementary argument shows that

∞∑
n=1

σ(n)xn =

∞∑
n=1

nxn

1− xn
.

Hence, we see that φ(n) and ψ(n) are analogues of d(n) and σ(n), respectively. The identity
(1.16) was rediscovered by S. Wigert [84, p. 9], who actually gave a general formula for ζ

(
1
k

)
for each positive even integer k. See [4, pp. 191–193] for more details about (1.16).

We have included (1.16) here to demonstrate the similarity in the structure of the series
on its right-hand side with the series on the left-hand sides of (1.10) and (1.14). One might
therefore ask if other arithmetic functions, analogous to σs(n) in (1.10) and ψ(n) in (1.16),
produce interesting series identities like those in (1.10) and (1.16).

The special case s = 1
2 of Theorem 1.1 (see (5.15)) is very interesting, since the two sums,

one over n < x and the other over n ≥ x, coalesce into a single infinite sum. If Ks(x) denotes
the modified Bessel function or the Macdonald function [83, p. 78] of order s, and if we use
the identities [83, p. 80, equation (13)]

K1/2(z) =

√
π

2z
e−z (1.17)

and [83, p. 79, equation (8)]

K−s(z) = Ks(z), (1.18)

we see that this special case of the series on the left-hand side of (1.10) can be realized as a
special case of the series

2

∞∑
n=1

σ−s(n)n
1
2
s
(
eπis/4Ks

(
4πeπi/4

√
nx
)
− e−πis/4Ks

(
4πe−πi/4

√
nx
))

(1.19)

when s = −1
2 . If we replace the minus sign by a plus sign between the Bessel functions in

the summands of (1.19), then the resulting series is a generalization of the series

ϕ(x) := 2

∞∑
n=1

d(n)
(
K0

(
4πeiπ/4

√
nx
)

+K0

(
4πe−iπ/4

√
nx
))

, (1.20)

extensively studied by N. S. Koshliakov (also spelled N. S. Koshlyakov) [53, 54, 55, 56]. See
also [30] for properties of this series and some integral transformations involving it. The
authors of this paper feel that Koshliakov’s work has not earned the respect that it deserves
in the mathematical community. Some of his best work was achieved under extreme hardship,
as these excerpts from a paper written for the centenary of his birth clearly demonstrate [20].

The repressions of the thirties which affected scholars in Leningrad continued
even after the outbreak of the Second World War. In the winter of 1942 at the
height of the blockade of Leningrad, Koshlyakov along with a group . . . was
arrested on fabricated . . . dossiers and condemned to 10 years correctional
hard labour. After the verdict he was exiled to one of the camps in the
Urals. . . . On the grounds of complete exhaustion and complicated pellagra,
Koshlyakov was classified in the camp as an invalid and was not sent to do
any of the usual jobs. . . . very serious shortage of paper. He was forced to
carry out calculations on a piece of plywood, periodically scraping off what
he had written with a piece of glass. Nevertheless, between 1943 and 1944
Koshlyakov wrote two long memoirs . . .



8 BRUCE C. BERNDT, ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

A natural question arises – what may have motivated Ramanujan to consider the series
∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)

? (1.21)

We provide a plausible answer to this question in Section 6, demonstrating that (1.21) is
related to a generalization of the famous Voronöı summation formula and also to the gener-
alization of Koshliakov’s series (1.20) discussed above and its analogue.

This paper is organized as follows. The preliminary results are given in Section 2. The
proof of Theorem 1.1 appears in Section 3. We do not give a proof of Theorem 1.3 since
it is similar to that of Theorem 1.1. Lemma 1.2, which is crucial in the proof of Theorem
1.1, is derived in Section 4. Special cases of Theorems 1.1 and 1.3 are examined in Section
5, and connections with modified Bessel functions are made. In Section 6, we relate (1.21)
and Theorem 1.1 to Voronöı’s formula for

∑
n≤x

′d(n) and work of Hardy, Koshliakov, and
A. Oppenheim. In the following section, we examine an analogue of the Voronöı summation
formula with d(n) replaced by σs(n). The work of Ramanujan [71] and Wigert [84], evinced
in (1.16), is extended in Section 10. On page 335 in his lost notebook [71], Ramanujan
stated two beautiful identities connected, respectively, with the circle and divisor problems.
We extend these identities in Sections 11–13. The linear combination of Bessel functions
appearing in our representation for

∑
n≤x σ−s(n) was remarkably shown by Koshliakov [57]

to be the kernel of an integral transform for which the modified Bessel function Kν(x) is
self-reciprocal. We study these transforms in Section 15.

2. Preliminary Results

We recall below the functional equation, the reflection formula (along with a variant), and
Legendre’s duplication formula for the Gamma function Γ(s). To that end,

Γ(s+ 1) = sΓ(s), (2.1)

Γ(s)Γ(1− s) =
π

sin(πs)
, (2.2)

Γ

(
1

2
+ s

)
Γ

(
1

2
− s
)

=
π

cos(πs)
, (2.3)

Γ(s)Γ

(
s+

1

2

)
=

√
π

22s−1
Γ(2s). (2.4)

Throughout the paper, we shall need Stirling’s formula for the Gamma function in a vertical
strip [26, p. 224]. Thus, for σ1 ≤ σ ≤ σ2, as |t| → ∞,

|Γ(s)| =
√

2π|t|σ−1/2e−π|t|/2
(

1 +O

(
1

|t|

))
. (2.5)

The functional equation of the Riemann zeta function ζ(s) in its asymmetric form is given
by [79, p. 24]

ζ(1− s) = 21−sπ−s cos
(
1
2πs
)

Γ(s)ζ(s), (2.6)

whereas its symmetric form takes the shape

π−s/2Γ
(
1
2s
)
ζ(s) = π−(1−s)/2Γ

(
1
2(1− s)

)
ζ(1− s). (2.7)

Since ζ(s) has a simple pole at s = 1 with residue 1, i.e.,

lim
s→1

(s− 1)ζ(s) = 1, (2.8)



NEW PATHWAYS AND CONNECTIONS IN NUMBER THEORY AND ANALYSIS 9

from (2.6) and (2.8), we find the value [79, p. 19]

ζ(0) = −1
2 .

The Riemann ξ-function ξ(s) is defined by

ξ(s) := 1
2s(s− 1)π−s/2Γ

(
1
2s
)
ζ(s), (2.9)

where Γ(s) and ζ(s) are the Gamma and the Riemann zeta functions respectively. The
Riemann Ξ-function is defined by

Ξ(t) := ξ
(
1
2 + it

)
. (2.10)

For 0 < c = Re w < σ [41, p. 908, formula 8.380.3; p. 909, formula 8.384.1],

1

2πi

∫
(c)

Γ(w)Γ(s− w)

Γ(s)
x−w dw =

1

(1 + x)s
. (2.11)

We note Parseval’s identity [68, pp. 82–83]∫ ∞
0

f(x)g(x) dx =
1

2πi

∫ c+i∞

c−i∞
F(1− w)G(w) dw, (2.12)

where F and G are Mellin transforms of f and g, and which is valid for Re w = c lying in
the common strip of analyticity of F(1 − w) and G(w). A variant of the above identity [68,
p. 83, equation (3.1.13)] is

1

2πi

∫
(k)

F(w)G(w)t−w dw =

∫ ∞
0

f(x)g

(
t

x

)
dx

x
. (2.13)

We close this section by recalling facts about Bessel functions. The ordinary Bessel function
Jν(z) of order ν is defined by [83, p. 40]

Jν(z) =

∞∑
m=0

(−1)m(z/2)2m+ν

m!Γ(m+ 1 + ν)
, |z| <∞. (2.14)

As customary, Yν(z) denotes the Bessel function of order ν of the second kind. Its relation
to Jν(z) is given in the identity [83, p. 64]

Yν(z) =
Jν(z) cos(πν)− J−ν(z)

sinπν
. (2.15)

and, as above, Kν(z) denotes the modified Bessel function of order ν. The asymptotic
formulas of the Bessel functions Jν(z), Yν(z), and Kν(z), as |z| → ∞, are given by [83, p. 199
and p. 202]

Jν(z) ∼
(

2

πz

)1
2
(

cosw
∞∑
n=0

(−1)n(ν, 2n)

(2z)2n
− sinw

∞∑
n=0

(−1)n(ν, 2n+ 1)

(2z)2n+1

)
, (2.16)

Yν(z) ∼
(

2

πz

)1
2
(

sinw
∞∑
n=0

(−1)n(ν, 2n)

(2z)2n
+ cosw

∞∑
n=0

(−1)n(ν, 2n+ 1)

(2z)2n+1

)
, (2.17)

Kν(z) ∼
( π

2z

)1
2
e−z

∞∑
n=0

(ν, n)

(2z)n
, (2.18)

for | arg z| < π. Here w = z − 1
2πν −

1
4π and

(ν, n) =
Γ(ν + n+ 1/2)

Γ(n+ 1)Γ(ν − n+ 1/2)
.
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3. Proof of Theorem 1.1

Let

S(s, x) :=

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)
. (3.1)

From [64, p. 45, equations (5.19), (5.20)], we have

1

2πi

∫
(c)

Γ(z)

(a2 + b2)z/2
sin
(
z tan−1

(a
b

))
x−z dz = e−bx sin(ax), (3.2)

1

2πi

∫
(c)

Γ(z)

(a2 + b2)z/2
cos
(
z tan−1

(a
b

))
x−z dz = e−bx cos(ax), (3.3)

where a, b > 0, and Re z > 0 for (3.2) and Re z > −1 for (3.3). Let a = b = 2π
√

2n, replace
x by

√
x, add (3.2) and (3.3), and then simplify, so that for c = Re z > 0,

1

2πi

∫
(c)

Γ(z)

(16π2n)z/2
sin

(
π(z + 1)

4

)
x−z/2 dz = e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)
. (3.4)

Now replace z by z − 1 in (3.4), so that for c = Re z > 1,

1

2πi

∫
(c)

Γ(z − 1)

(4π)z−1nz/2
sin
(πz

4

)
x(1−z)/2 dz =

e−2π
√
2nx

√
n

sin
(π

4
+ 2π

√
2nx

)
. (3.5)

Now substitute (3.5) in (3.1) and interchange the order of summation and integration to
obtain

S(s, x) =
2

i

∫
(c)

( ∞∑
n=1

σs(n)

nz/2

)
Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2 dz. (3.6)

It is well-known [79, p. 8, equation (1.3.1)] that for Re ν > 1 and Re ν > 1+ Re µ,

ζ(ν)ζ(ν − µ) =
∞∑
n=1

σµ(n)

nν
. (3.7)

Invoking (3.7) in (3.6), we see that

S(s, x) =
2

i

∫
(c)

Ω(z, s, x) dz, (3.8)

where c > 2σ + 2 (since σ > 0) and

Ω(z, s, x) := ζ
(z

2

)
ζ
(z

2
− s
) Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2. (3.9)

We want to shift the line of integration from Re z = c to Re z = λ, where −1 < λ < 0.
Note that the integrand in (3.8) has poles at z = 1, 2, and 2s + 2. Consider the positively
oriented rectangular contour formed by [c− iT, c+ iT ], [c+ iT, λ+ iT ], [λ+ iT, λ− iT ], and
[λ− iT, c− iT ], where T is any positive real number. By Cauchy’s residue theorem,

1

2πi

{∫ c+iT

c−iT
+

∫ λ+iT

c+iT
+

∫ λ−iT

λ+iT
+

∫ c−iT

λ−iT

}
Ω(z, s, x) dz

= R1(Ω) +R2(Ω) +R2s+2(Ω), (3.10)
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where we recall that Ra(f) denotes the residue of a function f at the pole z = a. The residues
are now calculated. First,

R2s+2(Ω) = lim
z→2s+2

(z − 2s− 2)ζ
(z

2
− s
)
ζ
(z

2

) Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2

= 2ζ(s+ 1)
Γ(2s+ 1)

(4π)2s+2
sin

(
π(2s+ 2)

4

)
x−s−

1
2

= −2−s−3

πs+
3
2

Γ(s+ 1
2) cot

(
1
2πs
)
ζ(−s)

xs+
1
2

, (3.11)

where in the first step we used (2.8), and in the last step we employed (2.4) and (2.6) with s
replaced by s+ 1. Second and third,

R1(Ω) = lim
z→1

(z − 1)
Γ(z − 1)

(4π)z
ζ
(z

2

)
ζ
(z

2
− s
)

sin
(πz

4

)
x(1−z)/2

=
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
, (3.12)

R2(Ω) = lim
z→2

(z − 2)ζ
(z

2

)
ζ
(z

2
− s
) Γ(z − 1)

(4π)z
sin
(πz

4

)
x(1−z)/2

=
ζ(1− s)
8π2
√
x
, (3.13)

where, in (3.12) we utilized (2.1), and in (3.13) we used (2.8). Next, we show that as T →∞,
the integrals along the horizontal segments [c+ iT, λ+ iT ] and [λ− iT, c− iT ] tend to zero.
To that end, note that if s = σ + it, for σ ≥ −δ [79, p. 95, equation (5.1.1)],

ζ(s) = O(t
3
2+δ). (3.14)

Also, as |t| → ∞, ∣∣∣sin(πs
4

)∣∣∣ =

∣∣∣∣∣e
1
4
iπs − e−

1
4
iπs

2i

∣∣∣∣∣ = O
(
e

1
4
π|t|
)
. (3.15)

Thus from (3.14), (2.5), and (3.15), we see that the integrals along the horizontal segments
tend to zero as T →∞. Along with (3.10), this implies that∫

(c)
Ω(z, s, x) dz =

∫
(λ)

Ω(z, s, x) dz (3.16)

+ 2πi

(
ζ(1− s)
8π2
√
x

+
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
− 2−s−3

πs+
3
2

Γ(s+ 1/2) cot
(
πs
2

)
ζ(−s)

xs+
1
2

)
.

We now evaluate the integral along the vertical line Re z = λ. Using (2.6) twice, we have∫
(λ)

Ω(z, s, x) dz =

∫
(λ)

2z−sπz−s−2ζ
(

1− z

2

)
ζ
(

1− z

2
+ s
)

Γ
(

1− z

2

)
× Γ

(
1− z

2
+ s
) Γ(z − 1)

(4π)z
sin2

(πz
4

)
sin
(πz

4
− πs

2

)
x(1−z)/2 dz

=

√
x

2sπs+2

∞∑
n=1

σs(n)

ns+1

∫
(λ)

Γ(z − 1)Γ
(

1− z

2

)
Γ
(

1− z

2
+ s
)
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× sin2
(πz

4

)
sin
(πz

4
− πs

2

)(4x

n

)−z/2
dz

=
i
√
x

2s−1πs+1

∞∑
n=1

σs(n)

ns+1
I
(
s,
x

n

)
, (3.17)

where in the penultimate step we used (3.7), since λ < 0, and used the notation for I(s, x)
in the lemma. From (3.8), (3.16), and (3.17), we deduce that

S(s, x) =

√
x

2s−2πs+1

∞∑
n=1

σs(n)

ns+1
I
(
s,
x

n

)
+ 4π

(
ζ(1− s)
8π2
√
x

+
1

4
√

2π
ζ

(
1

2

)
ζ

(
1

2
− s
)
− 2−s−3

πs+
3
2

Γ(s+ 1/2) cot
(
1
2πs
)
ζ(−s)

xs+
1
2

)
.

The final result follows by substituting the expressions for I
(
s, xn

)
from the lemma, accord-

ingly as n < x or n ≥ x. This completes the proof.

4. Proof of Lemma 1.2

Multiplying and dividing the integrand in (1.11) by Γ
(
1
2(3− z)

)
and then applying (2.4)

and (2.2), we see that

I(s, x) = − π
3
2

4πi

∫
(λ)

sin2
(
1
4πz

)
sin
(
1
4πz −

1
2πs
)

sinπz

Γ
(
1− 1

2z + s
)

Γ
(
1− 1

2z + 1
2

)x− 1
2
z dz. (4.1)

We now apply (2.2), (2.3), and (2.4) repeatedly to simplify the integrand in (4.1). This gives

I(s, x) =
1

2πi

−π
22−s

∫
(λ)
F (z, s, x) dz, (4.2)

where

F (z, s, x) :=
tan

(
1
4πz

)
2z/2(1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2(1 + z)

)
Γ
(
1
4z −

1
2s
) x−z/2. (4.3)

The poles of F (z, s, x) are at z = 1, at z = 2(2k+1+s), k ∈ N∪{0}, at z = 2(2m+1),m ∈ Z,
and at z = −(2j + 1), j ∈ N ∪ {0}.

Case (i): When x > 1, we would like to move the vertical line of integration to +∞. To
that end, let X > λ be such that the line (X − i∞, X + i∞) does not pass through any poles
of F (z). Consider the positively oriented rectangular contour formed by [λ−iT,X−iT ], [X−
iT,X + iT ], [X + iT, λ+ iT ], and [λ+ iT, λ− iT ], where T is any positive real number. Then
by Cauchy’s residue theorem,

1

2πi

{∫ X−iT

λ−iT
+

∫ X+iT

X−iT
+

∫ λ+iT

X+iT
+

∫ λ−iT

λ+iT

}
F (z, s, x) dz

= R1(F ) +
∑

0≤k< 1
2( 1

2
X−1−Re s)

R2(2k+1+s)(F ) +
∑

0≤m< 1
2( 1

2
X−1)

R2(2m+1)(F ).

We now calculate the residues. First,

R1(F ) = lim
z→1

(z − 1)
tan

(
1
4πz

)
2
z
2 (1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2(1 + z)

)
Γ
(
1
4z −

1
2s
) x−

1
2
z
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= − 1√
2x

Γ
(
1
4 + 1

2s
)

Γ
(
1
4 −

1
2s
) . (4.4)

Second,

R2(2k+1+s)(F )

= lim
z→2(2k+1+s)

{z − 2(2k + 1 + s)}
tan

(
1
4πz

)
2
z
2 (1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2(1 + z)

)
Γ
(
1
4z −

1
2s
) x−

1
2
z

=
4(−1)k+1 cot

(
1
2πs
)

k!22k+2+s

Γ
(
1
2 + 2k + s

)
Γ
(
1
2(2k + 1)

) x−(2k+1+s)

=
(−1)k+1 cot

(
1
2πs
)

(2k)!2s
√
π

Γ

(
s+

1

2

)(
s+

1

2

)
2k

x−(2k+1+s), (4.5)

where in the second calculation, we used the fact limz→−n(z + n)Γ(z) = (−1)n/n!, followed
by (2.1) and (2.4). Here (y)n denotes the rising factorial defined in (1.7). Note that we do
not have a pole at 2(2k + 1 + s) when s is an odd integer. Also,

R2(2m+1)(F )

= lim
z→2(2m+1)

{z − 2(2m+ 1)}
tan

(
1
4πz

)
2z/2(1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2(1 + z)

)
Γ
(
1
4z −

1
2s
) x−z/2

=
1

π22m
Γ
(
1
2s−m

)
Γ
(
2m+ 1

2

)
Γ
(
m− 1

2s+ 1
2

) x−(2m+1)

=
(−1)m

2s sin
(
1
2πs
)

Γ(1− s)

(
1
2

)
2m

(1− s)2m
x−(2m+1), (4.6)

where we used (2.2) and (2.4). As in the proof of Theorem 1.1, using Stirling’s formula (2.5),
we see that the integrals along the horizontal segments tend to zero as T →∞. Thus,

1

2πi

∫
(X)

F (z, s, x) dz =
1

2πi

∫
(λ)
F (z, s, x) dz (4.7)

+R1(F ) + a
∑

0≤k≤ 1
2( 1

2
X−1−Re s)

R2(2k+1+s)(F ) +
∑

0≤m< 1
2( 1

2
X−1)

R2(2m+1)(F ),

where a is defined in (1.9). From (4.3), we see that

F (z + 4, s, x) = −
F (z, s, x)(z − 1)

(
1
2(z + 1)

) (
1
2(z + 3)

)
4x2(z + 3)

(
1
4z −

1
2(s− 1)

) (
1
4z −

1
2s
) , (4.8)

so that

|F (z + 4, s, x)| = |F (z, s, x)|
x2

(
1 +Os

(
1

|z|

))
. (4.9)

Applying (4.8) and (4.9) repeatedly, we find that

|F (z + 4`, s, x)| = |F (z, s, x)|
x2`

(
1 +Os

(
1

|z|

))`
,

for any positive integer ` and Re z > 0. Therefore,∣∣∣∣∣
∫
(X+4`)

F (z, s, x) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
(X)

F (z, s, x)

x2`

(
1 +Os

(
1

|z|

))`
dz

∣∣∣∣∣
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=
1

|x|2`

(
1 +Os

(
1

|X|

))` ∣∣∣∣∣
∫
(X)

F (z, s, x) dz

∣∣∣∣∣ . (4.10)

Since x > 1, we can choose X large enough so that

|x| >

√
1 +Os

(
1

|X|

)
.

With this choice of X and the fact that
∣∣∣∫(X) F (z, s, x) dz

∣∣∣ is finite, if we let ` → ∞, then,

from (4.10), we find that

lim
`→∞

∫ X+4`+i∞

X+4`−i∞
F (z, s, x) dz = 0. (4.11)

Hence, if we shift the vertical line (X) through the sequence of vertical lines {(X + 4`)}∞`=1,
then, from (4.7) and (4.11), we arrive at

1

2πi

∫
(λ)
F (z, s, x) dz = −R1(F )− a

∞∑
k=0

R2(2k+1+s)(F )−
∞∑
m=0

R2(2m+1)(F ). (4.12)

Since x > 1, from (4.5) and the binomial theorem, we deduce that

a

∞∑
k=0

R2(2k+1+s)(F ) = −a
x−s−1 cot

(
1
2πs
)

2s
√
π

Γ

(
s+

1

2

) ∞∑
k=0

(
s+ 1

2

)
2k

(2k)!

(
i

x

)2k

(4.13)

= −a
x−s−1 cot

(
1
2πs
)

2s+1
√
π

Γ

(
s+

1

2

){(
1 +

i

x

)−(s+ 1
2)

+

(
1− i

x

)−(s+ 1
2)
}
.

From (4.6),

∞∑
m=0

R2(2m+1)(F ) =
1

x2s sin
(
1
2πs
)

Γ(1− s)

∞∑
m=0

(
1
2

)
2m

(1− s)2m

(
i

x

)2m

=
1

x2s sin
(
1
2πs
)

Γ(1− s)3
F2

(
1
4 ,

3
4 , 1

1
2(1− s), 1− 1

2s
;− 1

x2

)
. (4.14)

Therefore from (4.4), (4.12), (4.13), and (4.14) we deduce that

1

2πi

∫
(λ)
F (z, s, x) dz

= a
x−s−1 cot

(
1
2πs
)

2s+1
√
πx

Γ

(
s+

1

2

){(
1 +

i

x

)−(s+ 1
2)

+

(
1− i

x

)−(s+ 1
2)
}

− 1

x2s sin
(
1
2πs
)

Γ(1− s)3
F2

(
1
4 ,

3
4 , 1

1
2(1− s), 1− 1

2s
;− 1

x2

)
+

1√
2x

Γ
(
1
4 + 1

2s
)

Γ
(
1
4 −

1
2s
) .

Using (4.2), we complete the proof of (1.12).

Case (ii): Now consider x ≤ 1. We would like to shift the line of integration all the
way to −∞. Let X < λ be such that the line [X − i∞, X + i∞] again does not pass
through any pole of F (z). Consider a positively oriented rectangular contour formed by
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[λ − iT, λ + iT ], [λ + iT,X + iT ], [X + iT,X − iT ], and [X − iT, λ − iT ], where T is any
positive real number. Again, by Cauchy’s residue theorem,

1

2πi

[∫ λ+iT

λ−iT
+

∫ X+iT

λ+iT
+

∫ X−iT

X+iT
+

∫ λ−iT

X−iT

]
F (z, s, x) dz

=
∑

0≤k< 1
2(− 1

2
X−1)

R−2(2k+1)(F ) +
∑

0≤j< 1
2
(−X−1)

R−(2j+1)(F ).

The residues in this case are calculated below. First,

R−2(2k+1)(F )

= lim
z→−2(2k+1)

{
(z + 2(2k + 1)) tan

(πz
4

)} 1

2z/2
(1− z)

×
Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2(1 + z)

)
Γ
(
1
4z −

1
2s
) x−

1
2
z

=
(−1)k+1

√
π2s sin

(
1
2πs
) Γ

(
1
2 − 2(k + 1)

)
Γ (1− 2(k + 1)− s)

x(2k+1)

=
(−1)k+1

√
π2s sin

(
1
2πs
) Γ

(
1
2 + 2(k + 1)

)
Γ
(
1
2 − 2(k + 1)

)
Γ (2(k + 1) + s) Γ (1− 2(k + 1)− s)

x(2k+1) Γ (2(k + 1) + s)

Γ
(
1
2 + 2(k + 1)

)
=

(−1)k+1 cos
(
1
2πs
)

Γ(s)

2s−1πx

(s)2(k+1)(
1
2

)
2(k+1)

x2(k+1), (4.15)

where in the last step we used (2.2) and (2.3). Second,

R−(2j+1)(F )

= lim
z→−(2j+1)

(z + (2j + 1))
tan

(
1
4πz

)
2z/2(1− z)

Γ
(
1
2 −

1
4z + 1

2s
)

Γ
(
1
2(1 + z)

)
Γ
(
1
4z −

1
2s
) x−z/2

= − 2j+
1
2

(j + 1)!

Γ
(
5
4 + 1

2j + 1
2s
)

Γ
(
−1

4 −
1
2j −

1
2s
)xj+ 1

2

=
1√

π2s(j + 1)!
Γ

(
s+

3

2

)(
s+

3

2

)
j

sin

(
π

(
j

2
+

1

4
+
s

2

))
xj+

1
2 , (4.16)

where we multiplied the numerator and denominator by Γ
(
3
4 + 1

2j + 1
2s
)

in the last step and
then used (2.2) and (2.4). Thus, by (4.15) and (4.16),

1

2πi

∫
(λ)
F (z, s, x) dz =

1

2πi

∫
(X)

F (z, s, x) dz

+
∑

0≤k≤ 1
2(− 1

2
X−1)

R−2(2k+1)(F ) +
∑

0≤k≤ 1
2
(−X−1)

R−(2k+1)(F ). (4.17)

From (4.8),

|F (z − 4, s, x)| = |x|2
(

1 +Os

(
1

|z|

))
|F (z, s, x)| ,

and hence

|F (z − 4`, s, x)| = |x|2`
(

1 +Os

(
1

|z|

))`
|F (z, s, x)| , (4.18)
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for any positive integer ` and Re z < 0. Therefore, from (4.18),∣∣∣∣∣
∫
(X−4k)

F (z, s, x) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
(X)

F (z, s, x)x2`
(

1 +Os

(
1

|z|

))`
dz

∣∣∣∣∣
= |x|2`

(
1 +Os

(
1

|X|

))` ∣∣∣∣∣
∫
(X)

F (z, s, x) dz

∣∣∣∣∣ .
Since x < 1, we can find an X < λ, with |X| sufficiently large, so that

x2
(

1 +Os

(
1

|X|

))
< 1. (4.19)

With the given choice of X and the fact that
∣∣∣∫(X) F (z, s, x) dz

∣∣∣ is finite, upon letting `→∞
and using (4.19), we find that

lim
`→∞

∫ X−4`+i∞

X−4`−i∞
F (z, s, x) dz = 0. (4.20)

Thus if we shift the line of integration (X) to −∞ through the sequence of vertical lines
{(X − 4k)}∞k=1, from (4.17) and (4.20), we arrive at

1

2πi

∫
(λ)
F (z, s, x) dz =

∞∑
k=0

R−2(2k+1)(F ) +
∞∑
j=0

R−(2j+1)(F ). (4.21)

Since x ≤ 1, using (4.15), we find that

∞∑
k=0

R−2(2k+1)(F ) =
Γ(s) cos

(
1
2πs
)

2s−1πx

∞∑
k=0

(s)2(k+1)

(1/2)2(k+1)

(ix)2(k+1)

=
Γ(s) cos

(
1
2πs
)

2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x2
)
− 1

}
, (4.22)

where for x = 1, we additionally require that σ < 1
2 in order to ensure the conditional

convergence of the 3F2 [3, p. 62].
From (4.16),

∞∑
j=0

R−(2j+1)(F ) =
Γ
(
s+ 3

2

)
2s
√
π

∞∑
j=0

sin

(
π

(
j

2
+

1

4
+
s

2

)) (s+ 3
2

)
j

(j + 1)!
x(j+

1
2
) (4.23)

=
Γ
(
s+ 3

2

)
2s
√
π

√x sin

(
π

(
1

4
+
s

2

)) ∞∑
j=0

(
s+ 3

2

)
2j

(2j + 1)!
(ix)2j

+ x3/2 cos

(
π

(
1

4
+
s

2

)) ∞∑
j=0

(
s+ 3

2

)
2j+1

(2j + 2)!
(ix)2j


=
iΓ
(
s+ 1

2

)
2s+1
√
πx

[
sin
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2
) − (1− ix)−(s+

1
2
)
}

+ i cos
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2
) + (1− ix)−(s+

1
2
) − 2

}]
,
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where in the last step we used the identities
∞∑
j=0

(a)2jx
2j

(2j + 1)!
=

(1 + x)1−a − (1− x)1−a

2x(1− a)
,

∞∑
j=0

(a)2j+1x
2j+1

(2j + 2)!
=
−
(
(1 + x)1−a + (1− x)1−a − 2

)
2x(1− a)

,

valid for |x| < 1. Combining (4.21), (4.22), and (4.23), we deduce that

1

2πi

∫
(λ)
F (z, s, x) dz =

cos
(
πs
2

)
Γ(s)

2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x2
)
− 1

}

+
iΓ
(
s+ 1

2

)
2s+1
√
πx

[
sin
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2
) − (1− ix)−(s+

1
2
)
}

+ i cos
(π

4
+
πs

2

){
(1 + ix)−(s+

1
2
) + (1− ix)−(s+

1
2
) − 2

}]
.

Using (4.2), we see that this proves (1.13). This completes the proof of Lemma 1.2.
If x is an integer in Theorem 1.1, then the term corresponding to it on the right-hand side

of (1.10) can be included either in the first (finite) sum or in the second (infinite) sum. This
follows from the fact that the integral I(s, x) in the lemma above is continuous at x = 1.
Though elementary, we warn readers that it is fairly tedious to verify this by showing that
the right-hand sides of (1.12) and (1.13) are equal when x = 1, and requires the following
transformation between 3F2 hypergeometric functions, which is actually the special case q = 2
of a general connection formula between pFq’s [66, p. 410, formula 16.8.8].

Theorem 4.1. For a1 − a2, a1 − a3, a2 − a3 /∈ Z, and z /∈ (0, 1),

3F2(a1, a2, a3; b1, b2; z) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

(
Γ(a1)Γ(a2 − a1)Γ(a3 − a1)

Γ(b1 − a1)Γ(b2 − a1)
(−z)−a1

× 3F2

(
a1, a1 − b1 + 1, a1 − b2 + 1; a1 − a2 + 1, a1 − a3 + 1;

1

z

)
+

Γ(a2)Γ(a1 − a2)Γ(a3 − a2)
Γ(b1 − a2)Γ(b2 − a2)

(−z)−a2

× 3F2

(
a2, a2 − b1 + 1, a2 − b2 + 1;−a1 + a2 + 1, a2 − a3 + 1;

1

z

)
+

Γ(a3)Γ(a1 − a3)Γ(a2 − a3)
Γ(b1 − a3)Γ(b2 − a3)

(−z)−a3

× 3F2

(
a3, a3 − b1 + 1, a3 − b2 + 1;−a1 + a3 + 1,−a2 + a3 + 1;

1

z

))
. (4.24)

5. Coalescence

In the proofs of Theorems 1.1 and 1.3 using contour integration, the convergence of the
series of residues of the corresponding functions necessitates the consideration of two sums
– one over n < x and the other over n ≥ x. However, for some special values of s, namely
s = 2m+ 1

2 , where m is a non-negative integer, the two sums over n < x and n ≥ x coalesce
into a single infinite sum. This section contains corollaries of these theorems when s takes
these special values.
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Theorem 5.1. Let x /∈ Z. Then, for any non-negative integer m,

∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)

=
ζ
(
1
2 − 2m

)
2π
√
x

−
(2m)!ζ

(
−1

2 − 2m
)

√
2(2πx)2m+1

+
1√
2
ζ

(
1

2

)
ζ(−2m)

+

√
x

π2m+ 1
2

∞∑
n=1

σ2m+ 1
2
(n)

n2m+ 3
2

[
− (2m)!√

π

( n
2x

)2m+ 3
2

×

{(
1 +

in

x

)−(2m+1)

+

(
1− in

x

)−(2m+1)
}

+
(−1)mn

22mπx
Γ

(
2m+

1

2

)
3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)]
. (5.1)

Proof. Let s = 2m + 1
2 , m ≥ 0, in Theorem 1.1. To examine the summands in the sum

over n < x, observe first that 1/Γ
(
1
4 −

1
2s
)

= 0. Since a = 1, the second expression in the
summands is given by

−
σ2m+ 1

2
(n)

n2m+ 3
2

aΓ
(
s+ 1

2

)
cot
(
πs
2

)
2s+1
√
π

(n
x

)s+1
{(

1 +
in

x

)−(s+ 1
2)

+

(
1− in

x

)−(s+ 1
2)
}

= −
σ2m+ 1

2
(n)

n2m+ 3
2

(2m)!√
π

( n
2x

)2m+ 3
2

(
1− in

x

)2m+1
+
(
1 + in

x

)2m+1

(1 + n2/x2)2m+1

= −
σ2m+ 1

2
(n)

n2m+ 3
2

(2m)!√
π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
k=0

(−1)k
(

2m+ 1

2k

)(n
x

)2k
. (5.2)

The third expressions in the summands become

σ2m+ 1
2
(n)

n2m+ 3
2

n2−s

x sin
(
1
2πs
)

Γ(1− s)3
F2

(
1
4 ,

3
4 , 1

1−s
2 , 1− s

2

;−n
2

x2

)

=
σ2m+ 1

2
(n)

n2m+ 3
2

(−1)mn2−2m

xΓ
(
1
2 − 2m

) 3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
. (5.3)

Hence, by (5.2) and (5.3), the summands over n < x are given by

σ2m+ 1
2
(n)

n2m+ 3
2

{
− (2m)!√

π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
k=0

(−1)k
(

2m+ 1

2k

)(n
x

)2k
+

(−1)mn2−2m

xΓ
(
1
2 − 2m

) 3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)}
. (5.4)

For the summands over n > x, observe that the third expression is equal to zero, since
cos
(
1
4π + 1

2π
(
2m+ 1

2

))
= 0. The first expression becomes

−
σ2m+ 1

2
(n)

n2m+ 3
2

nΓ(s) cos
(
1
2πs
)

2s−1πx

{
3F2

(
s
2 ,

1+s
2 , 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
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=
σ2m+ 1

2
(n)

n2m+ 3
2

(−1)m+1n2−2m

xΓ
(
1
2 − 2m

) {
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
, (5.5)

where we used (2.3) with s = 2m. The second expressions of the summands become

σ2m+ 1
2
(n)

n2m+ 3
2

i(−1)m+1√n(2m)!

22m+ 3
2
√
πx

(1− ix/n)2m+1 − (1 + ix/n)2m+1

(1 + x2/n2)2m+1 . (5.6)

Note that(
1− ix

n

)2m+1

−
(

1 +
ix

n

)2m+1

= −
2m+1∑
k=0

(
2m+ 1

k

)(
ix

n

)k (
1 + (−1)2m+1−k

)
.

These summands are non-zero only when k is odd, and so if we let 2j = 2m+ 1− k, we see
that(

1− ix

n

)2m+1

−
(

1 +
ix

n

)2m+1

= 2i(−1)m+1
(x
n

)2m+1
m∑
j=0

(−1)j
(

2m+ 1

2j

)(n
x

)2j
.

Thus, after simplification, the second expressions (5.6) equal

−
σ2m+ 1

2
(n)

n2m+ 3
2

(2m)!√
π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
j=0

(−1)j
(

2m+ 1

2j

)(n
x

)2j
. (5.7)

Thus, by (5.5) and (5.7), the summands over n > x equal

σ2m+ 1
2
(n)

n2m+ 3
2

[
− (2m)!√

π

n2m+ 3
2x2m+ 1

2

22m+ 1
2 (x2 + n2)2m+1

m∑
j=0

(−1)j
(

2m+ 1

2j

)(n
x

)2j
+

(−1)m+1n2−2m

xΓ
(
1
2 − 2m

) {
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}]
. (5.8)

From (5.4) and (5.8), it is clear that we want to prove that

3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
+ 3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
= 1, (5.9)

for x > 0 and n ∈ N. To that end, use (4.24) with a1 = 1
4 , a2 = 3

4 , a3 = 1, b1 = 1
4 −m, b2 =

3
4 −m, and z = −n2/x2. This gives, for all x, n > 0,

3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
=

(4m+ 3)(4m+ 1)x2

3n2
3F2

(
7
4 +m, 54 +m, 1

7
4 ,

5
4

;−x
2

n2

)
. (5.10)

Now for n > x, we can use the series representation (1.8) for 3F2 on the right-hand side to
obtain

3F2

(
7
4 +m, 54 +m, 1

7
4 ,

5
4

;−x
2

n2

)
= 1 +

∞∑
k=1

(
7
4 +m

)
k

(
5
4 +m

)
k

(1)k(
7
4

)
k

(
5
4

)
k
k!

(
−x

2

n2

)k
= 1− 3n2

(4m+ 3)(4m+ 1)x2

∞∑
k=1

(
3
4 +m

)
k+1

(
1
4 +m

)
k+1

(1)k+1(
3
4

)
k+1

(
1
4

)
k+1

(k + 1)!

(
−x

2

n2

)k+1

=
−3n2

(4m+ 3)(4m+ 1)x2

{
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
. (5.11)
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Combining (5.10) and (5.11), we obtain (5.9) for n > x.
Now set a1 = 1

4 + m, a2 = 3
4 + m, a3 = 1, b1 = 1

4 , b2 = 3
4 , and z = −x2/n2 in (4.24) and

use, for n < x, the series representation for the 3F2 on the right-hand side of the resulting
identity to arrive at (5.9) for n < x. This shows that (5.9) holds for all x > 0 and n ∈ N.

Hence, the summands in the sums over n < x and n > x in Theorem 1.1 are the same
when s = 2m+ 1

2 . Now slightly rewrite (5.4) to finish the proof of Theorem 5.1. �

Similarly, when s = 2m+ 1
2 in Theorem 1.3, we obtain the following.

Theorem 5.2. For any non-negative integer m,
∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx sin

(π
4
− 2π

√
2nx

)
=

(
2π
√
x+

(2m)!√
2(2πx)2m+1

)
ζ

(
−1

2
− 2m

)
+

1√
2
ζ

(
1

2

)
ζ(−2m)

+

√
π(2m)!

(2π)2m+ 3
2

∞∑
n=1

σ2m+ 1
2
(n)
{

(x− in)−(2m+1) + (x+ in)−(2m+1)
}
. (5.12)

Notice the resemblance of the series on the right-hand side of (5.12) with the divergent
series in Ramanujan’s incorrect “identity” (1.6). Since the series on the right side above
has a + sign between the two binomial expressions in the summands, the order of n in the
summand is at least −3

2 + ε, for each ε > 0, unlike −1
2 + ε in Ramanujan’s series, because of

which the latter is divergent.
When m ≥ 1, we can omit the term 1√

2
ζ
(
1
2

)
ζ(−2m) from both (5.1) and (5.12) since

ζ(−2m) = 0.
In Theorem 5.1, we assume x /∈ Z, whereas there is no such restriction in Theorem 5.2,

because Theorems 1.1 and 5.1 involve 3F2’s that are conditionally convergent, with the re-
striction σ < 1

2 when x is an integer. Thus, the condition σ ≥ 1
2 implies that x /∈ Z, which is

the case when s = 2m+ 1
2 for m ≥ 0. However, 3F2’s do not appear in Theorem 1.3, and so

the restriction on x (other than the requirement x > 0) is not needed.
Adding (5.1) and (5.12) and simplifying gives the next theorem.

Theorem 5.3. For x /∈ Z,
∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx cos

(
2π
√

2nx
)

=
1

2π
√

2x
ζ

(
1

2
− 2m

)
+ π
√

2xζ

(
−1

2
− 2m

)
+ ζ

(
1

2

)
ζ(−2m)

+
(−1)m

π
√
x(2π)2m+ 1

2

Γ

(
2m+

1

2

) ∞∑
n=1

σ2m+ 1
2
(n)

n2m+ 1
2

3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)
. (5.13)

Subtracting (5.1) from (5.12) and simplifying leads to the next result.

Theorem 5.4. For x /∈ Z,
∞∑
n=1

σ2m+ 1
2
(n)

√
n

e−2π
√
2nx sin

(
2π
√

2nx
)

=
ζ
(
1
2 − 2m

)
2π
√

2x
−
√

2

(
π
√
x+

(2m)!√
2(2πx)2m+1

)
ζ

(
−1

2
− 2m

)
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+

√
x

√
2π2m+ 1

2

∞∑
n=1

σ2m+ 1
2
(n)

n2m+ 3
2

[
− 2

(2m)!√
π

( n
2x

)2m+ 3
2

×

{(
1 +

in

x

)−(2m+1)

+

(
1− in

x

)−(2m+1)
}

+
(−1)mn

22mπx
Γ

(
2m+

1

2

)
3F2

(
1
4 ,

3
4 , 1

1
4 −m,

3
4 −m

;−n
2

x2

)]
. (5.14)

In Theorem 5.1, as well as in (5.13) and (5.14), we should be careful while interpreting
the 3F2-function. For example, if n < x, then it can be expanded as a series. Otherwise, for
n > x, the 3F2-function represents the analytic continuation of the series. Of course, when
n > x, one can replace the 3F2-function by

−

{
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}
,

as can be seen from (5.9), and then use the series expansion of this other 3F2-function.

5.1. The Case m = 0. When m = 0 in Theorem 5.1, we obtain the following corollary.

Corollary 5.5. Let x /∈ Z and x > 0. Then,

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)

(5.15)

=
1

2

{(
1

π
√
x
− 1√

2

)
ζ

(
1

2

)
− 1

πx
√

2
ζ

(
−1

2

)}
+

x

π
√

2

∞∑
n=1

σ1/2(n)
√
n

(
√

2x−
√
n)

x2 + n2
.

Proof. The corollary follows readily from Theorem 5.1. We only need to observe that when
n < x,

3F2

(
1
4 ,

3
4 , 1

1
4 ,

3
4

;−n
2

x2

)
=

x2

x2 + n2
,

and when n > x,

3F2

(
1
4 ,

3
4 , 1

1
4 ,

3
4

;−n
2

x2

)
= −

{
3F2

(
1
4 +m, 34 +m, 1

1
4 ,

3
4

;−x
2

n2

)
− 1

}

= −
(

1

1 + x2/n2
− 1

)
=

x2

x2 + n2

to complete our proof. �

Similarly, when m = 0 in Theorem 5.2, we derive the following corollary.

Corollary 5.6. For x > 0,

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4
− 2π

√
2nx

)
=

(
2π
√
x+

1

2
√

2πx

)
ζ

(
−1

2

)
− 1

2
√

2
ζ

(
1

2

)
+

x

π
√

2

∞∑
n=1

σ1/2(n)

x2 + n2
. (5.16)
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We now show that the two previous corollaries can also be obtained by evaluating special
cases of the infinite series

2

∞∑
n=1

σ−s(n)n
1
2
s
(
eπis/4Ks

(
4πeπi/4

√
nx
)
∓ e−πis/4Ks

(
4πe−πi/4

√
nx
))

. (5.17)

Second Proof of Corollary 5.5. Use the remarks following (7.2) and then replace x by xeπi/2

and by xe−πi/2 in (7.1), and then subtract the resulting two identities to obtain, in particular
for x > 0,

2
∞∑
n=1

σ−s(n)n
s
2

(
eπis/4Ks

(
4πeπi/4

√
nx
)
− e−πis/4Ks

(
4πe−πi/4

√
nx
))

= − ix
s/2−1

2π
cot
(πs

2

)
ζ(s)− i(2π)−s−1

πx1+s/2
Γ(s+ 1)ζ(s+ 1)− ixs/2

2
tan

(πs
2

)
ζ(s+ 1)

+
iπx

6

ζ(2− s)
sin
(
1
2πs
) − ix3−s/2

π sin
(
1
2πs
) ∞∑
n=1

σ−s(n)

x2 + n2

(
ns−2 + xs−2 cos

(πs
2

))
. (5.18)

Now let s = −1
2 in (5.18). Using (1.17) and (1.18), we see that the left-hand side simplifies

to

1√
2x1/4

∞∑
n=1

σ1/2(n)

n1/4

(
e−πi/4−4πe

πi/4√nx − eπi/4−4πe−πi/4
√
nx
)

= − i
√

2

x1/4

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)
. (5.19)

The right-hand side of (5.18) becomes

i

2πx5/4
ζ

(
−1

2

)
− i√

2πx3/4
ζ

(
1

2

)
+

i

2x1/4
ζ

(
1

2

)
− iπx5/4

3
√

2
ζ

(
5

2

)
+
ix3/4

π

∞∑
n=1

σ1/2(n)

x2 + n2
+
i
√

2x13/4

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
. (5.20)

Thus, from (5.19) and (5.20), we deduce that

∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(π
4

+ 2π
√

2nx
)

=
1

2

{(
1

π
√
x
− 1√

2

)
ζ

(
1

2

)
− 1

πx
√

2
ζ

(
−1

2

)}
+
πx3/2

6
ζ

(
5

2

)
− x

π
√

2

∞∑
n=1

σ1/2(n)

x2 + n2
− x7/2

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
. (5.21)

From (5.15) and (5.21), it is clear that we want to prove that

πx3/2

6
ζ

(
5

2

)
− x7/2

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
=
x3/2

π

∞∑
n=1

σ1/2(n)
√
n(x2 + n2)

. (5.22)
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To that end, observe that

x7/2

π

∞∑
n=1

σ1/2(n)

n5/2(x2 + n2)
+
x3/2

π

∞∑
n=1

σ1/2(n)

x2 + n2
=
x3/2

π

∞∑
n=1

σ1/2(n)

n5/2
.

Finally, from (3.7) and the fact that ζ(2) = π2/6, we find that

∞∑
n=1

σ1/2(n)

n5/2
=
π2

6
ζ

(
5

2

)
. (5.23)

This proves (5.22) and hence completes an alternative proof of (5.15). �

Similarly, if we let s = −1
2 in (7.3), then we obtain (5.16) upon simplification. Adding

(5.15) and (5.16), we obtain the following result.

Theorem 5.7. Let x /∈ Z. Then,
∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx cos

(
2π
√

2nx
)

=

(
1

2π
√

2x
− 1

2

)
ζ

(
1

2

)
+ π
√

2xζ

(
−1

2

)
+
x3/2

π
√

2

∞∑
n=1

σ1/2(n)
√
n(x2 + n2)

.

Subtracting (5.15) from (5.16) gives the next result.

Theorem 5.8. Let x /∈ Z. Then,
∞∑
n=1

σ1/2(n)
√
n

e−2π
√
2nx sin

(
2π
√

2nx
)

=
1

2π
√

2x
ζ

(
1

2

)
−
(

1

2πx
+ π
√

2x

)
ζ

(
−1

2

)
+

x

π
√

2

∞∑
n=1

σ1/2(n)
√
n

(
√
x−
√

2n)

x2 + n2
.

6. Connection with the Voronöı Summation Formula

A celebrated formula of Voronöı [82] for
∑

n≤x d(n) is given by∑′

n≤x
d(n) = x(log x+ (2γ − 1)) +

1

4

+
√
x

∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
, (6.1)

where Yν(x) denotes the Bessel function of order ν of the second kind, and Kν(x) denotes
the modified Bessel function of order ν. Thus, the error term ∆(x) in the Dirichlet divisor
problem (1.1) admits the infinite series representation

∆(x) =
√
x

∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
.

In [82], Voronöı also gave a more general form of (6.1), namely,∑
α<n<β

d(n)f(n) =

∫ β

α
(2γ + log t)f(t) dt
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+ 2π

∞∑
n=1

d(n)

∫ β

α
f(t)

(
2

π
K0(4π

√
nt)− Y0(4π

√
nt)

)
dt, (6.2)

where f(t) is a function of bounded variation in (α, β) and 0 < α < β. A. L. Dixon and
W. L. Ferrar [31] gave a proof of (6.2) under the more restrictive condition that f has a
bounded second differential coefficient in (α, β). J. R. Wilton [85] proved (6.2) under less
restrictive conditions. In his proof, he assumed f(t) has compact support on [α, β] and

V β−ε
α f(t) → V β−0

α f(t) as ε tends to 0. Here V β
α f(t) denotes the total variation of f(t) over

(α, β). In 1929, Koshliakov [53] gave a very short proof of (6.2) for 0 < α < β, α, β /∈ Z, for
f analytic inside a closed contour strictly containing the interval [α, β]. Koshliakov’s proof
in [53] is based on the series ϕ(x), defined in (1.20), and its representation

ϕ(x) = −γ − 1

2
log x− 1

4πx
+
x

π

∞∑
n=1

d(n)

x2 + n2
.

See also [8, 9] for Voronöı-type summation formulas for a large class of arithmetical functions
generated by Dirichlet series satisfying a functional equation involving the Gamma function.
For Voronöı-type summation formulas involving an exponential factor, see [51]. The Voronöı
summation formula has been found to be useful in physics too; for example, S. Egger and
F. Steiner [36, 34] showed that it plays the role of an exact trace formula for a Schrödinger
operator on a certain non-compact quantum graph. They also gave a short proof of the
Voronöı summation formula in [35].

The extension of (6.2) for α = 0 is somewhat more difficult, since one needs to impose a

further condition on f(t). When f ′′(t) is bounded in (δ, α) and t3/4f ′′(t) is integrable over
(0, δ) for 0 < δ < α, Dixon and Ferrar [31] proved that

∑
0<n<β

d(n)f(n) =
f(0+)

4
+

∫ β

0
(2γ + log t)f(t) dt

+ 2π
∞∑
n=1

d(n)

∫ β

0
f(t)

(
2

π
K0(4π

√
nt)− Y0(4π

√
nt)

)
dt. (6.3)

Wilton [85] obtained (6.3) under the assumption that log xV x
0+f(t) tends to 0 as x → 0+.

D. A. Hejhal [48] gave a proof of (6.3) for β → ∞ under the assumption that f is twice
continuously differentiable and possesses compact support. For other proofs of the Voronöı
summation formula, the reader is referred to papers by T. Meurman [62] and A. Ivić [50].

Consider the following Voronöı summation formula in an extended form due to A. Oppen-
heim [67], and in the version given by A. Laurinc̆ikas [59]. For x > 0, x /∈ Z, and −1

2 < σ < 1
2 ,

∑
n<x

σ−s(n) = ζ(1 + s)x+
ζ(1− s)

1− s
x1−s − 1

2
ζ(s) +

x

2 sin
(
1
2πs
) ∞∑
n=1

σs(n) (6.4)

×
(√
nx
)−1−s(

Js−1(4π
√
nx) + J1−s(4π

√
nx)− 2

π
sin(πs)K1−s(4π

√
nx)

)
,

so that, by (1.3), ∆−s(x) is represented by the expression involving the series on the right-
hand side of (6.4). (Note that Laurinc̆ikas proved (6.4) for 0 < s < 1

2 . However, one can

extend it to −1
2 < σ < 1

2 .) Wilton [86] proved the same result in a more general setting by



NEW PATHWAYS AND CONNECTIONS IN NUMBER THEORY AND ANALYSIS 25

considering the ‘integrated function’, that is, the Riesz sum

1

Γ(λ+ 1)

∑′

n≤x
σ−s(n)(x− n)λ.

Laurinc̆ikas [59] gave a different proof of (6.4) many years later.
We will now explain the connection of Ramanujan’s series

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)

and its companion with the extended form of the Voronöı summation formula.
As mentioned by Hardy [45], [46, pp. 268–292], if we use the asymptotic formulas (2.17)

and (2.18) for Y1(4π
√
nx) and K1(4π

√
nx), respectively, in (6.1), we find that

∆(x) =
x1/4

π
√

2

∞∑
n=1

d(n)

n3/4
cos
(

4π
√
nx− π

4

)
+R(x), (6.5)

where R(x) is a series absolutely and uniformly convergent for all positive values of x. The
first series on the left side of (6.5) is convergent for all real values of x, and uniformly
convergent throughout any compact interval not containing an integer. At each integer x, it
has a finite discontinuity.

If we replace the Bessel functions in (6.4) by their asymptotic expansions, namely (2.16)
and (2.18), similar to what Hardy did, then the most important part of the error term ∆−s(x)
is given by

x
1
4
− 1

2
s cot

(
1
2πs
)

π
√

2

∞∑
n=1

σs(n)

n
s
2
+ 3

4

cos
(

4π
√
nx− π

4

)
.

This series, though similar to the one in (6.5) or in (1.2), is different from Ramanujan’s series

(1.21) in that the exponential factor, namely e−2π
√
2nx, is not present.

A generalization of (1.20), namely,

ϕ(x, s) := 2
∞∑
n=1

σ−s(n)n
1
2
s
(
eπis/4Ks

(
4πeπi/4

√
nx
)

+ e−πis/4Ks

(
4πe−πi/4

√
nx
))

, (6.6)

was studied in [30]. Note that ϕ(x, 0) = ϕ(x), and that ϕ(x) was used by Koshliakov [53] in
his short proof of (6.2).

Replacing the Bessel functions in (6.6) by their asymptotic expansions from (2.18), we find
that the main terms are given by

√
2

x1/4
cos

(
π

4

(
s+

1

2

)) ∞∑
n=1

σs(n)

ns/2+1/4
e−2π

√
2nx sin

(π
4
− 2π

√
2nx

)
+

√
2

x1/4
sin

(
π

4

(
s+

1

2

)) ∞∑
n=1

σs(n)

ns/2+1/4
e−2π

√
2nx sin

(π
4

+ 2π
√

2nx
)
. (6.7)

In our extensive study, the forms of the series in (6.7) are the closest that we could find
that resemble the series in Ramanujan’s original claim (1.6), or in our Theorem 1.1, or the
companion series

∞∑
n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4
− 2π

√
2nx

)
.
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Note that the only place where they differ is in the power of n. Similar remarks can be made
about (1.19) and (6.7).

Series similar to these arise in the mean square estimates of
∫ x
1 ∆−s(t)

2 dt by Meurman [63,
equations (3.7), (3.8)]. (An excellent survey on recent progress on divisor problems and mean
square theorems has been written by K.–M. Tsang [81].) Similar series have also arisen in
the work of H. Cramér [27], and in the recent work of S. Bettin and J. B. Conrey [19, p. 220–
223]. Thus it seems that the two series in (6.7) are more closely connected to the generalized
Dirichlet divisor problem than are Ramanujan’s series and its companion. We have found
identities, similar to those in Theorems 1.1 and 1.3, for each of the series in (6.7). However,
we refrain ourselves from stating them as they are similar to the ones already proved.

Remark. It is interesting to note here that at the bottom of page 368 in [71], one finds
the following note in Hardy’s handwriting: “Idea. You can replace the Bessel functions of the
Voronöı identity by circular functions, at the price of complicating the ‘sum’. Interesting idea,
but probably of no value for the study of the divisor problem.” In view of the applications
of such series mentioned in the above paragraph, it appears that Hardy’s judgement was
incorrect.

The series in (6.6) can be used to derive an extended form of the Voronöı summation
formula (6.2) in the form contained in the following theorem. This proof generalizes the
technique enunciated by Koshliakov in [53].

Theorem 6.1. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed
contour strictly containing [α, β]. Assume that −1

2 < σ < 1
2 . Then,

∑
α<j<β

σ−s(j)f(j) =

∫ β

α
(ζ(1 + s) + t−sζ(1− s))f(t) dt

+ 2π
∞∑
n=1

σ−s(n)n
1
2
s

∫ β

α
t−

1
2
sf(t)

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
× cos

(πs
2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt. (6.8)

We wish to extend (6.8) to allow α = 0 so as to obtain (6.4) as a special case of Theorem
6.1. To do this, we need to impose some additional restrictions on f . As an intermediate
result, we state the following theorem which generalizes Theorem 3 in [85].

Theorem 6.2. Let 0 < α < 1
2 , −1

2 < σ < 1
2 , and 0 < θ < min

(
1, 1+2σ

1−2σ

)
. Let N ∈ N such

that N θα > 1. If f is twice differentiable as a function of t, and is of bounded variation in
(0, α), then as N →∞,

f(0+)
ζ(−s)

2
−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt

+ 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0
f(t)t

1
2
s

{
Js(4π

√
nt) sin

(πs
2

)
+

(
Ys(4π

√
nt)− 2

π
Ks(4π

√
nt)

)
cos
(πs

2

)}
dt
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�


(2γ + logN)(V N−θ

0 f(t) +N (θ−1)/4(|f(α)|+ V α
0 f(t))), if s = 0,

V N−θ
0 f(t) + (N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4)

×(|f(α)|+ V α
0 f(t)), if s 6= 0.

Additionally, if we assume the limits

lim
x→0+

V x
0 f(t) = 0, if s 6= 0 and lim

x→0+
log xV x

0 f(t) = 0, if s = 0, (6.9)

then

f(0+)
ζ(−s)

2
−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt

+ 2π

∞∑
n=1

σs(n)

ns/2

∫ α

0
f(t)t

s
2

{
Js(4π

√
nt) sin

(πs
2

)
+

(
Ys(4π

√
nt)− 2

π
Ks(4π

√
nt)

)
cos
(πs

2

)}
dt = 0. (6.10)

Clearly, for 0 < α < 1
2 , we have ∑′

0<j≤α
σ−s(j)f(j) = 0. (6.11)

Also, if we substitute for Ys(4π
√
nt) via (2.15) and employ (1.18), we find that the kernel in

(6.10), namely,

Js(4π
√
nt) sin

(πs
2

)
+

(
Ys(4π

√
nt)− 2

π
Ks(4π

√
nt)

)
cos
(πs

2

)
is invariant under the replacement of s by −s. Therefore replacing s by −s in (6.10), then
replacing zero on the right-hand side of (6.10) by −

∑
0<j≤α σ−s(j)f(j) using (6.11), and then

finally subtracting the resulting equation so obtained from (6.8), we arrive at the following
result.

Theorem 6.3. Let 0 < α < 1
2 , α < β and β /∈ Z. Let f denote a function analytic inside a

closed contour strictly containing [α, β], and of bounded variation in 0 < t < α. Furthermore,
if f satisfies the limit conditions in (6.9), and −1

2 < σ < 1
2 , then

∑
0<j<β

σ−s(j)f(j) = −f(0+)
ζ(s)

2
+

∫ β

0
(ζ(1 + s) + t−sζ(1− s))f(t) dt

+ 2π
∞∑
n=1

σ−s(n)n
1
2
s

∫ β

0
t−

1
2
sf(t)

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
× cos

(πs
2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt.

6.1. Oppenheim’s Formula (6.4) as a Special Case of Theorem 6.3. Letting λ =
−s+ 1, µ = s, and x = 4π

√
nt in [69, p. 37, equation (1.8.1.1)], [69, p. 42, equation (1.9.1.1)]
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3 and [69, p. 47, equation (1.12.1.2)], and then simplifying, we see that∫
t−

1
2
s

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
cos
(πs

2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt

=
t(1−s)/2

4π
√
n sin

(
1
2πs
) (Js−1(4π√nt) + J1−s(4π

√
nt)− 2

π
sin(πs)K1−s(4π

√
nt)

)
. (6.12)

Let f(t) ≡ 1 and β = x /∈ Z in Theorem 6.3. Then,∑
j<x

σ−s(j) = −1

2
ζ(s) +

∫ x

0
(ζ(1 + s) + t−sζ(1− s)) dt

+ 2π

∞∑
n=1

σ−s(n)n
1
2
s

∫ x

0
t−

1
2
s

{(
2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
× cos

(πs
2

)
− Js(4π

√
nt) sin

(πs
2

)}
dt. (6.13)

Note that ∫
(ζ(1 + s) + t−sζ(1− s)) dt = tζ(1 + s) +

t1−s

1− s
ζ(1− s). (6.14)

Since −1
2 < σ < 1

2 and the right-hand sides of (6.12) and (6.14) vanish as t tends to 0, from
(6.12), (6.13), and (6.14), we obtain (6.4).

Remark. The analysis above also shows that for α > 0, α /∈ Z,∑
α<j<x

σ−s(j) = xζ(1 + s) +
x1−s

1− s
ζ(1− s)− αζ(1 + s)− α1−s

1− s
ζ(1− s)

+
1

2 sin
(
1
2πs
) ∞∑
n=1

σs(n)

n(s+1)/2

{
x(1−s)/2

(
Js−1(4π

√
nx) + J1−s(4π

√
nx)

− 2

π
sin(πs)K1−s(4π

√
nx)

)
− α(1−s)/2

(
Js−1(4π

√
nα) + J1−s(4π

√
nα)− 2

π
sin(πs)K1−s(4π

√
nα)

)}
. (6.15)

3This formula, as is stated, contains many misprints. The correct version should read∫ x2

x1

yλYν(y) dy =

{
−1

1

}
cos(νπ)Γ(−ν)xλ+ν+1

2νπ(λ+ ν + 1)
1F2

(
λ+ ν + 1

2
; 1 + ν,

λ+ ν + 3

2
;−x

2

4

)

+

{
−1

1

}
2νΓ(ν)xλ−ν+1

π(λ− ν + 1)
1F2

(
λ− ν + 1

2
; 1− ν, λ− ν + 3

2
;−x

2

4

)

−

{
0

1

}
2λ

π
cos

(
(λ− ν + 1)π

2

)
Γ

(
λ+ ν + 1

2

)
Γ

(
λ− ν + 1

2

)
.[{

x1 = 0, x2 = x; Re(λ) > |Re(ν)| − 1

x1 = x, x2 =∞; Re(λ) < 1
2

}]
.
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From (6.4) and (6.15), we conclude that, for −1
2 < σ < 1

2 ,

lim
α→0+

α(1−s)/2

sin
(
1
2πs
) ∞∑
n=1

σs(n)

n(s+1)/2

(
Js−1(4π

√
nα) + J1−s(4π

√
nα)

− 2

π
sin(πs)K1−s(4π

√
nα)

)
= ζ(s),

which is likely to be difficult to prove directly.

7. Proof of Theorem 6.1

We begin with a result due to H. Cohen [24, Theorem 3.4].

Theorem 7.1. Let x > 0 and s /∈ Z, where σ ≥ 0 4. Then, for any integer k such that
k ≥ b(σ + 1) /2c,

8πxs/2
∞∑
n=1

σ−s(n)ns/2Ks(4π
√
nx) = A(s, x)ζ(s) +B(s, x)ζ(s+ 1) (7.1)

+
2

sin (πs/2)

 ∑
1≤j≤k

ζ(2j)ζ(2j − s)x2j−1 + x2k+1
∞∑
n=1

σ−s(n)
ns−2k − xs−2k

n2 − x2

 ,

where

A(s, x) =
xs−1

sin (πs/2)
− (2π)1−sΓ(s),

B(s, x) =
2

x
(2π)−s−1Γ(s+ 1)− πxs

cos (πs/2)
. (7.2)

By analytic continuation, the identity in Theorem 7.1 is valid not only for x > 0 but for
−π < arg x < π. Take k = 1 in (7.1). The condition b(σ + 1) /2c ≤ 1 implies that 0 ≤ σ < 3.
We consider 0 ≤ σ < 1

2 . Note that Koshliakov [53] proved the case s = 0, and the theorem

follows for the remaining values of σ, i.e., for −1
2 < σ < 0, by the invariance noted in the

previous footnote.
Replace x by iz in (7.1) for −π < arg z < 1

2π, and then by −iz for −1
2π < arg z < π. Now

add the resulting two identities and simplify, so that for −1
2π < arg z < 1

2π,

Λ(z, s) = Φ(z, s), (7.3)

where

Λ(z, s) := z−s/2ϕ(z, s), (7.4)

with ϕ(x, s) defined in (6.6), and

Φ(z, s) := −(2πz)−sΓ(s)ζ(s) +
ζ(s)

2πz
− 1

2
ζ(1 + s) +

z

π

∞∑
n=1

σ−s(n)

z2 + n2
. (7.5)

As a function of z, Φ(z, s) is analytic in the entire complex plane except on the negative real
axis and at z = in, n ∈ Z. Hence, Φ(iz, s) is analytic in the entire complex plane except
on the positive imaginary axis and at z ∈ Z. Similarly, Φ(−iz, s) is analytic in the entire
complex plane except on the negative imaginary axis and at z = n ∈ Z. This implies that

4As mentioned in [24], the condition σ ≥ 0 is not restrictive since, because of (1.18), the left side of the
identity in this theorem is invariant under the replacement of s by −s.
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Φ(iz, s) + Φ(−iz, s) is analytic in both the left and right half-planes, except possibly when z
is an integer. However, it is easy to see that

lim
z→±n

(z ∓ n)Φ(iz, s) =
1

2πi
σ−s(n) and lim

z→±n
(z ∓ n)Φ(−iz, s) = − 1

2πi
σ−s(n),

so that

lim
z→±n

(z ∓ n) (Φ(iz, s) + Φ(−iz, s)) = 0.

In particular, this implies that Φ(iz, s) + Φ(−iz, s) is analytic in the entire right half-plane.
Now observe that for z inside an interval (u, v) on the positive real line not containing any

integer, we have, using the definition (7.5),

Φ(iz, s) + Φ(−iz, s) = −2(2πz)−sΓ(s)ζ(s) cos
(
1
2πs
)
− ζ(1 + s). (7.6)

Since both Φ(iz, s) + Φ(−iz, s) and −2(2πz)−sΓ(s)ζ(s) cos
(
1
2πs
)
− ζ(1 + s) are analytic in

the right half-plane as functions of z, by analytic continuation, the identity (7.6) holds for
any z in the right half-plane. Finally, using the functional equation (2.6) for ζ(s), we can
simplify (7.6) to deduce that, for −1

2π < arg z < 1
2π,

Φ(iz, s) + Φ(−iz, s) = −z−sζ(1− s)− ζ(1 + s). (7.7)

Next, let f be an analytic function of z within a closed contour intersecting the real axis in
α and β, where 0 < α < β, m − 1 < α < m, n < β < n + 1, and m,n ∈ Z. Let γ1 and γ2
denote the portions of the contour in the upper and lower half-planes, respectively, so that
the notations αγ1β and αγ2β, for example, denote paths from α to β in the upper and lower
half-planes, respectively. By the residue theorem,

1

2πi

∫
αγ2βγ1α

f(z)Φ(iz, s) dz =
∑

α<j<β

Rj(f(z)Φ(iz, s)).

Since f(z)Φ(iz, s) has a simple pole at each integer j, α < j < β, with residue 1
2πiσs(j)f(j),

we find that∑
α<j<β

σ−s(j)f(j) =

∫
αγ2β

f(z)Φ(iz, s) dz −
∫
αγ1β

f(z)Φ(iz, s) dz

=

∫
αγ2β

f(z)Φ(iz, s) dz −
∫
αγ1β

f(z)
(
−Φ(−iz, s)− z−sζ(1− s)− ζ(1 + s)

)
dz

=

∫
αγ2β

f(z)Φ(iz, s) dz +

∫
αγ1β

f(z)Φ(−iz, s) dz +

∫
αγ1β

f(z)
(
z−sζ(1− s) + ζ(1 + s)

)
dz,

where in the penultimate step, we used (7.7). Using the residue theorem again, we readily
see that∫

αγ1β
f(z)

(
z−sζ(1− s) + ζ(1 + s)

)
dz =

∫ β

α
f(t)

(
ζ(1 + s) + t−sζ(1− s)

)
dt.

Since Λ(z, s) = Φ(z, s) for −1
2π < arg z < 1

2π, it is easy to see that Λ(iz, s) = Φ(iz, s), for
−π < arg z < 0, and Λ(−iz, s) = Φ(−iz, s), for 0 < arg z < π. Thus,∑

α<j<β

σ−s(j)f(j) =

∫
αγ2β

f(z)Λ(iz, s) dz +

∫
αγ1β

f(z)Λ(−iz, s) dz

+

∫ β

α
f(t)

(
ζ(1 + s) + t−sζ(1− s)

)
dt. (7.8)
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Using the asymptotic expansion (2.18), we see that the series

Λ(iz, s) = 2(iz)−
s
2

∞∑
n=1

σ−s(n)n
1
2
s
(
eiπs/4Ks

(
4πeiπ/4

√
inz
)

+e−iπs/4Ks

(
4πe−iπ/4

√
inz
))

is uniformly convergent in compact subintervals of −π < arg z < 0, and the series

Λ(−iz, s) = 2(−iz)−
1
2
s
∞∑
n=1

σ−s(n)n
1
2
s
(
eiπs/4Ks

(
4πeiπ/4

√
−inz

)
+e−iπs/4Ks

(
4πe−iπ/4

√
−inz

))
is uniformly convergent in compact subsets of 0 < arg z < π. Thus, interchanging the order
of summation and integration in (7.8), we deduce that∑

α<j<β

σ−s(j)f(j) = 2

∞∑
n=1

σ−s(n)n
1
2
s

∫
αγ2β

f(z)(iz)−
1
2
s
(
eiπs/4Ks

(
4πeiπ/4

√
inz
)

+e−iπs/4Ks

(
4πe−iπ/4

√
inz
))

dz

+ 2
∞∑
n=1

σ−s(n)n
1
2
s

∫
αγ1β

f(z)(−iz)−
1
2
s
(
eiπs/4Ks

(
4πeiπ/4

√
−inz

)
+e−iπs/4Ks

(
4πe−iπ/4

√
−inz

))
dz

+

∫ β

α
f(t)

(
ζ(1 + s) + t−sζ(1− s)

)
dt.

Employing the residue theorem again, this time for each of the integrals inside the two sums,
and simplifying, we find that∑

α<j<β

σ−s(j)f(j) = 2
∞∑
n=1

σ−s(n)n
1
2
s

×
∫ β

α
t−

1
2
sf(t)

(
Ks

(
4πi
√
nt
)

+Ks

(
−4πi

√
nt
)

+ 2 cos
(πs

2

)
Ks

(
4π
√
nt
))

dt

+

∫ β

α
f(t)

(
ζ(1 + s) + t−sζ(1− s)

)
dt. (7.9)

Note that for −π < arg z ≤ 1
2π, the modified Bessel function Kν(z) is related to the Hankel

function H
(1)
ν (z) by [41, p. 911, formula 8.407.1]

Kν(z) =
πi

2
eνπi/2H(1)

ν (iz), (7.10)

where the Hankel function is defined by [41, p. 911, formula 8.405.1]

H(1)
ν (z) := Jν(z) + iYν(z). (7.11)

Employing the relations (7.10) and (7.11), we have, for x > 0,

Ks(ix) +Ks(−ix) =
πi

2
eiπs/2

(
H(1)
s (−x) +H(1)

s (x)
)

=
πi

2
eiπs/2 {(Js(x) + Js(−x)) + i (Ys(x) + Ys(−x))} . (7.12)
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For m ∈ Z [41, p. 927, formulas 8.476.1, 8.476.2]

Jν(emπiz) = emνπiJν(z), (7.13)

Yν(emπiz) = e−mνπiYν(z) + 2i sin (mνπ) cot (νπ) Jν(z). (7.14)

Using the relations (7.13) and (7.14) with m = 1, we can simplify (7.12) and put it in the
form

Ks(ix) +Ks(−ix)

=
πi

2
eiπs/2

{(
Js(x) + eiπsJs(x)

)
+ i
(
Ys(x) + e−iπsYs(x) + 2i cos (πs) Js(x)

)}
=
πi

2
eiπs/2

{(
1− e−iπs

)
Js(x) + i

(
1 + e−iπs

)
Ys(x)

}
= −π

(
Js(x) sin

(πs
2

)
+ Ys(x) cos

(πs
2

))
. (7.15)

Now replace x by 4π
√
nt in (7.15) and substitute in (7.9) to obtain (6.8) after simplification.

This completes the proof.

8. Proof of Theorem 6.2

For any integer λ, define

Gλ+s(z) := −Jλ+s(z) sin
(πs

2

)
−
(
Yλ+s(z)− (−1)λ

2

π
Kλ+s(z)

)
cos
(πs

2

)
(8.1)

and

Fλ+s(z) := −Jλ+s(z) sin
(πs

2

)
−
(
Yλ+s(z) + (−1)λ

2

π
Kλ+s(z)

)
cos
(πs

2

)
. (8.2)

Remark. Throughout this section, we keep s fixed such that −1
2 < σ < 1

2 . So while
interpreting Fs+λ(z) or Gs+λ(z), care should be taken to not conceive them as functions
obtained after replacing s by s + λ in Fs(z) or Gs(z), but instead as those where s remains
fixed and only λ varies.

From [83, pp. 66, 79] we have

d

dz
{zνJν(z)} = zνJν−1(z), (8.3)

d

dz
{zνKν(z)} = −zνKν−1(z), (8.4)

d

dz
{zνYν(z)} = zνYν−1(z). (8.5)

Using (8.3), (8.4), and (8.5) we deduce that

d

dt

{(
t

u

)(s+λ)/2

Gs+λ(4π
√
tu)

}
= 2π

(
t

u

)(s+λ−1)/2
Gs+λ−1(4π

√
tu), (8.6)

for u > 0. Similarly,

d

dt

{(
t

u

)(s+λ)/2

Fs+λ(4π
√
tu)

}
= 2π

(
t

u

)(s+λ−1)/2
Fs+λ−1(4π

√
tu), (8.7)

for u > 0.
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From (1.3) and (6.4), recall the definition

∆−s(x) =
x

2 sin
(
1
2πs
) ∞∑
n=1

σs(n)
(√
nx
)−1−s

×
(
Js−1(4π

√
nx) + J1−s(4π

√
nx)− 2

π
sin(πs)K1−s(4π

√
nx)

)
,

for −1
2 < σ < 1

2 and x > 0. If we replace s by −s in the equation above and use (2.15), we
find by a straightforward computation that

∆s(x) =
∞∑
n=1

(x
n

)(s+1)/2
σs(n)Gs+1(4π

√
nx), (8.8)

for −1
2 < σ < 1

2 and x > 0. Fix x > 0. By the asymptotic expansions of Bessel functions
(2.16), (2.17), and (2.18), there exists a sufficiently large integer N0 such that

Gν(4π
√
nx)�ν

1

(nx)1/4
and Fν(4π

√
nx)�ν

1

(nx)1/4
, (8.9)

for all n > N0. Hence, for −1
2 < σ < 1

2 and x > 0,∑
n>N0

(x
n

)λ+ 1
2
s
σs(n)Gs+2λ(4π

√
nx)� xλ+(2σ−1)/4

∑
n>N0

σσ(n)

nλ+(1+2σ)/4
� xλ+(2σ−1)/4,

provided that 2λ > |σ|+ 3
2 . Therefore, for λ ≥ 1, −1

2 < σ < 1
2 , and x > 0, the series

∞∑
n=1

(x
n

)λ+ 1
2
s
σs(n)Gs+2λ(4π

√
nx)

is absolutely convergent. Similarly, for λ ≥ 1, −1
2 < σ < 1

2 , and x > 0, the series

∞∑
n=1

(x
n

)λ+ s
2
σs(n)Fs+2λ(4π

√
nx)

is absolutely convergent. Denote

Ds(x) :=
∑′

n≤x
σs(n) (8.10)

and

Φs(x) := xζ(1− s) +
x1+s

1 + s
ζ(1 + s)− 1

2
ζ(−s). (8.11)

Therefore, from (6.4), we write

Ds(x) = Φs(x) + ∆s(x) (8.12)

for −1
2 < σ < 1

2 .
The following lemmas are key ingredients in the proof of Theorem 6.2. They are special

cases of two results in [86]. We note, however, that the definitions of G and F in [86] are
different from those in (8.1) and (8.2) that we use.
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Lemma 8.1. If x > 0, N > 0, and −1
2 < σ < 1

2 , then

∆s(x) =

N∑′

n=1

(x
n

)(s+1)/2
σs(n)Gs+1(4π

√
nx)−

( x
N

)(s+1)/2
Gs+1(4π

√
Nx)∆s(N)

+
N sζ(1 + s) + ζ(1− s)

2π

( x
N

)s/2
Fs(4π

√
Nx)

+
sζ(1 + s)

2π

∫ ∞
N

(x
t

)s/2
Fs(4π

√
xt)ts−1 dt (8.13)

+ 2π

∞∑
n=1

σs(n)

∫ ∞
N

(x
t

)(s+2)/2
Fs+2(4π

√
xt)

(
t

n

)(s+1)/2

Gs+1(4π
√
nt) dt.

Proof. Take λ = 0, κ = 1, and θ = 1 in Theorem 2 of [86, p. 404], and make use of the
notations (1.21) and (3.13) given in it. �

We wish to invert the order of summation and integration in the last expression on the
right-hand side of (8.13). In order to justify that, we need the following lemma.

Lemma 8.2. If N > A, Nx > A, −1
2 < σ < 1

2 , and

Is(x, n;N) := 2π

∫ ∞
N

(x
t

)(s+2)/2
Fs+2(4π

√
xt)

(
t

n

)(s+1)/2

Gs+1(4π
√
nt) dt,

then
∞∑
n=1

σs(n)Is(x, n;N) = Cs(x,N) +O

(
x1+ε√
N

)
,

for every ε > 0, where

Cs(x,N) = 0, if x < 1
2 or x ∈ N,

Cs(x,N) =
1

π

(
x

y

)(2s+5)/4

σs(y)

∫ ∞
4π
√
N |√y−

√
x|

sin(t sgn(y − x))

t
dt,

if x 6= y = bx+ 1
2c ≥ 1.

Proof. This is the special case λ = 0, κ = 1 of Lemma 6 of [86, p. 412]. �

Proof of Theorem 6.2. By Lemma 8.2, we see that the last expression on the right-hand side
of (8.13) tends to 0 as N → ∞. Hence, by interchanging the summation and integration in
this expression, we deduce that

∆s(x) =

N∑′

n=1

(x
n

)(s+1)/2
σs(n)Gs+1(4π

√
nx)

+
N sζ(1 + s) + ζ(1− s)

2π

( x
N

)s/2
Fs(4π

√
Nx)

−
( x
N

)(s+1)/2
Gs+1(4π

√
Nx)∆s(N)

+
sζ(1 + s)

2π

∫ ∞
N

(x
t

)s/2
Fs(4π

√
xt)ts−1 dt

+ 2π

∫ ∞
N

(x
t

)(s+2)/2
Fs+2(4π

√
xt)∆s(t) dt. (8.14)
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Let a ≥ 0 and b ≥ 0. From (8.10),∑
a≤n≤b

f(n)σs(n) =

∫ b

a
f(t) dDs(t), (8.15)

where we write the sum as a Lebesgue-Stieltjes integral.
For a = 0 and b = α < 1

2 , the left-hand side of (8.15) equals 0. Therefore, from (8.6),
(8.7), (8.11), (8.12), (8.14), (8.15), and (8.8),

−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt =

∫ α

0
f(t) d∆s(t)

= 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0
ts/2Gs(4π

√
nt)f(t) dt

+
N sζ(1 + s) + ζ(1− s)

N (s−1)/2

∫ α

0
t(s−1)/2Fs−1(4π

√
Nt)f(t) dt

− 2π

N s/2
∆s(N)

∫ α

0
ts/2Gs(4π

√
Nt)f(t) dt

+
sζ(1 + s)

2π

∫ α

0
f(t)

d

dt

(∫ ∞
N

(
t

u

)s/2
Fs(4π

√
tu)us−1 du

)
dt

+ 2π

∫ α

0
f(t)

d

dt

(∫ ∞
N

(
t

u

)(s+2)/2

Fs+2(4π
√
tu)∆s(u) du

)
dt. (8.16)

Using (8.7) twice, we see that

d

dt

(∫ ∞
N

(
t

u

)s/2
Fs(4π

√
tu)us−1 du

)
= 2π

∫ ∞
N

(tu)(s−1)/2Fs−1(4π
√
tu) du

= ts/2−1us/2Fs(4π
√
tu)
∣∣∣∞
N

= −ts/2−1N s/2Fs(4π
√
tN), (8.17)

where in the last step we use (2.16)–(2.18), and the fact that σ < 1
2 . The interchange of

differentiation and integration above is justified from (8.9). Denote

Is(t,N) := 2π

∫ ∞
N

(
t

u

)(s+2)/2

Fs+2(4π
√
tu)∆s(u) du. (8.18)

Performing an integration by parts on the last expression on the right-hand side of (8.16)
and using (8.17) and (8.18), we find that

−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt− 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0
ts/2Gs(4π

√
nt)f(t) dt

=
N sζ(1 + s) + ζ(1− s)

N (s−1)/2

∫ α

0
t(s−1)/2Fs−1(4π

√
Nt)f(t) dt

− 2π

N s/2
∆s(N)

∫ α

0
ts/2Gs(4π

√
Nt)f(t) dt

− sζ(1 + s)N s/2

2π

∫ α

0
f(t)ts/2−1Fs(4π

√
Nt) dt
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+ f(α)Is(α,N)−
∫ α

0
Is(t,N)f ′(t) dt, (8.19)

where in the last step we made use of the fact that for −1
2 < σ < 1

2 ,

lim
t→0

t(s+2)/2Fs+2(4π
√
tu) = 0.

Here again the limit can be moved inside the integral because of (8.9).

Since α < 1
2 , by Lemma 8.2, Is(t,N)� N−1/2, for all 0 < t ≤ α. Also by hypothesis, f is

differentiable, so

V α
0 f(t) =

∫ α

0
|f ′(t)| dt,

where V α
0 f(t) is the total variation of f on the interval (0, α). Therefore the last two terms

on the right-hand side of (8.19) are of the form

O(N−1/2(|f(α)|+ V α
0 f(t))). (8.20)

Recall the bound ∆s(N)� N
1
2
(1+σ) [86, Lemma 7]. From (8.6) and (8.9),

2π

N s/2
∆s(N)

∫ α

0
ts/2Gs(4π

√
Nt) dt

= ∆s(N)
( α
N

)(s+1)/2
Gs+1(4π

√
Nα)

� α
σ
2

( α
N

) 1
4
. (8.21)

Here we also made use of the fact that

lim
t→0

t(s+1)/2Gs+1(4π
√
Nt) = 0.

Again, from (8.6) and (8.9),

N sζ(1 + s) + ζ(1− s)
N (s−1)/2

∫ α

0
t(s−1)/2Fs−1(4π

√
Nt) dt

=
N sζ(1 + s) + ζ(1− s)

2πN s/2
αs/2Fs(4π

√
Nα)

�

{
(2γ + logN)(αN)−1/4, if s = 0,

(αN)(2σ−1)/4 + α(2σ−1)/4N (−2σ−1)/4, if s 6= 0,
(8.22)

since limt→0 t
s/2Fs(4π

√
Nt) = 0. Finally,

sζ(1 + s)N s/2

2π

∫ α

0
ts/2−1Fs(4π

√
Nt) dt

=
sζ(1 + s)N s/2

2π

(∫ ∞
0
−
∫ ∞
α

)
ts/2−1Fs(4π

√
Nt) dt

=: I1 − I2.

Using the functional equation of ζ(s), namely (2.6), and the formula [86, p. 409, equation
4.65], we find that

I1 =
sζ(1 + s)N s/2

2π

∫ ∞
0

ts/2−1Fs(4π
√
Nt) dt
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= −(2π)−s−1 sin(πs/2)Γ(s+ 1)ζ(1 + s) =
ζ(−s)

2
.

Using (8.9), we deduce that

I2 =
sζ(1 + s)N s/2

2π

∫ ∞
α

ts/2−1Fs(4π
√
Nt) dt� (αN)(2σ−1)/4, (8.23)

since −1
2 < σ < 1

2 . Using (8.20)–(8.23) in (8.19), we find that

f(0+)
ζ(−s)

2
−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt (8.24)

− 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0
ts/2Gs(4π

√
nt)f(t) dt

=
N sζ(1 + s) + ζ(1− s)

N (s−1)/2

∫ α

0
t(s−1)/2Fs−1(4π

√
Nt)(f(t)− f(0+)) dt

− 2π

N s/2
∆s(N)

∫ α

0
ts/2Gs(4π

√
Nt)(f(t)− f(0+)) dt

− sζ(1 + s)

2π

∫ α

0
(f(t)− f(0+))ts/2−1N s/2Fs(4π

√
Nt) dt

+O((αN)(2σ−1)/4 + α(2σ−1)/4N (−2σ−1)/4) +O((2γ + logN)(αN)−1/4).

By the second mean value theorem for integrals in the form given in [85, p. 31],∣∣∣∣∫ b

a
f(t)φ(t) dt− f(b)

∫ b

a
φ(t) dt

∣∣∣∣ ≤ V b
a f(t) max

a≤c<d≤b

∣∣∣∣∫ d

c
φ(t) dt

∣∣∣∣ , (8.25)

where φ is integrable on [a, b].

Recall that N θα > 1 for some 0 < θ < min
(

1, 1+2σ
1−2σ

)
. Dividing the interval (0, α) into

two sub-intervals (0, N−θ) and (N−θ, α), applying (8.25), and using an argument like that in
(8.22), we see that

N sζ(1 + s) + ζ(1− s)
N (s−1)/2

∫ α

N−θ
t(s−1)/2Fs−1(4π

√
Nt)(f(t)− f(0+)) dt

�

{
(2γ + logN)N (θ−1)/4V α

N−θ
f(t), if s = 0,

(N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4)V α
N−θ

f(t), if s 6= 0,
(8.26)

and

N sζ(1 + s) + ζ(1− s)
N (s−1)/2

∫ N−θ

0
t(s−1)/2Fs−1(4π

√
Nt)(f(t)− f(0+)) dt

�

 (2γ + logN)V N−θ
0 f(t), if s = 0,

V N−θ
0 f(t), if s 6= 0.

By (8.25) and arguments similar to those in (8.21) and (8.23),

2π

N s/2
∆s(N)

∫ α

N−θ
ts/2Gs(4π

√
Nt)(f(t)− f(0+)) dt� α

σ
2

( α
N

) 1
4
V α
N−θf(t),
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2π

N s/2
∆s(N)

∫ N−θ

0
ts/2Gs(4π

√
Nt)(f(t)− f(0+)) dt� N

−2θσ−1−θ
4 V N−θ

0 f(t),

sζ(1 + s)

2π

∫ α

N−θ
(f(t)− f(0+))ts/2−1N s/2Fs(4π

√
Nt) dt� N

(1−θ)(2σ−1)
4 V α

N−θf(t),

and

sζ(1 + s)

2π

∫ N−θ

0
(f(t)− f(0+))ts/2−1N s/2Fs(4π

√
Nt) dt� V N−θ

0 f(t). (8.27)

Combining (8.26)–(8.27) together with (8.24), we obtain

f(0+)
ζ(−s)

2
−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt

− 2π

N∑′

n=1

σs(n)

ns/2

∫ α

0
ts/2Gs(4π

√
nt)f(t) dt

�

 (2γ + logN)(V N−θ
0 f(t) +N (θ−1)/4V α

N−θ
f(t)), if s = 0,

V N−θ
0 f(t) + (N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4))V α

N−θ
f(t), if s 6= 0,

�


(2γ + logN)(V N−θ

0 f(t) +N (θ−1)/4(|f(α)|+ V α
0 f(t))), if s = 0,

V N−θ
0 f(t) + (N (1−θ)(2σ−1)/4 +N (θ(1−2σ)−(2σ+1))/4)

×(|f(α)|+ V α
0 f(t)), if s 6= 0.

Furthermore, if log xV x
0 f(t)→ 0 as x→ 0+ when s = 0, and if V x

0 f(t)→ 0 as x→ 0+ when

s 6= 0, then the assumption 0 < θ < min
(

1, 1+2σ
1−2σ

)
implies that

f(0+)
ζ(−s)

2
−
∫ α

0
f(t)(ζ(1− s) + tsζ(1 + s)) dt

− 2π
∞∑
n=1

σs(n)

ns/2

∫ α

0
ts/2Gs(4π

√
nt)f(t) dt = 0.

This completes the proof of Theorem 6.2. �

9. An Interpretation of Ramanujan’s Divergent Series

As mentioned in the introduction, the series on the left-hand side of (1.6) is divergent for all
real values of s, since σs(n) ≥ ns. However, as we show below, there is a valid interpretation
of this series using the theory of analytic continuation.

Throughout this section, we assume x > 0, σ > 0, and Re w > 1. Define a function
F (s, x, w) by

F (s, x, w) :=

∞∑
n=1

σs(n)

nw−
1
2

(
(x− in)−s−

1
2 − (x+ in)−s−

1
2

)
. (9.1)

Ramanujan’s divergent series corresponds to letting w = 1
2 in (9.1). Note that

(x− in)−s−
1
2 − (x+ in)−s−

1
2 =

2i sin
((
s+ 1

2

)
tan−1 (n/x)

)
(x2 + n2)

s
2
+ 1

4

.
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Since for σ > −3
2 and n > 0 [41, p. 524, formula 3.944, no. 5]∫ ∞
0

e−xtts−
1
2 sin(nt) dt = Γ

(
s+

1

2

)
sin
((
s+ 1

2

)
tan−1 (n/x)

)
(x2 + n2)

s
2
+ 1

4

, (9.2)

we deduce from (9.1)–(9.2) that

F (s, x, w) =
2i

Γ
(
s+ 1

2

) ∞∑
n=1

σs(n)

nw−
1
2

∫ ∞
0

e−xtts−
1
2 sinnt dt.

From [64, p. 42, formula (5.1)], for −1 < c = Re z < 1,

sin(nt) =
1

2πi

∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
(nt)−z dz.

Hence,

F (s, x, w) =
1

πΓ
(
s+ 1

2

) ∫ ∞
0

e−xtts−
1
2

∞∑
n=1

σs(n)

nw−
1
2

∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
(nt)−z dz dt

=
1

πΓ
(
s+ 1

2

) ∫ ∞
0

e−xtts−
1
2

∫ c+i∞

c−i∞
t−zΓ(z) sin

(πz
2

)( ∞∑
n=1

σs(n)

nw+z−
1
2

)
dz dt, (9.3)

where the interchange of the order of summation and integration in both instances is justified
by absolute convergence. Now if Re z > 3

2− Re w and Re z > 3
2− Re w + σ, from (3.7), we

see that
∞∑
n=1

σs(n)

nw+z−
1
2

= ζ

(
w + z − 1

2

)
ζ

(
w + z − s− 1

2

)
.

Substituting this in (9.3), we find that

F (s, x, w) =
1

πΓ
(
s+ 1

2

) ∫ ∞
0

e−xtts−
1
2

∫ c+i∞

c−i∞
t−zΓ(z) sin

(πz
2

)
× ζ

(
w + z − 1

2

)
ζ

(
w + z − s− 1

2

)
dz dt

=
1

πΓ
(
s+ 1

2

) ∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
ζ

(
w + z − 1

2

)
ζ

(
w + z − s− 1

2

)
×
∫ ∞
0

e−xtts−z−
1
2 dt dz,

(9.4)

with the interchange of the order of integration again being easily justifiable. For Re z < σ+ 1
2 ,

we have ∫ ∞
0

e−xtts−z−
1
2 dt =

Γ
(
s− z + 1

2

)
xs−z+

1
2

.

Substituting this in (9.4), we obtain the integral representation

F (s, x, w) =
x−s−

1
2

πΓ
(
s+ 1

2

) ∫ c+i∞

c−i∞
Γ(z) sin

(πz
2

)
ζ

(
w + z − 1

2

)
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× ζ
(
w + z − s− 1

2

)
Γ

(
s− z +

1

2

)
xz dz. (9.5)

Note that if we shift the line of integration Re z = c to Re z = d such that d = 3
2 + σ − η

with η > 0, we encounter a simple pole of the integrand due to Γ
(
s− z + 1

2

)
. Employing

the residue theorem and noting that, from (2.5) and (3.15), the integrals over the horizontal
segments tend to zero as the height of the rectangular contour tends to ∞, we have

F (s, x, w) =
x−s−

1
2

πΓ
(
s+ 1

2

) ∫ d+i∞

d−i∞
Γ(z) sin

(πz
2

)
ζ

(
w + z − 1

2

)
× ζ

(
w + z − s− 1

2

)
Γ

(
s− z +

1

2

)
xz dz

− 2ix−s−
1
2

Γ
(
s+ 1

2

)Γ

(
s+

1

2

)
sin

(
π

2

(
s+

1

2

))
ζ(w + s)ζ(w)xs+

1
2 . (9.6)

Note that the residue in equation (9.6) is analytic in w except for simple poles at 1 and 1−s.
Consider the integrand in (9.6). The zeta functions ζ

(
w + z − 1

2

)
and ζ

(
w + z − s− 1

2

)
have

simple poles at w = 3
2 − z and w = 3

2 + s− z, respectively. However, since Re z = 3
2 + σ − η

and σ > 0, the integrand is analytic as a function of w as long as Re w > η. By a well-known
theorem [77, p. 30, Theorem 2.3], the integral is also analytic in w for Re w > η. Thus, the
right-hand side of (9.6) is analytic in w, which allows us to analytically continue F (s, x, w)
as a function of w to the region Re w > η, and hence to Re w > 0, since η is any arbitrary
positive number.

As remarked in the beginning of this section, letting w = 1
2 in (9.1) yields Ramanujan’s

divergent series. However, the analytic continuation of F (s, x, w) to Re w > 0 allows us to
substitute w = 1

2 in (9.6) and thereby give a valid interpretation of Ramanujan’s divergent

series. The only exception to this is when s = 1
2 , since then w = 1

2 = 1 − s is a pole of the
right-hand side of (9.6), as discussed above.

If we further shift the line of integration in (9.5) from Re z = 3
2 +σ−η to Re z = 5

2 +σ−η,
and likewise to +∞, we obtain a meromorphic continuation of F (s, x, w), as a function of w,
to the whole complex plane.

10. Generalization of the Ramanujan–Wigert Identity

The identity (1.16) found by Ramanujan, and then extended by Wigert, has the following
one variable generalization in the same spirit as Theorem 1.1.

Theorem 10.1. Let ψs(n) :=
∑

j2|n j
s. Let α > 0 and β > 0 be such that αβ = 4π3. Recall

that 1F1 is defined in (1.8). Then, for σ > 0,

∞∑
n=1

ψs(n)√
n
e−
√
nβ sin

(π
4
−
√
nβ
)

=

√
β√
2
ζ(−s) + Γ(s) cos

(π
4

+
πs

4

)
ζ

(
1 + s

2

)
(2β)−

1
2
s +

1√
2
ζ

(
1

2

)
ζ(1− s)

+ 2−s−
1
2π−s−2

√
β
∞∑
n=1

ψ1−s(n)

n

{
−π3
√
n√

βΓ(1− s) sin
(
πs
2

)
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+22sπ
3
2
s+2

(
n

β

)(s+1)/2

Γ
(s

2

)
1F1

(
s

2
;
1

2
;−nα

)}
. (10.1)

Note that ψs(n) is an extension of Ramanujan’s definition of ψ(n) that was defined earlier
in (1.15). The proof of Theorem 10.1 is similar to that of Theorem 1.1, and so we will be
brief.

Proof. From the definition of ψs(n), we note that

∞∑
n=1

ψs(n)

nz/2
= ζ

(z
2

)
ζ(z − s)

for Re z > 2 and Re z > 1 + σ. Let

W (s, β) :=

∞∑
n=1

ψs(n)√
n
e−
√
nβ sin

(π
4
−
√
nβ
)
.

Proceeding as we did in (3.2)–(3.9), we obtain for c = Re z > max{2, 1 + σ},

W (s, β) =
1

2πi

∫
(c)

Γ(z − 1) cos
(πz

4

)
ζ
(z

2

)
ζ(z − s)(2β)(1−z)/2 dz.

Shifting the line of integration from Re z = c to Re z = λ,−1 < λ < 0, applying the residue
theorem, and considering the contributions of the poles at z = 0, 1, and 1 + s, we find that

W (s, β) =

√
β√
2
ζ(−s) + Γ(s) cos

(
π(1 + s)

4

)
ζ

(
1 + s

2

)
(2β)−

1
2
s +

1√
2
ζ

(
1

2

)
ζ(1− s)

+
1

2πi

∫
(λ)
G(z, s, β) dz, (10.2)

where

G(z, s, β) = Γ(z − 1) cos
(πz

4

)
ζ
(z

2

)
ζ(z − s)(2β)(1−z)/2

= 2z−s−
1
2π

3
2
z−s−2Γ(z − 1)Γ

(
1− z

2

)
Γ(1− z + s) sin

(πz
2

)
× sin

(πz
2
− πs

2

)
ζ
(

1− z

2

)
ζ(1− z + s), (10.3)

and where we used the functional equation of ζ(s) given in (2.6). Since Re z < 0 and σ > 0,

ζ
(

1− z

2

)
ζ(1− z + s) =

∞∑
n=1

ψ1−s(n)

n1−z/2
. (10.4)

Thus, (10.2), (10.3), and (10.4) imply that

W (s, β) =

√
β√
2
ζ(−s) + Γ(s) cos

(
π(1 + s)

4

)
ζ

(
1 + s

2

)
(2β)−

1
2
s

+
1√
2
ζ

(
1

2

)
ζ(1− s) + 2−s−

1
2π−s−2

√
β
∞∑
n=1

ψ1−s(n)

n
H

(
s,
β

n

)
, (10.5)

where

H

(
s,
β

n

)
=

1

2πi

∫
(λ)

Γ(z − 1)Γ
(

1− z

2

)
Γ(1− z + s)
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× sin
(πz

2

)
sin
(πz

2
− πs

2

)( β

4π3n

)−z/2
dz

=
1

2πi

∫
(λ)

−22z−3π(3z+5)/2 (β/n)−z/2

Γ
(
3−z
2

)
Γ(z − s)

cos
(πz

2

)
cos

(
π(z − s)

2

)
dz,

by routine simplification using (2.1)–(2.4).
To evaluate H(s, β/n), we now move the line of integration to +∞ and apply the residue

theorem. In this process, we encounter the poles of the integrand at z = 1 and at z =
2k + 1 + s, k ∈ N ∪ {0}. The residues at these poles are

R1(H) =
π3
√
n

βΓ(1− s) sin
(
πs
2

)
and

R2k+1+s(H) =
(−1)k+124k+2sπ3k+4+3s/2(β/n)−(k+(s+1)/2)Γ

(
1
2s+ k

)
π2Γ(2k + 1)

.

With the help of (2.5), it is easy to show that the integrals along the horizontal segments
tend to zero as the height of the rectangular contour tends to ∞. Also, arguing similarly as
in (4.8)–(4.11), we see that the integral along the shifted vertical line in the limit also equals
zero. Thus,

H

(
s,
β

n

)
= −R1(H)−

∞∑
k=0

R2k+1+s (10.6)

=
−π3
√
n

βΓ(1− s) sin
(
πs
2

) + 22sπ
3
2
s+2

(
n

β

) s+1
2
∞∑
k=0

Γ
(
s
2 + k

)
(2k)!

(
−16π3n

β

)k

=
−π3
√
n

βΓ(1− s) sin
(
πs
2

) + 22sπ
3
2
s+2

(
n

β

) s+1
2

Γ
(s

2

)
1F1

(
s

2
;
1

2
;−4π3n

β

)
,

where 1F1(a; c; z) is Kummer’s confluent hypergeometric function.
A result similar to the one in Theorem 10.1 could be obtained when we replace the − sign

in the sine function by a + sign.
The result now follows from (10.5) and (10.6), and from the fact that αβ = 4π3. �

10.1. Special Cases of Theorem 10.1. When s = 2m+ 1, m ∈ N∪ {0}, in Theorem 10.1,
we obtain the following result.

Theorem 10.2. For each non-negative integer m,
∞∑
n=1

ψ2m+1(n)√
n

e−
√
nβ sin

(π
4
−
√
nβ
)

=

√
β√
2
ζ(−1− 2m)− (2m)! sin

(πm
2

)
ζ(1 +m)(2β)−(m+ 1

2) +
1√
2
ζ

(
1

2

)
ζ(−2m)

+ 2m
(

2π

β

)m+ 1
2

Γ

(
m+

1

2

) ∞∑
n=1

ψ−2m(n)nm1F1

(
m+

1

2
;
1

2
;−nα

)
. (10.7)

When m = 0 in (10.7), or equivalently when s = 1 in Theorem 10.1, we obtain (1.16).
When s = 2m,m ∈ N ∪ {0}, in Theorem 10.1, we obtain the following companion result.
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Theorem 10.3. For each non-negative integer m,
∞∑
n=1

ψ2m(n)√
n

e−
√
nβ sin

(π
4
−
√
nβ
)

=

√
β√
2
ζ(−2m)− (2m− 1)!√

2
sin
(πm

2

)
ζ

(
1 + 2m

2

)
(2β)−m +

1√
2
ζ

(
1

2

)
ζ(1− 2m)

+ 2
1
2
−2mπ−2m

∞∑
n=1

ψ1−2m(n)√
n

{
(−1)m+1(2m)!

+24m−1π3m
(
n

β

)m
(m− 1)!1F1

(
m;

1

2
;−nα

)}
.

10.2. A Common Generalization of σs(n) and ψs(n). Note that if we define Ωs(m,n) :=∑
jm|n j

s for m ∈ Z,m ≥ 1, then Ωs(1, n) = σs(n) and Ωs(2, n) = ψs(n). Thus, the series

∞∑
n=1

Ωs(m,n)√
n

e−
√
nβ sin

(π
4
−
√
nβ
)

(10.8)

corresponds to the one in Theorem 1.3 when m = 1, and to the one in Theorem 10.1 when
m = 2. It might be interesting to find a representation of (10.8) analogous to those in these
theorems for general m.

Attempting to evaluate (10.8) by first writing the sum as a line integral, then shifting the
line of integration to infinity and using the functional equation (2.6) of ζ(s), we encounter
the sum of residues at the poles 2(2k + 1 + s)/m to be a constant (independent of k but
depending on m, s, n, and β) times

∞∑
k=0

Γ
(
2k+1+s

m − 1
2

)
(2k)!

(
−2(2m+4)/mπ(2m+2)/mn2/m

β2/m

)k
.

When m = 2, this series essentially reduces to the 1F1 present in (10.1). If we let
√
β = 2π

√
2x

and set m = 1, we can write the series above as a 3F2. However, we need to consider two
cases, according as n < x or as n ≥ x, which should then give Theorem 1.3. But for a general
positive integer m, it is doubtful that the series above is summable in closed form.

11. Ramanujan’s Entries on Page 335 and Generalizations

We begin this section by stating the two entries on page 335 in Ramanujan’s lost notebook
[71]. Define

F (x) =

{
bxc, if x is not an integer,

x− 1
2 , if x is an integer.

(11.1)

Entry 11.1. If 0 < θ < 1 and F (x) is defined by (11.1), then

∞∑
n=1

F
(x
n

)
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ)

+
1

2

√
x

∞∑
m=1

∞∑
n=0

{
J1(4π

√
m(n+ θ)x)√

m(n+ θ)
−
J1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
, (11.2)

where Jν(x) denotes the ordinary Bessel function of order ν.
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Entry 11.2. If 0 < θ < 1 and F (x) is defined by (11.1), then

∞∑
n=1

F
(x
n

)
cos(2πnθ) =

1

4
− x log(2 sin(πθ))

+
1

2

√
x

∞∑
m=1

∞∑
n=0

{
I1(4π

√
m(n+ θ)x)√

m(n+ θ)
+
I1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
, (11.3)

where

Iν(z) := −Yν(z) +
2

π
cos(πν)Kν(z), (11.4)

where Yν(x) denotes the Bessel function of the second kind of order ν, and Kν(x) denotes the
modified Bessel function of order ν.

Entries 11.1 and 11.2 were established by Berndt, S. Kim, and Zaharescu under different
conditions on the summation variables m,n in [14, 16, 18]. An expository account of their
work along with a survey of the circle and divisor problems can be found in [17]. See also the
book [4, Chapter 2] by Andrews and the first author.

It is easy to see from (11.1) that the left-hand sides of (11.2) and (11.3) are finite. When
x→ 0+, Entries (11.2) and (11.3) give the following interesting limit evaluations:

lim
x→0+

√
x
∞∑
m=1

∞∑
n=0

{
J1(4π

√
m(n+ θ)x)√

m(n+ θ)
−
J1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
=

1

2
cot(πθ),

and

lim
x→0+

√
x

∞∑
m=1

∞∑
n=0

{
I1(4π

√
m(n+ θ)x)√

m(n+ θ)
+
I1(4π

√
m(n+ 1− θ)x)√

m(n+ 1− θ)

}
= −1

2
.

Direct proofs of these limit evaluations appear to be difficult.
As shown in [17, equation (2.8)], when θ = 1

4 , Entry 11.1 is equivalent to the following
famous identity due to Ramanujan and Hardy [45], provided that the double sum in (11.2)
is interpreted as limN→∞

∑
m,n≤N , rather than as an iterated double sum (see [16, p. 26]):∑

0<n≤x

′
r2(n) = πx− 1 +

∞∑
n=1

r2(n)
(x
n

)1/2
J1(2π

√
nx).

Note that the Bessel functions appearing in (11.3) are the same as those appearing in (6.1).
Indeed when θ = 1

2 , Entry 11.2 is connected with Voronöı’s identity for
∑

n≤x d(n) as will be
shown below. First, following the elementary formula∑

n≤x
d(n) =

∑
n≤x

∑
d|n

1 =
∑
dj≤x

1 =
∑
d≤x

[x
d

]
,

we see that the left-hand side of (11.3), for θ = 1
2 , can be simplified as

∞∑
n=1

F
(x
n

)
cos(πn) =

∑′

n≤x

∑
d|n

cos(πd).

Second, let

` =

{
0, if n is odd,

1, if n is even.



NEW PATHWAYS AND CONNECTIONS IN NUMBER THEORY AND ANALYSIS 45

Note that ∑
d|n

cos(πd) = # even divisors of n−# odd divisors of n

= d
(n

2

)
−
{
d(n)− `d

(n
2

)}
= (1 + `)d

(n
2

)
− d(n).

Hence,

∞∑
n=1

F
(x
n

)
cos(πn) = −

∑′

n≤x
n odd

d(n) +
∑′

n≤x
n even

{
2d
(n

2

)
− d(n)

}

= 2
∑′

n≤ 1
2
x

d(n)−
∑′

n≤x
d(n).

Applying the Voronöı summation formula (6.1) to each of the sums above and simplifying,
we find that

∞∑
n=1

F
(x
n

)
cos(πn) = −x log 2 +

1

4
−
√

2x
∞∑
n=1

d(n)√
n

(
Y1(2π

√
2nx) +

2

π
K1(2π

√
2nx)

)

+
√
x

∞∑
n=1

d(n/2)√
n/2

(
Y1(2π

√
2nx) +

2

π
K1(2π

√
2nx)

)

= −x log 2 +
1

4
−
√

2x
∞∑
k=1

1√
k

( ∑
d|k
d odd

1

)(
Y1(2π

√
2kx) +

2

π
K1(2π

√
2kx)

)
.

Letting k = m(2n+ 1) and interpreting the double sum as limN→∞
∑

m,n≤N , we deduce that

∞∑
n=1

F
(x
n

)
cos(πn) = −x log 2 +

1

4
+
√
x

∞∑
m=1

∞∑
n=0

I1(4π
√
m(n+ 1

2)x)√
m(n+ 1

2)
, (11.5)

where I1(z) is defined by (11.4). Then (11.5) is exactly Entry 11.2 with θ = 1
2 .

It should be mentioned here that Dixon and Ferrar [32] established, for a, b > 0, the
identity

aµ/2
∞∑
n=0

r2(n)

(n+ b)µ/2
Kµ(2π

√
a(n+ b)) = b(1−µ)/2

∞∑
n=0

r2(n)

(n+ a)(1−µ)/2
K1−µ(2π

√
b(n+ a)).

(11.6)
Generalizations have been given by Berndt [7, p. 343, Theorem 9.1] and F. Oberhettinger
and K. Soni [65, p. 24]. Using Jacobi’s identity

r2(n) = 4
∑
d|n
d odd

(−1)(d−1)/2,
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we can recast (11.6) as an identity between double series

aµ/2
∞∑
n=0

∞∑
m=0


Kµ

(
4π
√
a
((
n+ 1

4

)
m+ b

4

))
((4n+ 1)m+ b)µ/2

−
Kµ

(
4π
√
a
((
n+ 3

4

)
m+ b

4

))
((4n+ 3)m+ b)µ/2


= b(1−µ)/2

∞∑
n=0

∞∑
m=0


K1−µ

(
4π
√
b
((
n+ 1

4

)
m+ a

4

))
((4n+ 1)m+ a)(1−µ)/2

−
K1−µ

(
4π
√
b
((
n+ 3

4

)
m+ a

4

))
((4n+ 3)m+ a)(1−µ)/2

 .

In this section, we establish one-variable generalizations of Entries 11.1 and 11.2, where
the double sums here are also interpreted as limN→∞

∑
m,n≤N , instead of as iterated double

sums. It is an open problem to determine if the series can be replaced by iterated double
series. As in Entries 11.1 and 11.2, the series on the left-hand sides of Theorems 11.3 and
11.4 are finite.

Theorem 11.3. Let ζ(s, a) denote the Hurwitz zeta function. Let 0 < θ < 1. Then, for
|σ| < 1

2 ,

∞∑
n=1

F
(x
n

) sin (2πnθ)

ns
= −xsin(πs/2)Γ(−s)

(2π)−s
(ζ(−s, θ)− ζ(−s, 1− θ)) (11.7)

− cos(πs/2)Γ(1− s)
2(2π)1−s

(ζ(1− s, θ)− ζ(1− s, 1− θ)) +
x

2
sin
(πs

2

)
×
∞∑
m=1

∞∑
n=0

M1−s

(
4π
√
mx (n+ θ)

)
(mx)(1+s)/2(n+ θ)(1−s)/2

−
M1−s

(
4π
√
mx (n+ 1− θ)

)
(mx)(1+s)/2(n+ 1− θ)(1−s)/2

 ,

where

Mν(x) =
2

π
Kν(x) +

1

sin(πν)
(Jν(x)− J−ν(x)) =

2

π
Kν(x) + Yν(x) + Jν(x) tan

(πν
2

)
. (11.8)

We show that Entry 11.1 is identical with Theorem 11.3 when s = 0. First observe that
[5, p. 264, Theorem 12.13]

ζ(0, θ) =
1

2
− θ (11.9)

and
lim
s→0

(ζ(1− s, θ)− ζ(1− s, 1− θ)) = ψ(1− θ)− ψ(θ) = π cot(πθ),

where ψ(z) = Γ′(z)/Γ(z) denotes the digamma function. Since, by (2.14), J−1(x) = −J1(x),

lim
s→0

sin(πs/2)M1−s(x) = J1(x). (11.10)

Now taking the limit as s → 0 on both sides of (11.7) and using (11.9)–(11.10), we obtain
Entry 11.1.

Theorem 11.4. Let 0 < θ < 1. Then, for |σ| < 1
2 ,

∞∑
n=1

F
(x
n

) cos (2πnθ)

ns
= x

cos(πs/2)Γ(−s)
(2π)−s

(ζ(−s, θ) + ζ(−s, 1− θ)) (11.11)

−
sin(12πs)Γ(1− s)

2(2π)1−s
(ζ(1− s, θ) + ζ(1− s, 1− θ))− x

2
cos
(πs

2

)
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×
∞∑
m=1

∞∑
n=0

H1−s

(
4π
√
mx (n+ θ)

)
(mx)

1+s
2 (n+ θ)

1−s
2

+
H1−s

(
4π
√
mx (n+ 1− θ)

)
(mx)

1+s
2 (n+ 1− θ)

1−s
2

 ,

where

Hν(x) =
2

π
Kν(x)− 1

sin(πν)
(Jν(x) + J−ν(x)) =

2

π
Kν(x) + Yν(x)− Jν(x) cot

(πν
2

)
. (11.12)

We demonstrate that Entry 11.2 can be obtained from Theorem 11.4 as the particular case
s = 0. First,

lim
s→0

Γ(−s)(ζ(−s, θ) + ζ(−s, 1− θ)) = lim
s→0

(−s)Γ(−s)(ζ(−s, θ) + ζ(−s, 1− θ))
−s

= ζ ′(0, θ) + ζ ′(0, 1− θ)
= − log(2 sin(πθ)), (11.13)

where we used the fact that ζ ′(0, θ) = log(Γ(θ)) − 1
2 log(2π) [11]. Second, since s = 1 is a

simple pole of ζ(s, θ) with residue 1, then

lim
s→0

sin(πs/2)(ζ(1− s, θ) + ζ(1− s, 1− θ))

= lim
s→0

sin(πs/2)

s
s(ζ(1− s, θ) + ζ(1− s, 1− θ)) = −π.

Third, by (2.15),

lim
s→0

1

2 sin(πs/2)
(J1−s(x) + Js−1(x)) = −Y1(x). (11.14)

Taking the limit as s→ 0 in (11.11) while using (11.13)–(11.14), we obtain Entry 11.2.

12. Further Preliminary Results

Let us define the generalized twisted divisor sum by

σs(χ, n) :=
∑
d|n

χ(d)ds, (12.1)

which, for Re z > max{1, 1 + σ}, has the generating function

ζ(z)L(z − s, χ) =

∞∑
n=1

σs(χ, n)

nz
.

The following lemma from the papers of Voronöı [82] and Oppenheim [67] is instrumental
in proving our main theorems.

Lemma 12.1. If x > 0, x /∈ Z, and −1
2 < σ < 1

2 , then∑′

n≤x
σ−s(n) = − cos(12πs)

∞∑
n=1

σ−s(n)
(x
n

)(1−s)/2
H1−s

(
4π
√
nx
)

+ xZ(s, x)− 1

2
ζ(s), (12.2)

where Hν(x) is defined in (11.12), and where

Z(s, x) =

ζ(1 + s) +
ζ(1− s)

1− s
x−s, if s 6= 0,

log x+ 2γ − 1, if s = 0,
(12.3)

is analytic for all s.
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We show that (12.2) reduces to Voronöı’s formula (6.1) when s = 0. From the definition
(11.12) of Hν and (11.14), we find that

H1(4π
√
nx) = Y1(4π

√
nx) +

2

π
K1(4π

√
nx) = −I1(4π

√
nx).

We now show that

lim
s→0

Z(s, x) = log x+ 2γ − 1 = Z(0, x). (12.4)

Recall that the Laurent series expansion of ζ(s) near the pole s = 1 is given by

ζ(s) =
1

s− 1
+ γ +

∞∑
n=1

(−1)nγn(s− 1)n

n!
,

where γn, n ≥ 1, are the Stieltjes constants defined by [10]

γn = lim
N→∞

(
N∑
k=1

logn k

k
− logn+1N

n+ 1

)
. (12.5)

Thus, by (12.3), for s > 0,

Z(s, x) =
s− 1 + x−s

s(s− 1)
+ γ

(
1− x−s

s− 1

)
+

∞∑
n=1

(−1)nγns
n

n!
+

x−s

1− s

∞∑
n=1

γns
n

n!
.

Hence,

lim
s→0

Z(s, x) = lim
s→0

s− 1 + x−s

s(s− 1)
+ 2γ = − lim

s→0
(1− log xx−s) + 2γ = log x+ 2γ − 1,

which proves (12.4).

Lemma 12.2. Let F (x) be defined by (11.1). For each character χ modulo q, where q is
prime, define the Gauss sum

τ(χ) =
∑

n (mod q)

χ(n)e2πin/q. (12.6)

If 0 < a < q and (a, q) = 1, then, for any complex number s,

∞∑
n=1

F
(x
n

)
sin

(
2πna

q

)
ns = −iqs

∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ odd

χ(a)τ(χ̄)
∑′

1≤n≤dx/q

σs(χ, n),

where φ(n) denotes Euler’s φ-function.

Proof. First, we see that

∑′

n≤x
σs(n) =

∑′

n≤x

∑
d|n

ds =
∑
d≤x

ds
bx/dc∑′

m=1

1 =
∞∑
n=1

F
(x
n

)
ns. (12.7)

Similarly, for any Dirichlet character χ modulo q,∑′

n≤x
σs(χ, n) =

∞∑
n=1

F
(x
n

)
χ(n)ns, (12.8)
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where σs(χ, n) is defined in (12.1). We have
∞∑
n=1

F
(x
n

)
sin

(
2πna

q

)
ns =

∞∑
n=1

∑
d|q

∑
(n,q)=q/d

F
(x
n

)
sin

(
2πna

q

)
ns

=
∑
d|q

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
sin

(
2πma

d

)(qm
d

)s

=
∑
d|q
d>1

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
sin

(
2πma

d

)(qm
d

)s
.

Now using the fact [15, p. 72, Lemma 2.5]

sin

(
2πma

d

)
=

1

iφ(d)

∑
χmod d
χ odd

χ(a)τ(χ̄)χ(m), (12.9)

we find that
∞∑
n=1

F
(x
n

)
sin

(
2πna

q

)
ns

=
∑
d|q
d>1

1

iφ(d)

∞∑
m=1

(m,d)=1

F

(
dx

qm

)(qm
d

)s ∑
χmod d
χ odd

τ(χ̄)χ(m)χ(a)

= −iqs
∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ odd

τ(χ̄)χ(a)
∑′

n≤dx/q

σs(χ, n),

as can be seen from (12.8). This completes the proof of Lemma 12.2. �

Lemma 12.3. If 0 < a < q and (a, q) = 1, then, for any complex number s,

∞∑
n=1

F
(x
n

)
cos

(
2πna

q

)
ns

= qs
∑′

1≤n≤x/q

σs(n) + qs
∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ even

χ(a)τ(χ̄)
∑′

1≤n≤dx/q

σs(χ, n).

Proof. We have
∞∑
n=1

F
(x
n

)
cos

(
2πna

q

)
ns =

∞∑
n=1

∑
d|q

∑
(n,q)=q/d

F
(x
n

)
cos

(
2πna

q

)
ns

=
∑
d|q

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
cos

(
2πma

d

)(qm
d

)s

=

∞∑
m=1

F

(
x

qm

)
(qm)s +

∑
d|q
d>1

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
cos

(
2πna

d

)(qm
d

)s
.
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Invoking (12.7) and (12.9) above, we find that

∞∑
n=1

F
(x
n

)
cos

(
2πna

q

)
ns = qs

∑′

n≤x/q

σs(n)

+ qs
∑
d|q
d>1

1

dsφ(d)

∞∑
m=1

(m,d)=1

F

(
dx

qm

)
ms

∑
χmod d
χ even

τ(χ̄)χ(a)χ(m)

= qs
∑′

n≤x/q

σs(n) + qs
∑
d|q
d>1

1

dsφ(d)

∑
χmod d
χ even

τ(χ̄)χ(a)
∑′

n≤dx/q

σs(χ, n).

Thus, we have finished the proof of Lemma 12.3. �

We need a lemma from [21, p. 5, Lemma 1].

Lemma 12.4. Let σa denote the abscissa of absolute convergence for

φ(s) :=

∞∑
n=1

anλ
−s
n .

Then for k ≥ 0, σ > 0, and σ > σa,

1

Γ(k + 1)

∑′

λn≤x
an(x− λn)k =

1

2πi

∫
(σ)

Γ(s)φ(s)xs+k

Γ(s+ k + 1)
ds,

where the prime ′ on the summation sign indicates that if k = 0 and x = λm for some positive
integer m, then we count only 1

2am.

We recall the following version of the Phragmén-Lindelöf theorem [61, p. 109].

Lemma 12.5. Let f be holomorphic in a strip S given by a < σ < b, |t| > η > 0, and
continuous on the boundary. If for some constant θ < 1,

f(s)� exp(eθπ|s|/(b−a)),

uniformly in S, f(a + it) = o(1), and f(b + it) = o(1) as |t| → ∞, then f(σ + it) = o(1)
uniformly in S as |t| → ∞.

We also need two lemmas, proven by K. Chandrasekharan and R. Narasimhan [21, Corollar-
ies 1 and 2, p. 11] (see also [6, Lemmas 12 and 13]), which are based on results of A. Zygmund
[88] for equi-convergent series. We recall that two series

∞∑
j=−∞

aj(x) and
∞∑

j=−∞
bj(x)

are uniformly equi-convergent on an interval if

n∑
j=−n

[aj(x)− bj(x)]

converges uniformly on that interval as n→∞ [6, Definition 5].
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Lemma 12.6. Let an be a positive strictly increasing sequence of numbers tending to ∞,
and suppose that an = a−n. Suppose that J is a closed interval contained in an interval I of
length 2π. Assume that

∞∑
n=−∞

|cn| <∞.

Then, if g is a function with period 2π which equals
∞∑

n=−∞
cne

ianx

on I, the Fourier series of g converges uniformly on J .

Lemma 12.7. With the same notation as Lemma 12.6, assume that

sup0≤h≤1

∣∣∣∣∣∣
∑

k<an<k+h

cn

∣∣∣∣∣∣ = o(1),

as k →∞, and
∞∑

n=−∞

|cn|
an

<∞.

Let A(x) be a C∞ function with compact support on I, which is equal to 1 on J . Furthermore,
let B(x) be a C∞ function. Then, the series

B(x)
∞∑

n=−∞
cne

ianx

is uniformly equi-convergent on J with the differentiated series of the Fourier series of a
function with period 2π, which equals

A(x)

∞∑
n=−∞

c(n)Wn(x)

on I, where Wn(x) is an antiderivative of B(x)eianx.

Let the Fourier series of any function f defined, say, in the interval (−π, π), be

S[f ] :=
∞∑

n=−∞
cne

inx.

The following result of Zygmund [89, Theorem 6.6, p. 53] expresses the Riemann-Lebesgue
localization principle.

Lemma 12.8. If two functions f1 and f2 are equal in an interval I, then S[f1] and S[f2] are
uniformly equi-convergent in any interval I ′ interior to I.

For each integer λ define

G̃λ+s(z) := Jλ+s(z) cos
(πs

2

)
−
(
Yλ+s(z)− (−1)λ

2

π
Kλ+s(z)

)
sin
(πs

2

)
. (12.10)

By (8.3), (8.5), and (8.4),

d

dx

(x
u

)(1+k−s)/2
σs(n)G̃1+k−s(4π

√
xu) = 2π

(x
u

)(k−s)/2
σs(n)G̃k−s(4π

√
xu). (12.11)
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Let us consider the Dirichlet series
∑∞

n=1 anµ
−s
n with abscissa of absolute convergence σa and

0 < µ1 < µ2 < · · · < µn →∞. For y > 0 and ν = λ+ s, define

F̃ν(y) :=
∞∑
n=1

an

(
qy2

µn

)ν/2
G̃ν

(
4πy

√
µn
q

)
and

Fν(y) :=
∞∑
n=1

an

(
qy2

µn

)ν/2
Gν

(
4πy

√
µn
q

)
,

where Gλ+s(z) is defined in (8.1). Suppose that

∞∑
n=1

|an|

µ
1
2
ν+ 3

4
n

<∞ (12.12)

and

sup0≤h≤1

∣∣∣∣∣∣
∑

m2<µn≤(m+h)2

an

µ
1
2
ν+ 1

4
n

∣∣∣∣∣∣ = o(1), (12.13)

as m→∞.
The following lemma is similar to Theorem II in [21] and Lemma 14 in [6].

Lemma 12.9. The function 2yF̃ν(y) is uniformly equi-convergent on any interval J of length
less than 1 with the differentiated series of the Fourier series of a function with period 1,
which on I equals A(y)F̃ν+1(y), where I is of length 1 and contains J . Moreover, F̃ν(y) is a
continuous function.

Proof. We examine the function

f(y) := 2qν/2y1+ν
∞∑
n=1

(
an
µn

)ν/2{
G̃ν

(
4πy

√
µn
q

)
(12.14)

− q1/4

πµ
1/4
n (2y)1/2

(
cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d′0

)
− q3/4

2π2µ
3/4
n y3/2

(
sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d1 + cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d′1

)}
,

where d0, d
′
0, d1, and d′1 are constants. Since y > 0, then by the definition (12.10), (2.16),

(2.17), (2.18), and (12.12), the function f(y) in (12.14) is a continuously differentiable func-
tion. Let g be a function with period 1 which equals f on I. Since f is continuously dif-
ferentiable, the Fourier series of g is uniformly convergent on J . By the hypothesis (12.12),
(12.13), and Lemma 12.7, the series

2qν/2y1+ν
∞∑
n=1

(
an
µn

)ν/2 q1/4

πµ
1/4
n (2y)1/2

×
(

cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d′0

)
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is uniformly equi-convergent on J with the derived series of the Fourier series of a function
that is of period 1 and equals on I,

A(y)
∞∑
n=1

(
an
µn

)ν/2 ∫ y

α
2qν/2t1+ν

q1/4

πµ
1/4
n (2t)1/2

×
(

cos

(
4πt

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πt

√
µn
q
− πν

2
− π

4

)
d′0

)
dt, (12.15)

for some α > 0. Using Lemma 12.6, we can prove a result similar to that of (12.15) for the
series

2qν/2y1+ν
∞∑
n=1

(
an
µn

)ν/2 q3/4

2π2µ
3/4
n (y)3/2

×
(

cos

(
4πy

√
µn
q
− πν

2
− π

4

)
d0 + sin

(
4πy

√
µn
q
− πν

2
− π

4

)
d′0

)
.

Hence, the series

2y
∞∑
n=1

an

(
qy2

µn

)ν/2
G̃ν

(
4πy

√
µn
q

)
is uniformly equi-convergent on J with the derived series of the Fourier series of a function
that is of period 1 and equals on I,

A(y)
∞∑
n=1

an

∫ y

0
2t

(
qt2

µn

)ν/2
G̃ν

(
4πt

√
µn
q

)
dt

=
A(y)

2π

∞∑
n=1

an

(
qy2

µn

)(ν+1)/2

G̃ν+1

(
4πy

√
µn
q

)
.

In the last step we use (12.11). This completes the proof of the lemma.
�

The following lemma is proved by the same kind of argument.

Lemma 12.10. The function 2yFν(y) is uniformly equi-convergent on any interval J of
length less than 1 with the differentiated series of the Fourier series of a function with period
1, which on I equals A(y)Fν+1(y), where I is of length 1 and contains J . Moreover, Fν(y) is
a continuous function.

13. Proof of Theorem 11.3

We prove the theorem under the assumption that the double series on the right-hand
sides of (11.7) and (11.11) are summed symmetrically, i.e., the product mn of the indices of
summation tends to ∞. Under this assumption, we prove that the double series in (11.7)
and (11.11) are uniformly convergent with respect to θ on any compact subinterval of (0, 1).
By continuity, it is sufficient to prove the theorem for all primes q and all fractions θ = a/q,
where 0 < a < q. Therefore for these values of θ, Theorem 11.3 is equivalent to the following
theorem.

Theorem 13.1. Recall that Mν is defined in (11.8). Let q be a prime and 0 < a < q. Let

Ls(a, q, x) = −x
2

sin
(πs

2

)
(13.1)



54 BRUCE C. BERNDT, ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

×
∞∑
m=1

∞∑
n=0

M1−s

(
4π
√
mx (n+ a/q)

)
(mx)(1+s)/2(n+ a/q)(1−s)/2

−
M1−s

(
4π
√
mx (n+ 1− a/q)

)
(mx)(1+s)/2(n+ 1− a/q)(1−s)/2

 ,

where Ms(z) is defined in (11.8). Then, for |σ| < 1
2 ,

Ls(a, q, x) +

∞∑
n=1

F
(x
n

)sin (2πna/q)

ns
= −xsin(πs/2)Γ(−s)

(2π)−s

(
ζ(−s, a

q
)− ζ

(
−s, 1− a

q

))
− cos(πs/2)Γ(1− s)

2(2π)1−s

(
ζ

(
1− s, a

q

)
− ζ

(
1− s, 1− a

q

))
,

where ζ(s, a) denotes the Hurwitz zeta function.

First we need the following theorem.

Theorem 13.2. If χ is a non-principal odd primitive character modulo q, x > 0, |σ| < 1/2,
and k is a non-negative integer, then

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k

=
xk+1L(1 + s, χ)

Γ(k + 2)
− xkL(s, χ)

2Γ(k + 1)
+ 2

b k+1
2 c∑

n=1

(−1)n−1xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
i

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(qx
n

)(1−s+k)/2
G̃1−s+k

(
4π

√
nx

q

)
,

where G̃λ−s(z) is defined in (12.10). The series on the right-hand side converges uniformly
on any interval for x > 0, where the left-hand side is continuous. The convergence is bounded
on any interval 0 < x1 ≤ x ≤ x2 <∞ when k = 0.

Proof. From (12.1) and Lemma 12.4, for a fixed x > 0, we see that

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k =

1

2πi

∫
(c)
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)
dw, (13.2)

where max{1, 1− σ, σ} < c and k ≥ 0. Consider the positively oriented rectangular contour
R with vertices [c ± iT, 1 − c ± iT ]. Observe that the integrand on the right-hand side of
(13.2) has poles at w = 1 and w = 0 inside the contour R. By the residue theorem,

1

2πi

∫
R
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)
dw (13.3)

= R1

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
+R0

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
,

where we recall that Ra(f(w)) denotes the residue of the function f(w) at the pole w = a.
Straightforward computations show that

R0

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
=
ζ(0)L(s, χ)x1+k

Γ(k + 1)
(13.4)

and

R1

(
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)

)
=
xk+1L(1 + s, χ)

Γ(k + 2)
. (13.5)
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We show that the contribution from the integrals along the horizontal sides (σ ± iT, 1− c ≤
σ ≤ c) on the left-hand side of (13.3) tends to zero as |t| → ∞. We prove this fact by showing
that

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
= o(1),

as |Im w| → ∞, uniformly for 1− c ≤ Re w ≤ c. The functional equation for L(s, χ) for an
odd primitive Dirichlet character χ is given by [28, p. 69](

π

q

)−(1+s)/2
Γ

(
1 + s

2

)
L(s, χ) =

iτ(χ)
√
q

(
π

q

)−(2−s)/2
Γ

(
2− s

2

)
L(1− s, χ), (13.6)

where τ(χ) is the Gauss sum defined in (12.6). Combining the functional equation (2.6) of
ζ(w) and the functional equation (13.6) of L(w + s, χ) for odd primitive χ, we deduce the
functional equation

ζ(w)L(w + s, χ) =
iπ2w+s−1

τ(χ̄)qw+s−1
η(w, s)ζ(1− w)L(1− w − s, χ̄), (13.7)

where

η(w, s) =
Γ
(
1
2(1− w)

)
Γ
(
1
2(2− w − s)

)
Γ
(
1
2w
)

Γ
(
1
2(1 + w + s)

) .

Since c > max{1, 1− σ, σ},

ζ(c+ it)L(c+ it+ s, χ) = O(1),

as |t| → ∞. Using (2.5), we see that

Γ(w)

Γ(w + k + 1)
= O(|Im w|−1−k), (13.8)

uniformly in 1− c ≤ Re w ≤ c, as |Im w| → ∞. Therefore, for w = c+ it,

ζ(w)L(w,χ)
Γ(w)xw+k

Γ(w + k + 1)
= o(1), (13.9)

as |t| → ∞. Again, using Stirling’s formula (2.5) for the Gamma function and the relation
(13.7), we find that, for w = 1− c+ it,

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
,

=
iπ2w+s−1

τ(χ̄)qw+s−1
η(w, s)ζ(1− w)L(1− w − s, χ̄)

Γ(w)xw+k

Γ(w + k + 1)

= Oq,s(t
2c−σ−k−2)

= o(1), (13.10)

as |t| → ∞, provided that k > 2c−σ−2. From (13.8) and [28, pp. 79, 82, equations (2),(15)],

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
�q exp (C|w| log |w|), (13.11)

for some constant C and |Im w| → ∞. Since the function on the left-hand side of (13.11) is
holomorphic for |Im w| > η′ > 0, then, by using (13.9), (13.10), (13.11), and Lemma 12.5,
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we deduce that

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
= o(1),

uniformly for 1− c ≤ Re w ≤ c and |Im w| → ∞. Therefore,∫ 1−c±iT

c±iT
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)
dw = o(1), (13.12)

as T →∞. Using the evaluation ζ(0) = −1
2 and combining (13.2), (13.3), (13.4), (13.5), and

(13.12), we deduce that

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k =

xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)

+
1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw, (13.13)

provided that k ≥ 0 and k > 2c− σ − 2. Define

I(y) :=
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
yw dw. (13.14)

Using the functional equation (13.7) in the integrand on the right-hand side of (13.13) and
inverting the order of summation and integration, we find that

1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw

=
ixkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
ζ(1− w)L(1− w − s, χ̄)

(
π2x

q

)w
dw

=
ixkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2x

q

)w ∞∑
n=1

σs(χ̄, n)

n1−w
dw

=
ixkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n1+k
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2nx

q

)w
dw

=
ixkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n
I

(
π2nx

q

)
, (13.15)

provided that k > 2c − σ − 1. We compute the integral I(y) by using the residue calculus,
shifting the line of integration to the right, and letting c→ −∞.

Let k be a positive integer and σ 6= 0. From (13.14), we can write

I(y) :=
1

2πi

∫
(1−c)

F (w) dw,

where

F (w) :=
Γ(w)Γ

(
1
2(1− w)

)
Γ
(
1
2(2− w − s)

)
yw

Γ(1 + k + w)Γ
(
1
2w
)

Γ
(
1
2(1 + w + s)

) .
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Note that the poles of the function F (w) on the right side of the line 1− c+ it,−∞ < t <∞,
are at w = 2m+ 1 and w = 2m+ 2− s for m = 0, 1, 2, . . . . Thus,

R2m+1(F (w)) = (−1)m+1 2Γ(2m+ 1)Γ
(
−m− 1

2(s− 1)
)
y2m+1

m!Γ(2 + k + 2m)Γ
(
m+ 1

2

)
Γ
(
1 +m+ 1

2(s)
)

and

R2m+2−s(F (w)) = (−1)m+1 2Γ(2m+ 2− s)Γ
(
−m+ 1

2(s− 1)
)
y2m+2−s

m!Γ(3 + k + 2m− s)Γ
(
m+ 1

2(2− s)
)

Γ
(
m+ 3

2

) .
With the aid of the duplication formula (2.4) and the reflection formula (2.2) for Γ(s), we
find that

R2m+1(F (w)) = − 2s−1

cos(πs/2)

(2
√
y)4m+2

(2m+ k + 1)!Γ(2m+ s+ 1)
(13.16)

and

R2m+2−s(F (w)) =
2(2y)2−s

cos(πs/2)

(2
√
y)4m

(2m+ 1)!Γ(2m+ k + 3− s)
. (13.17)

Now from [83, pp. 77–78], we recall that the modified Bessel function Iν(z) is defined by

Iν(z) :=
∞∑
m=0

(z/2)2m+ν

m!Γ(m+ 1 + ν)
, (13.18)

and that Kν(z) can be represented as

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(πν)
. (13.19)

(We emphasize that the definition of Iν(z) given in (13.18) should not be confused with
the definition of Iν(z) given by Ramanujan in (11.4).) Therefore, from (2.14), (13.18), and
(13.16), for k even,

∞∑
m=0

R2m+1(F (w)) = −2s−1−2ky−k

cos(πs/2)

∞∑
m=0

(2
√
y)4m+2k+2

(2m+ k + 1)!Γ(2m+ 1 + s)

= −2s−1−2ky−k

cos(πs/2)

{ ∞∑
m=0

(2
√
y)4m+2k+2

(2m+ 1)!Γ(2m+ 1 + s− k)

−
k/2∑
m=1

(2
√
y)4m−2

(2m− 1)!Γ(2m− 1 + s− k)

}

= −2−1−ky(1−s−k)/2

cos(πs/2)
(I−1+s−k(4

√
y)− J−1+s−k(4

√
y))

+
2s−1−2ky−k

cos(πs/2)

k/2∑
m=1

(2
√
y)4m−2

(2m− 1)!Γ(2m− 1 + s− k)

= −2−1−ky(1−s−k)/2

cos(πs/2)
(I−1+s−k(4

√
y)− J−1+s−k(4

√
y))

+
2s+1

cos(πs/2)

k/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
. (13.20)
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Similarly, for k odd

∞∑
m=0

R2m+1(F (w)) = −2−1−ky(1−s−k)/2

cos(πs/2)
(I−1+s−k(4

√
y) + J−1+s−k(4

√
y))

+
2s+1

cos(πs/2)

(k+1)/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
. (13.21)

From (13.17), (2.14), and (13.18), we find that

∞∑
m=0

R2m+1−s(F (w)) =
2−1−ky(1−s−k)/2

cos(πs/2)
(−J1−s+k(4

√
y) + I1−s+k(4

√
y)). (13.22)

Invoking (13.19) in the sum of (13.20), (13.21), and (13.22), we deduce that

∞∑
m=0

(R2m+1(F (w)) +R2m+1−s(F (w))) = − sin(πs/2)

2ky(−1+s+k)/2

×

(
J1−s+k(4

√
y) + (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)

+
2s+1

cos(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

Consider the positively oriented contour RN formed by the points {1 − c − iT, 2N + 3
2 −

iT, 2N+ 3
2 + iT, 1−c+ iT}, where T > 0 and N is a positive integer. By the residue theorem,

1

2πi

∫
RN

F (w) dw =
∑

0≤k≤N
R2k+1(F (w)) +

∑
0≤k≤N

R2k+1−s(F (w)). (13.23)

Recall Stirling’s formula in the form [28, p. 73, equation (5)]

Γ(s) =
√

2πe−sss−1/2ef(s),

for −π < arg s < π and f(s) = O (1/|s|), as |s| → ∞. Therefore, for fixed T > 0 and σ →∞,

Γ(s) = O
(
e−σ+(σ−1/2) log σ

)
. (13.24)

Hence, for the integral over the right side of the rectangular contour RN ,∫ 2N+3/2+iT

2N+3/2−iT
F (w) dw �T,s y

2N+3/2e4N−(4N+2+k+σ) logN = o(1), (13.25)

as N →∞. Using Stirling’s formula (2.5) to estimate the integrals over the horizontal sides
of RN , we find that∫ ∞±iT

1−c±iT
F (w) dw �s

∫ ∞
1−c

yσT−2β−σ−k dσ �s,y
y1−c

T 2c−σ−k−2 log T
= o(1), (13.26)

provided that k > 2c− σ − 2. Using (13.23), (13.25), and (13.26) in (13.14), we deduce that

I(y) =
sin(πs/2)

2ky(−1+s+k)/2

(
J1−s+k(4

√
y) + (−1)k+1J−1+s−k(4

√
y)

sinπs
(13.27)
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−(−1)k+1 2

π
K1−s+k(4

√
y)

)
− 2s+1

cos(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
.

Using the functional equation (13.6), the reflection formula (2.2), and the duplication formula
(2.4), for y = π2nx/q, we find that

∞∑
n=1

σs(χ, n)

n

{
2s+1

cos(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)

}

= 2iτ(χ̄)
π1−s

q1−s

b k+1
2 c∑

n=1

(−1)n−1
x−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ). (13.28)

With the aid of (2.15), we see that

sin(πs/2)

(
J1−s+k(4

√
y) + (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)
= G̃1+k−s(4

√
y). (13.29)

Combining (13.13), (13.15), (13.27), and (13.28), we see that

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k =

xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)
(13.30)

+ 2

b k+1
2 c∑

n=1

(−1)n−1
xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
i

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(xq
n

) 1−s+k
2

G̃1−s+k

(
4π

√
nx

q

)
,

provided that k ≥ 0, σ 6= 0, and k > 2c− σ − 1.
For x > 0 fixed, by the asymptotic expansions for Bessel functions (2.16), (2.17), and

(2.18), there exists a sufficiently large integer N0 such that

G̃1+k−s(4π

√
nx

q
)�q

1

(nx)1/4
,

for all n > N0. Hence, for x > 0,∑
n>N0

(qx
n

)(1+k−s)/2
σs(n)G̃1+k−s

(
4π

√
nx

q

)
�q x

(2k−2σ−1)/4
∑
n>N0

σσ(n)

n(2k−2σ+3)/4

�q x
(2k−2σ−1)/4,

provided that k > |σ|+ 1
2 . Therefore, for k > |σ|+ 1

2 and x > 0, the series

∞∑
n=1

(qx
n

)(1+k−s)/2
σs(n)G̃1+k−s

(
4π

√
nx

q

)
is absolutely and uniformly convergent for 0 < x1 ≤ x ≤ x2 <∞. Thus, by differentiating a
suitable number of times with the aid of (12.11), we find that (13.30) may be then upheld
for k > |σ| + 1

2 . Since |σ| < 1
2 , the series on the left-hand side of (13.30) is continuous

for k > |σ| + 1
2 . Conversely, we can see that the series on the left-hand side of (13.30) is
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continuous when k > 0, which implies that |σ| < 1
2 . Thus, the identity (13.30) is valid for

k > |σ| + 1
2 and σ 6= 0. Since the series on the right-hand side of (13.30) is absolutely and

uniformly convergent for 0 < x1 ≤ x ≤ x2 <∞, we can take the limit as s→ 0 on both sides
of (13.30) for |σ| < 1

2 and k > |σ| + 1
2 . Hence, the identity (13.30) is valid for k > |σ| + 1

2

with |σ| < 1
2 .

Suppose that the identity

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k =

xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)

+ 2

b k+1
2 c∑

n=1

(−1)n−1
xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
i

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(xq
n

) 1−s+k
2

G̃1−s+k

(
4π

√
nx

q

)
, (13.31)

is valid for some k > 0. Let β > max{1, 1− σ}. Then
∞∑
n=1

|σs(n)|
nβ

<∞

and

sup0≤h≤1

∣∣∣∣∣∣
∑

m2<n≤(m+h)2

σs(n)

nβ−1/2

∣∣∣∣∣∣ = o(1),

as m → ∞. Put x = y2 in the identity (13.31), where y lies in an interval J of length less
than 1. By Lemma 12.9, 2y times the infinite series on the right-hand side of (13.31), with
x = y2, is uniformly equi-convergent on J with the differentiated series of the Fourier series
of a function with period 1 which equals A(y)F̃2−s+k(y) on I, provided that k > |σ| − 1

2 . But

then, k + 1 > |σ|+ 1
2 . Hence, from (13.30),

i

τ(χ̄)(2π)k+1
A(y)F̃2−s+k(y)

= A(y)

{∑′

n≤y2

σ−s(χ, n)(y2 − n)k+1

Γ(k + 2)
− y2(k+2)L(1 + s, χ)

Γ(k + 3)
+
L(s, χ)y2(k+1)

2Γ(k + 2)

− 2

b k+2
2 c∑

n=1

(−1)n−1
y2(k−2n+2)

Γ(k − 2n+ 3)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

}

= A(y)

{∫ y2

0

∑′

n≤t

σ−s(χ, n)(t− n)k

Γ(k + 1)
dt− y2(k+2)L(1 + s, χ)

Γ(k + 3)
+
L(s, χ)y2(k+1)

2Γ(k + 2)

− 2

b k+2
2 c∑

n=1

(−1)n−1
y2(k−2n+2)

Γ(k − 2n+ 3)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

}

= A(y)

{∫ y

0

∑′

n≤t2

σ−s(χ, n)(t2 − n)k2t

Γ(k + 1)
dt− y2(k+2)L(1 + s, χ)

Γ(k + 3)
+
L(s, χ)y2(k+1)

2Γ(k + 2)
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− 2

b k+2
2 c∑

n=1

(−1)n−1
y2(k−2n+2)

Γ(k − 2n+ 3)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

}
.

Note that A(y) = 1 on J . Therefore, from Lemma 12.8 and the properties of the Fourier
series of the function

2y

Γ(k + 1)

∑′

n≤y2
σ−s(χ, n)(y2 − n)k

in I, we see that the identity (13.30) holds for k > |σ| − 1
2 , which completes the proof of

Theorem 13.2. �

From (11.8) and (13.29), we find that sin(πs/2)M1−s(z) = G̃1−s(z). The case k = 0 of
Theorem 13.2 gives the following corollary.

Corollary 13.3. If χ is a non-principal odd primitive character modulo q, x > 0, and
|σ| < 1/2, then∑′

n≤x
σ−s(χ, n) = xL(1 + s, χ)− 1

2
L(s, χ)

+
i sin (πs)/2

τ(χ̄)

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s
2
M1−s

(
4π

√
nx

q

)
,

where M1−s(z) is defined in (11.8).

Next, we show that Theorem 13.3 implies Theorem 13.1. We then finish this section and
hence finish the proof of Theorem 11.3 by proving that Theorem 11.3 implies Theorem 13.3.

Proof that Theorem 13.3 implies Theorem 13.1. Recall that Ls(a, q, x) andMν(z) are defined
in (13.1) and (11.8), respectively. Thus,

Ls(a, q, x) = −x
2

sin
(πs

2

)

×
∞∑
m=1

∞∑
n=0


M1−s

(
4π

√
mx

(
n+ a

q

))
(mx)(1+s)/2(n+ a/q)(1−s)/2

−
M1−s

(
4π

√
mx

(
n+ 1− a

q

))
(mx)(1+s)/2(n+ 1− a/q)(1−s)/2


= −x

2
sin
(πs

2

)
×
∞∑
m=1


∞∑
n=1

n≡amod q

M1−s

(
4π
√

mnx
q

)
(mx)(1+s)/2(n/q)(1−s)/2

−
∞∑
n=1

n≡−amod q

M1−s

(
4π
√

mnx
q

)
(mx)(1+s)/2(n/q)(1−s)/2


= −(qx)(1−s)/2

2φ(q)
sin
(πs

2

) ∞∑
m=1

∞∑
n=1

M1−s

(
4π
√

mnx
q

)
m(1+s)/2n(1−s)/2

∑
χmod q

χ̄(n)(χ(a)− χ(−a))

= −(qx)(1−s)/2

φ(q)
sin
(πs

2

) ∑
χmod q
χ odd

χ(a)

∞∑
m=1

∞∑
n=1

χ̄(n)ns
M1−s

(
4π
√

mnx
q

)
(mn)(1+s)/2



62 BRUCE C. BERNDT, ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

= −(qx)(1−s)/2

φ(q)
sin
(πs

2

) ∑
χmod q
χ odd

χ(a)

∞∑
n=1

∑
d|n

χ̄(d)ds
M1−s

(
4π
√

nx
q

)
n(1+s)/2

= −(qx)(1−s)/2

φ(q)
sin
(πs

2

) ∑
χmod q
χ odd

χ(a)

∞∑
n=1

σs(χ̄, n)
M1−s

(
4π
√

nx
q

)
n(1+s)/2

.

Now, from Lemma 12.2 and Theorem 13.1,

Ls(a, q, x) +

∞∑
n=1

F
(x
n

) sin (2πna/q)

ns
= − ix

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(1 + s, χ)

+
i

2φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(s, χ).

Using the functional equation (13.6) of L(s, χ) for odd primitive characters, we find that

Ls(a, q, x) +

∞∑
n=1

F
(x
n

) sin (2πna/q)

ns
=
xπs+1/2Γ

(
1
2(1− s)

)
Γ
(
1
2(2 + s)

) q−s

φ(q)

∑
χmod q
χ odd

χ(a)L(−s, χ̄)

−
πs−1/2Γ

(
1
2(2− s)

)
2Γ
(
1
2(1 + s)

) q1−s

φ(q)

∑
χmod q
χ odd

χ(a)L(1− s, χ̄)

=
xπs+1/2Γ

(
1
2(1− s)

)
2Γ
(
1
2(2 + s)

) q−s

φ(q)

∑
χmod q

(χ(a)− χ(q − a))L(−s, χ̄)

−
πs−1/2Γ

(
1
2(2− s)

)
4Γ
(
1
2(1 + s)

) q1−s

φ(q)

∑
χmod q

(χ(a)− χ(q − a)L(1− s, χ̄). (13.32)

From [5, p. 249, Chapter 12],

L(s, χ) = q−s
q∑

h=1

χ(h)ζ(s, h/q). (13.33)

Multiplying both sides of (13.33) by χ̄(a) and summing over all characters χ modulo q, we
deduce that

ζ(s, a/q) =
qs

φ(q)

∑
χmod q

χ̄(a)L(s, χ), (13.34)

where ζ(s, a) denotes the Hurwitz zeta function. Using the duplication formula (2.4) and the
reflection formula (2.2) for Γ(s), we find that

Γ
(
1
2s
)

Γ
(
1
2(1− s)

) =
cos(12πs)Γ(s)

2s−1
√
π

. (13.35)

Utilizing (13.34) and (13.35) in (13.32), we see that

Ls(a, q, x) +
∞∑
n=1

F
(x
n

)sin (2πna/q)

ns
= −xsin(πs/2)Γ(−s)

(2π)−s

(
ζ

(
−s, a

q

)
− ζ

(
−s, 1− a

q

))
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− cos(πs/2)Γ(1− s)
2(2π)1−s

(
ζ

(
1− s, a

q

)
− ζ

(
1− s, 1− a

q

))
,

which completes the proof. �

The proof that Theorem 11.3 implies Theorem 13.3 is similar to the proof that Theorem
11.4 implies Theorem 14.3, which we give in the next section.

14. Proof of Theorem 11.4

Arguing as in the previous section, for 0 < a < q and q prime, we can show that Theorem
11.4 is equivalent to the following theorem.

Theorem 14.1. Let q be a prime and 0 < a < q. Let

Gs(a, q, x) =
x

2
cos
(πs

2

)
(14.1)

×
∞∑
m=1

∞∑
n=0


H1−s

(
4π

√
mx

(
n+ a

q

))
(mx)(1+s)/2(n+ a/q)(1−s)/2

+

H1−s

(
4π

√
mx

(
n+ 1− a

q

))
(mx)(1+s)/2(n+ 1− a/q)(1−s)/2

 ,

where Hν(z) is defined in (11.12) and where we assume that the product of the summation
indices mn tends to infinity. Then, for |σ| < 1

2 ,

Gs(a, q, x) +
∞∑
n=1

F
(x
n

)cos (2πna/q)

ns
= x

cos(12πs)Γ(−s)
(2π)−s

(
ζ

(
−s, a

q

)
+ ζ

(
−s, 1− a

q

))

−
sin(12πs)Γ(1− s)

2(2π)1−s

(
ζ

(
1− s, a

q

)
+ ζ

(
1− s, 1− a

q

))
.

We show that Theorem 14.1 is equivalent to Theorem 14.3, which is a special case of the
following theorem.

Theorem 14.2. If χ is a non-principal even primitive character modulo q, x > 0, |σ| < 1/2,
and k is a non-negative integer, then

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k

=
xk+1L(1 + s, χ)

Γ(k + 2)
− xkL(s, χ)

2Γ(k + 1)
+ 2

b k+1
2 c∑

n=1

(−1)n−1xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
1

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(qx
n

)(1−s+k)/2
G1−s+k

(
4π

√
nx

q

)
,

where Gλ−s(z) is defined in (8.1). The series on the right-hand side converges uniformly on
any interval for x > 0 where the left-hand side is continuous. The convergence is bounded on
any interval 0 < x1 ≤ x ≤ x2 <∞ when k = 0.

Proof. From (12.1) and Lemma 12.4, for fixed x > 0, we see that

1

Γ(1 + k)

∑′

n≤x
σ−s(χ, n)(x− n)k =

1

2πi

∫
(c)
ζ(w)L(w + s, χ)

Γ(w)xw+k

Γ(w + k + 1)
dw,
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where max{1, 1 − σ, σ} < c and k ≥ 0. Proceeding as we did in the proof of Theorem 13.2,
we find that

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k =

xk+1L(1 + s, χ)

Γ(k + 2)
− L(s, χ)xk

2Γ(k + 1)

+
1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw, (14.2)

provided that k ≥ 0 and k > 2c − σ − 2. The functional equation for L(2s, χ) for an even
primitive Dirichlet character χ is given by [28, p. 69](

π

q

)−s
Γ(s)L(2s, χ) =

τ(χ)
√
q

(
π

q

)−( 12−s)
Γ

(
1

2
− s
)
L(1− 2s, χ), (14.3)

where τ(χ) is the Gauss sum defined in (12.6). Combining the functional equation (2.6) of
ζ(2w) and the functional equation (14.3) of L(2w+ s, χ) for even primitive χ, we deduce the
functional equation

ζ(w)L(w + s, χ) =
π2w+s−1

τ(χ̄)qw+s−1
η(w, s)ζ(1− w)L(1− w − s, χ̄), (14.4)

where

η(w, s) =
Γ
(
1
2(1− w)

)
Γ
(
1
2(1− w − s)

)
Γ
(
1
2w
)

Γ
(
1
2(w + s)

) .

Define

I(y) :=
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
yw dw. (14.5)

Using the functional equation (14.4) in the integrand on the right-hand side of (14.2) and
inverting the order of summation and integration, we find that

1

2πi

∫
(1−c)

ζ(w)L(w + s, χ)
Γ(w)xw+k

Γ(w + k + 1)
dw

=
xkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)
ζ(1− w)L(1− w − s, χ̄)

(
π2x

q

)w
dw

=
xkπs−1

τ(χ̄)qs−1
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2x

q

)w ∞∑
n=1

σs(χ̄, n)

n1−w
dw

=
xkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n1+k
1

2πi

∫
(1−c)

η(w, s)Γ(w)

Γ(w + k + 1)

(
π2nx

q

)w
dw

=
xkπs−1

τ(χ̄)qs−1

∞∑
n=1

σs(χ̄, n)

n
I

(
π2nx

q

)
, (14.6)

provided that k > 2c − σ − 1. We compute the integral I(y) by using the residue calculus,
shifting the line of integration to the right, and letting c→ −∞.

Let k be a positive integer and σ 6= 0. By (14.5), we can write

I(y) :=
1

2πi

∫
(1−c)

F (w) dw,
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where

F (w) :=
Γ(w)Γ

(
1
2(1− w)

)
Γ
(
1
2(1− w − s)

)
yw

Γ(1 + k + w)Γ
(
1
2w
)

Γ
(
1
2(w + s)

) .

Note that the poles of the function F (w) on the right side of the line 1− c+ it,−∞ < t <∞,
are at w = 2m + 1 and w = 2m + 1 − s, m = 0, 1, 2, . . . . Calculating the residues, we find
that

R2m+1(F (w)) = (−1)m+1 2Γ(2m+ 1)Γ
(
−m− 1

2s
)
y2m+1

m!Γ(2 + k + 2m)Γ
(
m+ 1

2

)
Γ
(
m+ 1

2(s+ 1)
)

and

R2m+1−s(F (w)) = (−1)m+1 2Γ(2m+ 1− s)Γ
(
−m+ 1

2s
)
y2m+1−s

m!Γ(2 + k + 2m− s)Γ
(
m+ 1

2(1− s)
)

Γ
(
m+ 1

2

) .
With the aid of the duplication formula (2.4) and the reflection formula (2.2), we find that

R2m+1(F (w)) =
2s−1

sin(πs/2)

(2
√
y)4m+2

(2m+ k + 1)!Γ(2m+ 1 + s)
(14.7)

and

R2m+1−s(F (w)) = − (2y)1−s

sin(πs/2)

(2
√
y)4m

(2m)!Γ(2m+ k + 2− s)
. (14.8)

Consequently, from (2.14), (13.18), and (14.7), for k even,
∞∑
m=0

R2m+1(F (w)) =
2s−1−2ky−k

sin(πs/2)

∞∑
m=0

(2
√
y)4m+2k+2

(2m+ k + 1)!Γ(2m+ 1 + s)

=
2s−1−2ky−k

sin(πs/2)

{ ∞∑
m=0

(2
√
y)4m+2

(2m+ 1)!Γ(2m+ 1 + s− k)

−
k/2∑
m=1

(2
√
y)4m−2

(2m− 1)!Γ(2m− 1 + s− k)

}

=
2−1−ky(1−s−k)/2

sin(πs/2)
(I−1+s−k(4

√
y)− J−1+s−k(4

√
y))

− 2s+1

sin(πs/2)

k/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
. (14.9)

For each odd integer k,
∞∑
m=0

R2m+1(F (w)) =
2−1−ky(1−s−k)/2

sin(πs/2)
(I−1+s−k(4

√
y) + J−1+s−k(4

√
y))

− 2s+1

sin(πs/2)

(k+1)/2∑
m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
. (14.10)

Similarly, from (14.8), we find that
∞∑
m=0

R2m+1−s(F (w)) = −2−1−ky(1−s−k)/2

sin(πs/2)
(J1−s+k(4

√
y) + I1−s+k(4

√
y)). (14.11)
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Utilizing (13.19) in the sum of (14.9), (14.10), and (14.11), we deduce that
∞∑
m=0

(R2m+1(F (w)) +R2m+1−s(F (w))) = − cos(πs/2)

2ky(−1+s+k)/2

×

(
J1−s+k(4

√
y)− (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)

− 2s+1

sin(πs/2)

b k+1
2 c∑

m=1

2−4my1−2n

Γ(k − 2m+ 2)Γ(1− 2m+ s)
. (14.12)

Using (2.15), we can show that

cos(πs/2)

(
J1−s+k(4

√
y)− (−1)k+1J−1+s−k(4

√
y)

sinπs
− (−1)k+1 2

π
K1−s+k(4

√
y)

)
= G1+k−s(4

√
y). (14.13)

Consider the positively oriented contour RN formed by the points {1 − c − iT, 2N + 3
2 −

iT, 2N+ 3
2 + iT, 1−c+ iT}, where T > 0 and N is a positive integer. By the residue theorem,

1

2πi

∫
RN

F (w) dw =
∑

0≤k≤N
R2k+1(F (w)) +

∑
0≤k≤N

R2k+1−s(F (w)).

By (13.24), for the integral over the right side of the rectangular contour RN ,∫ 2N+3/2+iT

2N+3/2−iT
F (w) dw �T,s y

2N+3/2e4N−(4N+2+k+σ) logN = o(1),

as N →∞. Using Stirling’s formula (2.5) to estimate the integrals over the horizontal sides
of RN , we find that∫ ∞±iT

1−c±iT
F (w) dw �s

∫ ∞
1−c

yσT−2β−σ−k dσ �s,y
y1−c

T 2c−σ−k−2 log T
= o(1),

provided that k > 2c − σ − 2. Combining (14.2), (14.6), (14.12), and (14.13), we conclude
that

1

Γ(k + 1)

∑′

n≤x
σ−s(χ, n)(x− n)k

=
xk+1L(1 + s, χ)

Γ(k + 2)
− xkL(s, χ)

2Γ(k + 1)
+ 2

b k+1
2 c∑

n=1

(−1)n−1xk−2n+1

Γ(k − 2n+ 2)

ζ(2n)

(2π)2n
L(1− 2n+ s, χ)

+
1

τ(χ̄)(2π)k

∞∑
n=1

σ−s(χ̄, n)
(qx
n

)(1−s+k)/2
G1−s+k

(
4π

√
nx

q

)
, (14.14)

provided that k ≥ 0, σ 6= 0, and k > 2c − σ − 1. By the asymptotic expansions for Bessel
functions (2.16), (2.17), and (2.18), Lemma 12.10, (8.6), and an argument like that in the
proof in Theorem 13.2, we deduce the identity (14.14) for k > |σ| − 1

2 , with |σ| < 1
2 . Thus,

we complete the proof of Theorem 11.4. �

From the definition (11.12) and (13.29), we find that cos(πs/2)M1−s(z) = G1−s(z). The
case k = 0 of Theorem 14.2 provides the following corollary.
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Corollary 14.3. If χ is a non-principal even primitive character modulo q, x > 0, and
|σ| < 1/2, then∑′

n≤x
σ−s(χ, n) = xL(1 + s, χ)− 1

2L(s, χ)

+
cos (πs)/2

τ(χ̄)

∞∑
n=1

σ−s(χ̄, n)
(qx
n

) 1−s
2
H1−s

(
4π

√
nx

q

)
,

where H1−s(z) is defined in (11.12).

Next we show that Theorem 14.3 implies Theorem 14.1.

Proof. First we write (14.1) as a sum over Dirichlet characters. To that end, for any prime q
and 0 < a < q,

Gs(a, q, x) =
x

2
cos
(πs

2

)

×
∞∑
m=1

∞∑
n=0


H1−s

(
4π

√
mx

(
n+ a

q

))
(mx)(1+s)/2(n+ a/q)(1−s)/2

+

H1−s

(
4π

√
mx

(
n+ 1− a

q

))
(mx)(1+s)/2(n+ 1− a/q)(1−s)/2


=
x

2
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

n≡±amod q

H1−s

(
4π
√

mnx
q

)
(mx)(1+s)/2(n/q)(1−s)/2

=
(qx)(1−s)/2

2φ(q)
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

H1−s

(
4π
√

mnx
q

)
m(1+s)/2n(1−s)/2

∑
χmod q

χ̄(n)(χ(a) + χ(−a))

=
(qx)(1−s)/2

φ(q)
cos
(πs

2

) ∑
χmod q
χ even

χ(a)

∞∑
m=1

∞∑
n=1

χ̄(n)ns
H1−s

(
4π
√

mnx
q

)
(mn)(1+s)/2

=
(qx)(1−s)/2

φ(q)
cos
(πs

2

) ∑
χmod q
χ even

χ(a)

∞∑
n=1

∑
d|n

χ̄(d)ds
H1−s

(
4π
√

nx
q

)
n(1+s)/2

=
(qx)(1−s)/2

φ(q)
cos
(πs

2

) ∑
χmod q
χ even

χ(a)
∞∑
n=1

σs(χ̄, n)
H1−s

(
4π
√

nx
q

)
n(1+s)/2

, (14.15)

where in the penultimate step we recall our assumption that the double series converges in
the sense that the product of the indices mn tends to infinity. For the principal character χ0,

∞∑
n=1

σs(χ0, n)
H1−s

(
4π
√

nx
q

)
n(1+s)/2

=
∞∑
m=1

∞∑
n=1

χ0(n)ns
H1−s

(
4π
√

mnx
q

)
(mn)(1+s)/2

(14.16)

=

∞∑
m=1

∞∑
n=1
q-n

ns
H1−s

(
4π
√

mnx
q

)
(mn)(1+s)/2
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=

∞∑
m=1

∞∑
n=1

ns
H1−s

(
4π
√

mnx
q

)
(mn)(1+s)/2

− q(s−1)/2
∞∑
m=1

∞∑
n=1

ns
H1−s (4π

√
mnx)

(mn)(1+s)/2

=
∞∑
n=1

σs(n)
H1−s

(
4π
√

nx
q

)
n(1+s)/2

− q(s−1)/2
∞∑
n=1

σs(n)
H1−s (4π

√
nx)

n(1+s)/2
.

Combining (14.15) and (14.16) and applying Lemma 12.1, we find that

Gs(a, q, x) =
(qx)(1−s)/2

φ(q)
cos
(πs

2

) ∑
χ 6=χ0 mod q
χ even

χ(a)
∞∑
n=1

σs(χ̄, n)
H1−s

(
4π
√

nx
q

)
n(1+s)/2

+
1

φ(q)

∑′

n≤x
σ−s(n)− xZ(s, x) +

1

2
ζ(s)


− q1−s

φ(q)

∑′

n≤x/q

σ−s(n)− x

q
Z(s, x/q) +

1

2
ζ(s)


=

(qx)
1−s
2

φ(q)
cos
(πs

2

) ∑
χ 6=χ0 mod q
χ even

χ(a)
∞∑
n=1

σs(χ̄, n)
H1−s

(
4π
√

nx
q

)
n(1+s)/2

+
1

φ(q)

∑′

n≤x
σ−s(n)− q1−s

φ(q)

∑′

n≤x/q

σ−s(n)

+
x

φ(q)qs
ζ(1 + s)

(
1− 1

q−s

)
− ζ(s)

2φ(q)qs−1

(
1− 1

q1−s

)
. (14.17)

For each prime q, by Lemma 12.3,

∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
= q−s

∑′

1≤n≤x/q

σ−s(n) +
1

φ(q)

∑
χmod q
χ even

χ(a)τ(χ̄)
∑′

1≤n≤x
σ−s(χ, n)

= q−s
∑′

1≤n≤x/q

σ−s(n)− 1

φ(q)

∑′

1≤n≤x
σ−s(χ0, n)

+
1

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)
∑′

1≤n≤x
σ−s(χ, n). (14.18)

Now, ∑′

1≤n≤x
σ−s(χ0, n) =

∑′

1≤n≤x

∑
d|n
q-d

d−s =
∑′

1≤n≤x

∑
d|n

d−s − q−s
∑′

1≤n≤x/q

∑
d|n

d−s

=
∑′

1≤n≤x
σ−s(n)− q−s

∑′

1≤n≤x/q

σ−s(n). (14.19)
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Substituting (14.19) into (14.18), we find that
∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
=
q1−s

φ(q)

∑′

1≤n≤x/q

σ−s(n)− 1

φ(q)

∑′

1≤n≤x
σ−s(n) (14.20)

+
1

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)
∑′

1≤n≤x
σ−s(χ, n).

Adding (14.17) and (14.20) and using Theorem 14.3, we find that

Gs(a, q, x) +
∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
=

x

φ(q)qs
ζ(1 + s)

(
1− 1

q−s

)
− ζ(s)

2φ(q)qs−1

(
1− 1

q1−s

)
+

x

φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(1 + s, χ)

− 1

2φ(q)

∑
χ 6=χ0 mod q
χ even

χ(a)τ(χ̄)L(s, χ). (14.21)

Recall that if χ0 is the principal character modulo the prime q, then

L(s, χ0) = ζ(s)

(
1− 1

qs

)
. (14.22)

Using the functional equations of ζ(s) and L(s, χ) for even primitive Dirichlet characters,
(2.6) and (14.3), respectively, and (14.22), we find from (14.21) that

Gs(a, q, x) +
∞∑
n=1

F
(x
n

) cos (2πna/q)

ns
=
xπs+1/2Γ

(
−1

2s
)

Γ
(
1
2(1 + s)

) q−s

φ(q)

∑
χmod q
χ even

χ(a)L(−s, χ̄)

−
πs−1/2Γ

(
1
2(1− s)

)
2Γ
(
1
2s
) q1−s

φ(q)

∑
χmod q
χ even

χ(a)L(1− s, χ̄)

=
xπs+1/2Γ

(
−1

2s
)

2Γ
(
1
2(1 + s)

) q−s

φ(q)

∑
χmod q

(χ(a) + χ(q − a))L(−s, χ̄)

−
πs−1/2Γ

(
1
2(1− s)

)
4Γ
(
1
2s
) q1−s

φ(q)

∑
χmod q

(χ(a) + χ(q − a))L(1− s, χ̄). (14.23)

We complete the proof of Theorem 14.1 by using (13.34) and (13.35) in (14.23). �

Next we prove that Theorem 11.4 implies Theorem 14.3.

Proof. Let χ be an even primitive character modulo q. Set θ = h/q, where 1 ≤ h < q. The
Gauss sum τ(n, χ) is defined by

τ(n, χ) =

q∑
m=1

χ(m)e2πimn/q.

Note that τ(1, χ) = τ(χ), which is defined in (12.6). For any character χ [5, p. 165, Theorem
8.9]

τ(n, χ) = χ̄(n)τ(χ).
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Multiplying both sides of (11.11) by χ̄(h)/τ(χ̄) and summing over h, 1 ≤ h < q, we find that
the left-hand side yields

1

τ(χ̄)

q−1∑
h=1

χ̄(h)

∞∑
n=1

F
(x
n

) cos (2πnh/q)

ns
=

1

τ(χ̄)

∞∑
n=1

F
(
x
n

)
ns

q−1∑
h=1

χ̄(h) cos

(
2πnh

q

)

=
1

2τ(χ̄)

∞∑
n=1

F
(
x
n

)
ns

q−1∑
h=1

χ̄(h)
(
e2πinh/q + e−2πinh/q

)
=

1

2τ(χ̄)

∞∑
n=1

F
(
x
n

)
ns

τ(χ̄)(χ(n) + χ(−n))

=
∑′

n≤x
σ−s(χ, n). (14.24)

On the other hand, summing over h, 1 ≤ h ≤ q, on the right-hand side of (11.11) gives

x

2τ(χ̄)
cos
(πs

2

) q−1∑
h=1

∞∑
m=1

∞∑
n=1

n≡±hmod q

χ̄(h)
H1−s

(
4π
√

mnx
q

)
(mx)(1+s)/2(n/q)(1−s)/2

=
x

2τ(χ̄)
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

H1−s

(
4π
√

mnx
q

)
(mx)(1+s)/2(n/q)(1−s)/2

q−1∑
h=1

h≡±nmod q

χ̄(h)

=
x

τ(χ̄)
cos
(πs

2

) ∞∑
m=1

∞∑
n=1

χ̄(n)
H1−s

(
4π
√

mnx
q

)
(mx)(1+s)/2(n/q)(1−s)/2

=
(qx)(1−s)/2 cos(12πs)

τ(χ̄)

∞∑
n=1

σs(χ̄, n)

n(1+s)/2
H1−s

(
4π

√
nx

q

)
. (14.25)

Combining (14.24), (14.25), and (13.33) with the functional equation (14.3) of L(s, χ) for
even primitive χ, we obtain the equality in (11.11), which completes the proof of Theorem
14.3. �

15. Koshliakov Transforms and Modular-type Transformations

In Section 6, we studied a generalization of the Voronöı summation formula, namely (6.8),
the right-hand side of which consists of summing infinitely many integrals involving the kernel(

2

π
Ks(4π

√
nt)− Ys(4π

√
nt)

)
cos
(πs

2

)
− Js(4π

√
nt) sin

(πs
2

)
. (15.1)

Koshliakov [57] remarkably found that for −1
2 < ν < 1

2 , the modified Bessel function Kν(x)
is self-reciprocal with respect to this kernel, i.e.,∫ ∞

0
Kν(t)

(
cos(νπ)M̃2ν(2

√
xt)− sin(νπ)J2ν(2

√
xt)
)
dt = Kν(x). (15.2)

He also showed that for the same values of ν, xKν(x) is self-reciprocal with respect to the
companion kernel sin(νπ)J2ν(2

√
xt)− cos(νπ)L2ν(2

√
xt), i.e.,∫ ∞

0
tKν(t)

(
sin(νπ)J2ν(2

√
xt)− cos(νπ)L2ν(2

√
xt)
)
dt = xKν(x). (15.3)
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Here

M̃ν(x) :=
2

π
Kν(x)− Yν(x) and Lν(x) := − 2

π
Kν(x)− Yν(x),

It is easy to see that these identities actually hold for complex ν with −1
2 < Re ν < 1

2 . It
must be mentioned here that the special case z = 0 of (15.2) was obtained by Dixon and
Ferrar [33, p. 164, equation (4.1)].

Motivated by these results of Koshliakov, we begin with some definitions.

Definition 15.1. Let f(t, ν) be a function analytic in the real variable t and in the complex
variable ν. Then, we define the first Koshliakov transform of a function f(t, ν) to be∫ ∞

0
f(t, ν)

(
cos(νπ)M̃2ν(2

√
xt)− sin(νπ)J2ν(2

√
xt)
)
dt,

and the second Koshliakov transform of a function f(t, ν) to be∫ ∞
0

f(t, ν)
(

sin(νπ)J2ν(2
√
xt)− cos(νπ)L2ν(2

√
xt)
)
dt,

provided, of course, that the integrals converge.

Remark. We note here that the first Koshliakov transform is the integral transform that
arises naturally when one considers a function corresponding to the functional equation of
an even Maass form in conjunction with a summation formula of Ferrar; see for example, the
work of J. Lewis and D. Zagier [60, p. 216–217]5.

The following two theorems, obtained in [30, Theorems 5.3, 5.5], give the necessary con-
ditions for functions to equal their first or second Koshliakov transforms. The corollaries
resulting from them [30, Corollaries 5.4 and 5.6] give associated modular transformations.
These results are stated below.

Theorem 15.2. Assume ±1
2σ < c = Re z < 1± 1

2σ. Define f(x, s) by

f(x, s) =
1

2πi

∫ c+i∞

c−i∞
x−zF (z, s)ζ(1− z − s/2)ζ(1− z + s/2) dz,

where F (z, s) is a function satisfying F (z, s) = F (1− z, s) and is such that the integral above
converges. Then f is self-reciprocal (as a function of x) with respect to the kernel

2π
(

cos
(
1
2πs
)
M̃s(4π

√
xy)− sin

(
1
2πs
)
Js(4π

√
xy)
)
,

that is,

f(y, s) = 2π

∫ ∞
0

f(x, s)
[
cos
(
1
2πs
)
M̃s(4π

√
xy)− sin

(
1
2πs
)
Js(4π

√
xy)
]
dx.

Corollary 15.3. Let f(x, s) be as in the previous theorem. Then, if α, β > 0 and αβ = 1,
and if −1 < σ < 1,

√
α

∫ ∞
0

Ks/2(2παx)f(x, s) dx =
√
β

∫ ∞
0

Ks/2(2πβx)f(x, s) dx. (15.4)

5The kernel Fs(ξ) in [60, p. 217] is equal to 2π times the kernel in (15.1) with s replaced by 2s − 1. This
is immediately seen by an application of (2.15).
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Theorem 15.4. Assume ±1
2σ < c = Re z < 1± 1

2σ. Define f(x, s) by

f(x, s) =
1

2πi

∫ c+i∞

c−i∞

F (z, s)

(2π)2z
Γ

(
z − 1

2
s

)
Γ

(
z +

1

2
s

)
ζ
(
z − s

2

)
ζ
(
z +

s

2

)
x−z dz, (15.5)

where F (z, s) is a function satisfying F (z, s) = F (1− z, s) and is such that the integral above
converges. Then f is self-reciprocal (as a function of x) with respect to the kernel

2π
(
sin
(
1
2πs
)
Js(4π

√
xy)− cos

(
1
2πs
)
Ls(4π

√
xy)
)
,

that is,

f(y, s) = 2π

∫ ∞
0

f(x, s)
[
sin
(
1
2πs
)
Js(4π

√
xy)− cos

(
1
2πs
)
Ls(4π

√
xy)
]
dx.

Corollary 15.5. Let f(x, s) be as in the previous theorem. Then, if α, β > 0 and αβ = 1,
and −1 < σ < 1,

α3/2

∫ ∞
0

xKs/2(2παx)f(x, s) dx = β3/2
∫ ∞
0

xKs/2(2πβx)f(x, s) dx. (15.6)

The identity in (15.2) can be proved using Theorem 15.2 by taking

F (z, s) =
π−z

4

Γ
(
1
2z −

1
4s
)

Γ
(
1
2z + 1

4s
)

ζ
(
1− z − 1

2s
)
ζ
(
1− z + 1

2s
)

and then using the fact [64, p. 115, formula 11.1] that for c = Re z > ± Re ν and a > 0,

1

2πi

∫
(c)

2z−2a−zΓ
(z

2
− ν

2

)
Γ
(z

2
+
ν

2

)
x−z dz = Kν(ax). (15.7)

Note that (2.2), (2.4), and (2.6) imply F (z, s) = F (1 − z, s). In the last step, replace s by
2ν, x by x/(2π), and y by y/(2π) to obtain (15.2). Similarly, (15.3) can be proved using
Theorem 15.4 by taking

F (z, s) =
πz+1

Γ
(
1
2z −

1
4s
)

Γ
(
1
2z + 1

4s
)
ζ
(
z − 1

2s
)
ζ
(
z + 1

2s
) ,

and then using (15.7) with z replaced by z + 1. The equality F (z, s) = F (1 − z, s) can be
proved using (2.3), (2.4), and (2.6). As before, in the final step, we replace s by 2ν, x by
x/(2π), and y by y/(2π) to obtain (15.3).

If we let f(x, s) = Ks/2(2πx) in (15.4), we obtain

√
α

∫ ∞
0

Ks/2(2παx)Ks/2(2πx) dx =
√
β

∫ ∞
0

Ks/2(2πβx)Ks/2(2πx) dx, (15.8)

which is really a special case of Pfaff’s transformation [77, p. 110]

2F1(a, b; c;w) = (1− w)−a2F1

(
a, c− b; c; w

w − 1

)
, (15.9)

as can be checked using the evaluation [69, p. 384, Formula 2.16.33.1]∫ ∞
0

xa−1Kµ(bx)Kν(cx) dx

= 2a−3c−a−µ
bµ

Γ(a)
Γ

(
a+ µ+ ν

2

)
Γ

(
a+ µ− ν

2

)
Γ

(
a− µ+ ν

2

)
Γ

(
a− µ− ν

2

)
× 2F1

(
a+ µ+ ν

2
,
a− µ+ ν

2
; a; 1− b2

c2

)
,
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valid for Re (b+ c) > 0 and Re a > |Re µ|+ |Re ν|. Similarly, letting f(x, s) = xKs/2(2πx)
in (15.6) yields

α3/2

∫ ∞
0

x2Ks/2(2παx)Ks/2(2πx) dx = β3/2
∫ ∞
0

x2Ks/2(2πβx)Ks/2(2πx) dx,

which is again a special case of Pfaff’s transformation (15.9).

15.1. A New Modular Transformation. In [30, Theorems 4.5, 4.9], transformations of
the type given in Corollary 15.3 resulting from the choices F (z, s) = Γ

(
z + 1

2s
)

Γ
(
1− z + 1

2s
)

and F (z, s) = Γ
(
1
2z + 1

4s
)

Γ
(
1
2 −

1
2z + 1

4s
)

were obtained. In the following theorem, we give
a new example of a function f(x, s), equal to its first Koshliakov transform, constructed by
choosing

F (z, s) =
1

sin(πz)− sin
(
1
2πs
)

which, with the help of Corollary 15.3, gives a new modular transformation. An integral
involving a product of Riemann Ξ-functions (defined in (2.10)) at two different arguments
linked with this transformation is also obtained.

Theorem 15.6. Let −1 < σ < 1. Let

f(x, s) :=
xs/2ζ(1 + s)

2 sin
(
1
2πs
) +

x2−s/2

π cos
(
1
2πs
) ∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)
(15.10)

− 2−sπ−1−sx−s/2

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− 2(γ + log x)

)
− (2π)sζ ′(1− s)

cos
(
1
2πs
) }

.

Then, for α, β > 0 and αβ = 1,

√
α

∫ ∞
0

Ks/2(2παx)f(x, s) dx =
√
β

∫ ∞
0

Ks/2(2πβx)f(x, s) dx

=
1

4π3

∫ ∞
0

Γ

(
s− 1 + it

4

)
Γ

(
s− 1− it

4

)
Γ

(
−s+ 1 + it

4

)
Γ

(
−s+ 1− it

4

)
× Ξ

(
t− is

2

)
Ξ

(
t+ is

2

)
cos
(
1
2 t logα

)
t2 + (s+ 1)2

dt. (15.11)

Remark: When x is an integer m, we adhere to the interpretation

lim
x→m

ms−1 − xs−1

m2 − x2
=

(s− 1)

2
ms−3.

Proof. Let

F (z, s) =
1

sin(πz)− sin
(
1
2πs
) . (15.12)

We first show that for ±1
2σ < c = Re z < 1± 1

2σ,

I(x, s) :=
1

2πi

∫
(c)
F (z, s)ζ(1− z − s/2)ζ(1− z + s/2)x−z dz = f(x, s), (15.13)

where f(x, s) is defined in (15.10).
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To prove (15.13), first assume that Re z > 1± 1
2σ, let z = 1−w, and consider, for λ = Re

w < ± σ
2 , the integral

H(x, s) :=
1

2πi

∫
(λ)

ζ
(
w − s

2

)
ζ
(
w + s

2

)
sin(πw)− sin

(
1
2πs
)xw−1 dw.

In order to use the formula

ζ
(
w − s

2

)
ζ
(
w +

s

2

)
=

∞∑
n=1

σ−s(n)

nw−
s
2

, (15.14)

which is valid for Re w > 1± 1
2σ, we need to shift the line of integration to λ′ = Re w > 1±

Re 1
2σ. Considering a positively oriented rectangular contour with vertices [λ−iT, λ′−iT, λ′+

iT, λ + iT, λ − iT ] for T > 0, shifting the line of integration, considering the contributions
of the simple poles at 1

2s and 1 + 1
2s and of the double pole at 1 − 1

2s, and noting that the
integrals along the horizontal segments tend to zero as T →∞, by Cauchy’s residue theorem,
we find that

H(x, s) =
1

2πi

(
1

x

∞∑
n=1

σ−s(n)ns/2
∫
(λ′)

(n/x)−w

sin(πw)− sin
(
πs
2

) dw
− 2πi

(
Rs/2 +R1+s/2 +R1−s/2

))
, (15.15)

where the interchange of the order of summation and integration can be easily justified. The
residues Rs/2, R1+s/2, and R1−s/2 are computed as

Rs/2 = lim
w→ 1

2
s

(w − 1
2s)

sin(πw)− sin
(
1
2πs
)ζ (w − s

2

)
ζ
(
w +

s

2

)
xw−1

= − ζ(s)xs/2−1

2π cos
(
1
2πs
) , (15.16)

R1+s/2 = lim
w→1+ 1

2
s

(w − 1− 1
2s)

sin(πw)− sin
(
1
2πs
)ζ (w − s

2

)
ζ
(
w +

s

2

)
xw−1

= −ζ(1 + s)xs/2

2 sin
(
1
2πs
) , (15.17)

R1−s/2 = lim
w→1− 1

2
s

d

dw

{
(w − 1 + 1

2s)
2

sin(πw)− sin
(
1
2πs
)ζ (w − s

2

)
ζ
(
w +

s

2

)
xw−1

}

= 2−sπ−1−sx−s/2

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− 2(γ + log x)

)
− (2π)sζ ′(1− s)

cos
(
1
2πs
) }

. (15.18)

Next,∫
(λ′)

(n/x)−w

sin(πw)− sin
(
1
2πs
) dw

=
1

2π2

∫
(λ′)

π

sin
(
1
2π
(
w − 1

2s
)) π

cos
(
1
2π
(
w + 1

2s
)) (n

x

)−w
dw. (15.19)
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For 0 < d= Re z < 2 [38, p. 345, formula (12)],

1

2πi

∫
(d)

π

sin
(
1
2πz

)x−z dz =
2

1 + x2
.

Replace z by w − 1
2s to obtain, for 1

2σ < d′ = Re w < 2 + 1
2σ,

1

2πi

∫
(d′)

π

sin
(
1
2π
(
w − 1

2s
))x−w dw =

2x−s/2

1 + x2
. (15.20)

Also, replace w by w + 1 + s in (15.20), so that for −1− 1
2σ < d′′ = Re w < 1− 1

2σ,

1

2πi

∫
(d′′)

π

cos
(
1
2π
(
w + 1

2s
))x−w dw =

2x1+s/2

1 + x2
. (15.21)

Employing (15.20) and (15.21) in (15.19) and using (2.13), we deduce that, for 1
2σ < c′ =

Re w < 1− 1
2σ,∫

(c′)

(n/x)−w

sin(πw)− sin
(
1
2πs
) dw =

4i

π

∫ ∞
0

t−s/2

(1 + t2)

(n/(xt))1+s/2

(1 + n2/(x2t2))

dt

t

=
4i

π

(n
x

)1+s/2 ∫ ∞
0

t−s

(1 + t2) (n2/x2 + t2)
dt. (15.22)

From [41, p. 330, formula 3.264.2], for 0 < Re µ < 4, | arg b| < π, and | arg h| < π,∫ ∞
0

tµ−1

(b+ t2)(h+ t2)
dt =

π

2 sin
(
1
2µπ

) hµ/2−1 − bµ/2−1
b− h

.

Letting µ = −s+ 1, b = 1, and h = n2/x2 above, employing the resulting identity in (15.22),
and simplifying, we see that, for 1

2σ < c′ = Re w < 1− 1
2σ,∫

(c′)

(n/x)−w

sin(πw)− sin
(
1
2πs
) dw =

2i

cos
(
1
2πs
) ((n/x)−s/2 − (n/x)1+s/2

1− n2/x2

)
.

Employing the residue theorem again, we find that for λ′ = Re w > 1± 1
2σ,∫

(λ′)

(n/x)−w

sin(πw)− sin
(
1
2πs
) dw

=

∫
(c′)

(n/x)−w

sin(πw)− sin
(
1
2πs
) dw + 2πi lim

w→1−s/2

(w − 1 + s/2) (n/x)−w

sin(πw)− sin
(
1
2πs
)

=
2i

cos
(
1
2πs
) ((n/x)−s/2 − (n/x)1+s/2

1− n2/x2

)
− 2i

cos
(
1
2πs
) (n/x)s/2−1

=
2in−s/2x3−s/2

cos
(
1
2πs
) (

ns−1 − xs−1

n2 − x2

)
. (15.23)

Now substitute (15.16), (15.17), (15.18), and (15.23) in (15.15) to see that, for c′′ = Re z >
1± 1

2σ,

H(x, z) =
1

2πi

∫
(c′′)

ζ(1− z − s/2)ζ(1− z + s/2)

sin(πz)− sin
(
1
2πs
) x−z dz
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=
xs/2ζ(1 + s)

2 sin
(
1
2πs
) − ζ(s)xs/2−1

2π cos
(
1
2πs
) +

x2−s/2

π cos
(
1
2πs
) ∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)

− 2−sπ−1−sx−s/2

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− 2(γ + log x)

)
− (2π)sζ ′(1− s)

cos
(
1
2πs
) }

.

Using the residue theorem again, we see that for ±1
2σ < c = Re z < 1± 1

2σ,

I(x, s) = H(x, s)− lim
z→1−s/2

(z − 1 + s/2)

sin(πz)− sin
(
1
2πs
)ζ(1− z − s/2)ζ(1− z + s/2)x−z

=
xs/2ζ(1 + s)

2 sin
(
1
2πs
) +

x2−s/2

π cos
(
1
2πs
) ∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)

− 2−sπ−1−sx−s/2

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− 2(γ + log x)

)
− (2π)sζ ′(1− s)

cos
(
1
2πs
) }

= f(x, s),

where f(x, s) is defined in (15.10). The proof of the first equality in (15.11) now follows from
(15.13), Theorem 15.2, and Corollary 15.3.

In order to establish the equality between the extreme sides of (15.11), note that by (15.7),
for c = Re z > ±1

2σ,

1

2πi

∫
(c)

2z−2(2πα)−zΓ
(z

2
− s

4

)
Γ
(z

2
+
s

4

)
x−z dz = Ks/2(2παx). (15.24)

From (15.24) and (2.12), for ±1
2σ < c = Re z < 1± 1

2σ,

√
α

∫ ∞
0

Ks/2(2παx)f(x, s) dx =

√
α

2πi

∫
(c)

2−z−1(2πα)z−1

×
Γ
(
1
2 −

1
2z −

1
4s
)

Γ
(
1
2 −

1
2z + 1

4s
)

sin(πz)− sin
(
1
2πs
) ζ(1− z − 1

2s)ζ(1− z + 1
2s) dz.

Now use the functional equation (2.7) for ζ(1− z − s/2) and for ζ(1− z + s/2), (2.1), (2.2),
and (2.9) to simplify the integrand, thereby obtaining

√
α

∫ ∞
0

Ks/2(2παx)f(x, s) dx

=
1

64π3i
√
α

∫
(c)

Γ
(
1
2z + 1

4s−
1
2

)
Γ
(
−1

2z + 1
4s
)

Γ
(
1
2 −

1
2z −

1
4s
)

Γ
(
1
2z −

1
4s
)(

1
2z −

1
4s−

1
2

) (
−1

2z −
1
4s
)

× ξ
(
z − s

2

)
ξ
(
z +

s

2

)
αz dz. (15.25)

From [29, equation (2.8)], if f(s, t) = φ(s, it)φ(s,−it), where φ is analytic as a function of a
real variable t and of a complex variable s, then∫ ∞

0
f

(
s,
t

2

)
Ξ

(
t+ is

2

)
Ξ

(
t− is

2

)
cos
(
1
2 t logα

)
dt

=
1

i
√
α

∫ 1
2
+i∞

1
2
−i∞

φ

(
s, z − 1

2

)
φ

(
s,

1

2
− z
)
ξ
(
z − s

2

)
ξ
(
z +

s

2

)
αz dz. (15.26)
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It is easy to see that with

φ(z, s) =
Γ
(
1
2z + 1

4s−
1
4

)
Γ
(
1
2z −

1
4s+ 1

4

)(
1
2z −

1
4s−

1
4

) ,

and the fact that shifting the line of integration from Re z = c to Re z = 1
2 and using the

residue theorem leaves the integral in (15.25) unchanged, this integral can be written in the
form given on the right-hand side of (15.26), whence (15.26) proves the equality between the
extreme sides of (15.11). �

Theorem 15.6 gives a new generalization of the following formula due to Koshliakov [56,
equations (36), (40)], different from the one given in [30, Theorem 4.5].

Theorem 15.7. Define

Λ(x) =
π2

6
+ γ2 − 2γ1 + 2γ log x+

1

2
log2 x+

∞∑
n=1

d(n)

(
1

x+ n
− 1

n

)
,

where γ1 is a Stieltjes constant defined in (12.5). Then, for α, β > 0 and αβ = 1,

√
α

∫ ∞
0

K0(2παx)Λ(x) dx =
√
β

∫ ∞
0

K0(2πβx)Λ(x) dx

= 8

∫ ∞
0

(
Ξ
(
1
2 t
))2

(1 + t2)2
cos
(
1
2 t logα

)
cosh

(
1
2πt
) dt.

Koshliakov’s result can be obtained by letting s→ 0 in Theorem 15.6.

15.2. Transformation Involving Modified Lommel Functions: A Series Analogue
of Theorem 15.6. In [42, Theorem 6], Guinand proved the following theorem.

Theorem 15.8. If f(x) and f ′(x) are integrals, f(x), xf ′(x), and x2f ′′(x) belong to L2(0,∞),
and 0 < |r| < 1, then

lim
N→∞

{
N∑
n=1

(
1− n

N

)2
σr(n)n−r/2f(n)

−
∫ N

0

(
1− x

N

)2
f(x)

(
x−r/2ζ(1− r) + xr/2ζ(1 + r)

)
dx

}
= lim

N→∞

{
N∑
n=1

(
1− n

N

)2
σr(n)n−r/2g(n)

−
∫ N

0

(
1− x

N

)2
g(x)

(
x−r/2ζ(1− r) + xr/2ζ(1 + r)

)
dx

}
,

where ∫ x

0
g(y)yr/2 dy = x(r+1)/2

∫ ∞
0

y−
1
2 f(y)φr+1(4π

√
xy) dy,

φν(z) = cos

(
1

2
πν

)
Jν(z)− sin

(
1

2
πν

)(
Yν(z) +

2

π
Kν(z)

)
,

and g(x) is chosen so that it is the integral of its derivative.
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As discussed by Guinand [43, equation (1)], this gives
∞∑
n=1

σ−s(n)ns/2G(n, s)− ζ(1 + s)

∫ ∞
0

ts/2G(t, s) dt− ζ(1− s)
∫ ∞
0

t−s/2G(t, s) dt (15.27)

=

∞∑
n=1

σ−s(n)ns/2H(n, s)− ζ(1 + s)

∫ ∞
0

ts/2H(t, s) dt− ζ(1− s)
∫ ∞
0

t−s/2H(t, s) dt,

where G(x, s) satisfies the same conditions as those of f in Theorem 15.8, and where

H(x, s) =

∫ ∞
0

G(t, s)
(
−2π sin

(
1
2πs
)
Js(4π

√
xt)

− cos
(
1
2πs
) (

2πYs(4π
√
xt)− 4Ks(4π

√
xt)
))

dt,

that is, H(x, s) is essentially the first Koshliakov transform of G(x, s).
Even though (15.4) and (15.27) are both modular transformations and both involve the

first Koshliakov transform of a function, they are very different in nature as can be seen
from the fact that if f(x, s) = Ks/2(2πx) in (15.4), we obtain Pfaff’s transformation, as
discussed in (15.8) and (15.9), whereas, letting G(x, s) = Ks/2(2παx) in (15.27) yields the
Ramanujan–Guinand formula, as discussed in [30, Section 7].

The function f(x, s) of Theorem 15.6 is equal to its first Koshliakov transform, as can
be seen from (15.12), (15.13), and Theorem 15.2. Thus there are two series transformations
associated with this f(x, s) for a fixed s such that −1 < σ < 1 – one resulting from letting
G(x, s) = H(x, s) = f(x, s) in (15.27), and the other being the series analogue of Theorem
15.6 obtainable by interchanging the order of summation and integration in both expressions
in the first equality in (15.11). The former seems more formidable than the latter. Thus we
attempt the latter, which gives a beautiful transformation involving the modified Lommel
functions.

There are several functions in the literature called Lommel functions. However, the ones
that are important for us are those defined by [83, p. 346, equation (10)]

sµ,ν(w) :=
wµ+1

(µ− ν + 1)(µ+ ν + 1)
1F2

(
1;
µ− ν + 3

2
,
µ+ ν + 3

2
;−1

4
w2

)
(15.28)

and [83, p. 347, equation (2)]

Sµ,ν(w) = sµ,ν(w) +
2µ−1Γ

(
µ−ν+1

2

)
Γ
(
µ+ν+1

2

)
sin(νπ)

(15.29)

×
{

cos

(
1

2
(µ− ν)π

)
J−ν(w)− cos

(
1

2
(µ+ ν)π

)
Jν(w)

}
for ν /∈ Z, and

Sµ,ν(w) = sµ,ν(w) + 2µ−1Γ

(
µ− ν + 1

2

)
Γ

(
µ+ ν + 1

2

)
(15.30)

×
{

sin

(
1

2
(µ− ν)π

)
Jν(w)− cos

(
1

2
(µ− ν)π

)
Yν(w)

}
for ν ∈ Z. These functions are the solutions of an inhomogeneous form of the Bessel differ-
ential equation [83, p. 345], namely,

w2 d
2y

dw2
+ w

dy

dw
+ (w2 − ν2)y = wµ+1.
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Even though sµ,ν(w) is undefined when µ± ν is an odd negative integer, Sµ,ν(w) has a limit
at those values [83, p. 347]. These are the exceptional cases of the Lommel function Sµ,ν(w).
For more details on the exceptional cases, the reader is referred to [83, pp. 348–349, Section
10.73] and to a more recent article [39].

The modified Lommel functions or the Lommel functions of imaginary argument [87] are
defined by

Tµ,ν(y) := −i1−µSµ,ν(iy), (15.31)

where y is real. For further information on modified Lommel functions, the reader is referred
to [72] and [74].

Lommel functions, as well as modified Lommel functions, are very useful in physics and
mathematical physics. For example, see [2, 40, 75, 78, 80].

As a series analogue of Theorem 15.6, we will now obtain the following modular transforma-
tion consisting of infinite series of modified Lommel functions, of which one is an exceptional
case of Lommel functions.

Theorem 15.9. For α > 0 and −1 < σ < 1, let

L(s, α) :=
πs/2Γ

(
−1

2s
)
ζ(−s)

8 sin
(
1
2πs
) α−(s+1)/2 − 2−2−sπ−(s+3)/2α−1+s/2Γ

(
1− s

2

)
×

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− γ + 2 log(2πα)− ψ

(
1− s

2

))
− (2π)sζ ′(1− s)

cos
(
1
2πs
) }

+

√
α

π cos
(
1
2πs
) ∞∑
n=1

σ−s(n)ns/2
{

2s/2Γ
(

1 +
s

2

)
T−1−s/2,−s/2(2πnα)

−
√
π2−s/2Γ

(
3− s

2

)
T−2+s/2,s/2(2πnα)

}
.

Then, for αβ = 1,

L(s, α) = L(s, β)

=
1

4π3

∫ ∞
0

Γ

(
s− 1 + it

4

)
Γ

(
s− 1− it

4

)
Γ

(
−s+ 1 + it

4

)
Γ

(
−s+ 1− it

4

)
× Ξ

(
t− is

2

)
Ξ

(
t+ is

2

)
cos
(
1
2 t logα

)
t2 + (s+ 1)2

dt. (15.32)

Remark: We emphasize that there are very few results in the literature involving infinite
series of Lommel functions. Papers by R. G. Cooke [25] and Lewis and Zagier [60, p. 213–218]
are two examples. The special case of the Lommel function Sµ,ν(z) that Lewis and Zagier
consider in [60, p. 214, Equation (2.15)] is

Cs(z) =
√
zΓ(2s+ 1)S−2s− 1

2
, 1
2
(z).

To the best of our knowledge, none of these papers involve infinite series of exceptional cases
of Lommel functions.

Proof. Consider the extreme left side of (15.11). Using (15.7) and (2.7), we find that∫ ∞
0

xs/2ζ(1 + s)

2 sin
(
1
2πs
) Ks/2(2παx) dx =

πs/2Γ
(
− s

2

)
ζ(−s)

8α1+s/2 sin
(
1
2πs
) . (15.33)
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Also note that formula 2.16.20.1 of [69, p. 365] asserts that, for |Rew| > Re ν and real
m > 0,∫ ∞

0
xw−1Kν(mx) log x dx =

2w−3

mw
Γ

(
w + ν

2

)
Γ

(
w − ν

2

)
×
{
ψ

(
w + ν

2

)
+ ψ

(
w − ν

2

)
− 2 log

(m
2

)}
. (15.34)

Now use (15.7) and (15.34) to find, upon simplification, that

− 2−sπ−1−s
∫ ∞
0

x−s/2Ks/2(2παx)

×

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− 2(γ + log x)

)
− (2π)sζ ′(1− s)

cos
(
πs
2

) }
dx

= −2−2−sπ−(s+3)/2α−1+s/2Γ

(
1− s

2

)
(15.35)

×

{
Γ(s)ζ(s)

(
π tan

(πs
2

)
− γ + 2 log(2πα)− ψ

(
1− s

2

))
− (2π)sζ ′(1− s)

cos
(
πs
2

) }
.

In [69, p. 347, formula 2.16.3.18], we find that, for y > 0, Re c > 0, and Re a > |Re ν|, the
integral evaluation (in corrected form)

PV

∫ ∞
0

xa−1

x2 − y2
Kν(cx) dx =

π2ya−2

4 sin(νπ)

(
cot

(
π(a+ ν)

2

)
Iν(cy)− cot

(
π(a− ν)

2

)
I−ν(cy)

)
+ 2a−4c2−aΓ

(
a+ ν

2
− 1

)
Γ

(
a− ν

2
− 1

)
× 1F2

(
1; 2− ν + a

2
, 2 +

ν − a
2

;
c2y2

4

)
. (15.36)

(In [69], the principal value designation PV is missing.) Next we show that∫ ∞
0

x2−s/2Ks/2(2παx)

∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)
dx (15.37)

=
∞∑
n=1

σ−s(n)

{
ns−1PV

∫ ∞
0

x2−s/2Ks/2(2παx)

n2 − x2
dx

−PV
∫ ∞
0

x1+s/2Ks/2(2παx)

n2 − x2
dx

}
.

Let w(t) ∈ C∞0 be a smooth function so that 0 ≤ w(t) ≤ 1 for all t ∈ R, w(t) has compact
support in (−1

3 ,
1
3), and w(t) = 1 in (−1

4 ,
1
4). Then the right-hand side of (15.37) is equal to

∞∑
n=1

σ−s(n)PV

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ns−1 − xs−1

n2 − x2

)
dx (15.38)

=
∞∑
n=1

σ−s(n)

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ns−1 − xs−1

n2 − x2

)
(1− w(x− n)) dx
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+

∞∑
n=1

σ−s(n)PV

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ns−1 − xs−1

n2 − x2

)
w(x− n) dx.

Since the series in the integrand on the left-hand side of (15.37) is absolutely convergent, we
can interchange the summation and integration of the first expression on the right-hand side
of (15.38). Note that if m is a positive integer and m− 1

2 ≤ x ≤ m+ 1
2 ,

∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)
w(x− n) = σ−s(m)

(
ms−1 − xs−1

m2 − x2

)
w(x−m).

Therefore,

PV

∫ ∞
0

x2−s/2Ks/2(2παx)
∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)
w(x− n) dx

=

∞∑
m=1

PV

∫ m+1/2

m−1/2
x2−s/2Ks/2(2παx)

∞∑
n=1

σ−s(n)

(
ns−1 − xs−1

n2 − x2

)
w(x− n) dx

=
∞∑
m=1

σ−s(m)PV

∫ m+1/2

m−1/2
x2−s/2Ks/2(2παx)

(
ms−1 − xs−1

m2 − x2

)
w(x−m) dx

=

∞∑
m=1

σ−s(m)PV

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ms−1 − xs−1

m2 − x2

)
w(x−m) dx.

This justifies the interchange of summation and integration in (15.37). Using (15.36), we
have

ns−1 · PV
∫ ∞
0

x2−s/2Ks/2(2παx)

n2 − x2
dx (15.39)

= − π2ns/2

4 sin
(
1
2πs
) {cot

(
3π
2

)
Is/2(2πnα)− cot

(
π
2 (3− s)

)
I−s/2(2πnα)

}
− ns−12−1−s/2(2πα)−1+s/2Γ

(
1

2

)
Γ

(
1− s

2

)
1F2

(
1;

1

2
,
1 + s

2
;π2n2α2

)
=

π2ns/2

4 cos
(
1
2πs
)I−s/2(2πnα)− π(s−1)/2α−1+s/2ns−1

4
Γ

(
1− s

2

)
1F2

(
1;

1

2
,
1 + s

2
;π2n2α2

)
.

Another application of (15.36) yields

PV

∫ ∞
0

x1+s/2Ks/2(2παx)

x2 − n2
dx =

π2ns/2

4 sin
(
1
2πs
) cot

(π
2

(2 + s)
)
Is/2(2πnα)

+ lim
ν→s/2

{
2s/2−2(2πα)−s/2Γ

(s
4

+
ν

2

)
Γ
(s

4
− ν

2

)
× 1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)
− π2ns/2

4 sin(νπ)
cot
(π

2

(
2 +

s

2
− ν
))

I−ν(2πnα)

}
=:

π2ns/2 cot
(
πs
2

)
4 sin

(
πs
2

) Is/2(2πnα) + L, (15.40)
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where we have denoted the limit by L. Note that

L =
1

4
lim
ν→s/2

Γ
(s

4
− ν

2

){
(πα)−s/2Γ

(s
4

+
ν

2

)
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)
− πns/2

sin(νπ)
cos
(
π
(s

4
− ν

2

))
Γ
(

1− s

4
+
ν

2

)
I−ν(2πnα)

}
=

1

4
lim
ν→s/2

1(
s
4 −

ν
2

){(πα)−s/2Γ
(s

4
+
ν

2

)
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)
− πns/2

sin(νπ)
cos
(
π
(s

4
− ν

2

))
Γ
(

1− s

4
+
ν

2

)
I−ν(2πnα)

}
,

where we multiplied the expression on the right side of the first equality above by
(
s
4 −

ν
2

)
and used the functional equation of the Gamma function.

The last expression inside the limit symbol is of the form 0
0 , since

lim
ν→s/2

{
(πα)−s/2Γ

(s
4

+
ν

2

)
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)
− πns/2

sin(νπ)
cos
(
π
(s

4
− ν

2

))
Γ
(

1− s

4
+
ν

2

)
I−ν(2πnα)

}
= (πα)−s/2Γ

(s
2

)
0F1

(
−; 1− s

2
;π2n2α2

)
− πns/2

sin
(
1
2πs
)I−s/2(2πnα)

= 0,

as can be seen by applying the reflection formula (2.2) and the definition [41, p. 911, formula
8.406, nos. 1-2]

Iν(w) :=

{
e−πνi/2Jν(eπi/2w), if −π < arg w ≤ 1

2π,

e3πνi/2Jν(e−3πi/2w), if 1
2π < arg w ≤ π,

(15.41)

where Jν(w) is defined in (2.14). Thus L’Hopital’s rule yields

L = −1

2
lim
ν→s/2

d

dν

{
(πα)−s/2Γ

(s
4

+
ν

2

)
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)
− πns/2

sin(νπ)
cos
(
π
(s

4
− ν

2

))
Γ
(

1− s

4
+
ν

2

)
I−ν(2πnα)

}
= −1

2
lim
ν→s/2

[
(πα)−s/2

{
Γ
(s

4
+
ν

2

) d

dν
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)
+

1

2
Γ′
(s

4
+
ν

2

)
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)}
− πns/2 d

dν

{
cos
(
π
(
s
4 −

ν
2

))
sin(νπ)

Γ
(

1− s

4
+
ν

2

)
I−ν(2πnα)

}]
. (15.42)

Using the series definition of 1F2, we see that

d

dν
1F2

(
1; 1− s

4
− ν

2
, 1− s

4
+
ν

2
;π2n2α2

)∣∣∣∣
ν=s/2
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=

∞∑
m=0

(πnα)2m
d

dν

(
1(

1− s
4 −

ν
2

)
m

(
1− s

4 + ν
2

)
m

)∣∣∣∣∣
ν=s/2

=
1

2

∞∑
m=0

(
−ψ

(
1− s

4 −
ν
2

)
+ ψ

(
1 +m− s

4 −
ν
2

)
+ψ

(
1− s

4 + ν
2

)
− ψ

(
1 +m− s

4 + ν
2

))(
1− s

4 −
ν
2

)
m

(
1− s

4 + ν
2

)
m

(πnα)2m

∣∣∣∣∣
ν=s/2

=
1

2
Γ
(

1− s

2

) ∞∑
m=0

(
−ψ

(
1− s

2

)
+ ψ

(
1 +m− s

2

)
− γ − ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m

= −(πnα)s/2

2
Γ
(

1− s

2

)(
ψ
(

1− s

2

)
+ γ
)
I−s/2(2πnα)

+
1

2
Γ
(

1− s

2

) ∞∑
m=0

(
ψ
(
1 +m− s

2

)
− ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m, (15.43)

where in the last step we used the fact ψ(1) = −γ, and also (15.41) and (2.14). Next, as
ν → s/2, the last expression in (15.42) simplifies to

d

dν

{
cos
(
π
(
s
4 −

ν
2

))
sin(νπ)

Γ
(

1− s

4
+
ν

2

)
I−ν(2πnα)

}∣∣∣∣∣
ν=s/2

= lim
ν→s/2

[
Γ
(
1− s

4 + ν
2

)
2 sin(νπ)

I−ν(2πnα)

{
π
(

sin
(π

4
(s− 2ν)

)
−2 cos

(π
4

(s− 2ν)
)

cot(νπ)
)

+ cos
(π

4
(s− 2ν)

)
ψ
(

1− s

4
+
ν

2

)}
+

cos
(
π
4 (s− 2ν)

)
Γ
(
1− s

4 + ν
2

)
sin(νπ)

d

dν
I−ν(2πnα)

]
= −

I−s/2(2πnα)

2 sin
(
1
2πs
) (γ + 2π cot

(πs
2

))
+

1

sin
(
1
2πs
) d

dν
I−ν(2πnα)

∣∣∣∣
ν=s/2

. (15.44)

Substituting (15.43) and (15.44) in (15.42), and using (2.2) in the second step below, we find
that

L = −1

2

[
(πα)−s/2

{
Γ
(s

2

)(
− (πnα)s/2

2
Γ
(

1− s

2

)(
ψ
(

1− s

2

)
+ γ
)
I−s/2(2πnα)

+
1

2
Γ
(

1− s

2

) ∞∑
m=0

(
ψ
(
1 +m− s

2

)
− ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m
)

+
1

2
Γ′
(s

2

)
0F1

(
−; 1− s

2
;π2n2α2

)}
− πns/2

{
−
I−s/2(2πnα)

2 sin
(
1
2πs
) (γ + 2π cot

(πs
2

))
+

1

sin
(
1
2πs
) d

dν
I−ν(2πnα)

∣∣∣∣
ν=s/2

}]
= − π

2 sin
(
1
2πs
)[(πα)−s/2

{
− (πnα)s/2

2

(
ψ
(

1− s

2

)
+ γ
)
I−s/2(2πnα)

+
1

2

∞∑
m=0

(
ψ
(
1 +m− s

2

)
− ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m +
(πnα)s/2

2
ψ
(s

2

)
I−s/2(2πnα)

}
− ns/2

{
− 1

2
I−s/2(2πnα)

(
γ + 2π cot

(πs
2

))
+

d

dν
I−ν(2πnα)

∣∣∣∣
ν=s/2

}]
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= − π

2 sin
(
1
2πs
)[ns/2

2
I−s/2(2πnα)

(
ψ
(s

2

)
− ψ

(
1− s

2

)
+ 2π cot

(πs
2

))
+

(πα)−s/2

2

∞∑
m=0

(
ψ
(
1 +m− s

2

)
− ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m

− ns/2 d

dν
I−ν(2πnα)

∣∣∣∣
ν=s/2

]
. (15.45)

The reflection formula (2.2) implies that

ψ
(s

2

)
− ψ

(
1− s

2

)
= −π cot

(πs
2

)
. (15.46)

Also, for ν 6= k or k + 1
2 , where k is an integer, we have [41, p. 929, formula 8.486.4]

∂Iν(w)

∂ν
= Iν(w) log

(w
2

)
−
∞∑
m=0

ψ(ν +m+ 1)

m!Γ (ν +m+ 1)

(w
2

)ν+2m
. (15.47)

Hence, employing (15.46) and (15.47) in (15.45), we obtain

L = − π

2 sin
(
1
2πs
)[πns/2 cot

(
πs
2

)
2

I−s/2(2πnα)

+
(πα)−s/2

2

∞∑
m=0

(
ψ
(
1 +m− s

2

)
− ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m

− ns/2
{
− I−s/2(2πnα) log(πnα) +

∞∑
m=0

ψ
(
1 +m− s

2

)
m!Γ

(
1 +m− s

2

)(πnα)2m−s/2
}]

= − π

4 sin
(
1
2πs
)[ns/2I−s/2(2πnα)

(
π cot

(πs
2

)
+ 2 log(πnα)

)
− (πα)−s/2

∞∑
m=0

(
ψ
(
1 +m− s

2

)
+ ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m
]
. (15.48)

Now substitute (15.48) in (15.40) and use the definition [83, p. 78, equation (6)]

Kν(w) =
π

2

I−ν(w)− Iν(w)

sin(νπ)
(15.49)

to deduce that

PV

∫ ∞
0

x1+s/2Ks/2(2παx)

x2 − n2
dx

= −πn
s/2

2
Ks/2(2πnα) cot

(πs
2

)
− πns/2

2 sin
(
πs
2

)I−s/2(2πnα) log(πnα)

+
π(πα)−s/2

4 sin
(
1
2πs
) ∞∑
m=0

(
ψ
(
1 +m− s

2

)
+ ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m. (15.50)

Hence, from (15.39) and (15.50),

PV

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ns−1 − xs−1

n2 − x2

)
dx
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=
π2ns/2

4 cos
(
1
2πs
)I−s/2(2πnα)− π

s−1
2 α−1+s/2ns−1

4
Γ

(
1− s

2

)
1F2

(
1;

1

2
,
1 + s

2
;π2n2α2

)
− πns/2

2
Ks/2(2πnα) cot

(πs
2

)
− πns/2

2 sin
(
1
2πs
)I−s/2(2πnα) log(πnα)

+
π(πα)−s/2

4 sin
(
1
2πs
) ∞∑
m=0

(
ψ
(
1 +m− s

2

)
+ ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m. (15.51)

From [83, p. 349, equation (3)],

Sν−1,ν(w) = −2ν−2πΓ(ν)Yν(w) (15.52)

+
wν

4
Γ(ν)

∞∑
m=0

(−1)m(w/2)2m

m!Γ(ν +m+ 1)

{
2 log

(
1

2
w

)
− ψ(ν +m+ 1)− ψ(m+ 1)

}
,

where Sν−1,ν(w) is an exceptional case of the Lommel function Sµ,ν(w) defined in (15.29)
and (15.30). Dixon and Ferrar [31, p. 38, equation (3.11)] denote the infinite series on the
right-hand side of (15.52) by Y/ν(w).

Let w = 2πinα and ν = −1
2s in (15.52), and then use (15.41) and the relation [77, p. 233,

equation (9.27)]

Yν(iw) = e
1
2
(ν+1)πiIν(w)− 2

π
e−

1
2
νπiKν(w), (15.53)

which is valid for −π < argw ≤ 1
2π, to find after simplification that

∞∑
m=0

(
ψ
(
1 +m− s

2

)
+ ψ (1 +m)

)
m!Γ

(
1 +m− s

2

) (πnα)2m = 2(πnα)s/2I−s/2(2πnα) log(πnα)

+ 2eiπs/2(πnα)s/2Ks/2(2πnα)− 4(2πinα)s/2

Γ
(
−1

2s
) S−1−s/2,−s/2(2πinα). (15.54)

Also, let µ = s
2 − 2, ν = s

2 and w = 2πinα in (15.29) and (15.28), then substitute the latter
into the former, use (15.53), and simplify to obtain

1F2

(
1;

1

2
,
1 + s

2
;π2n2α2

)
= (2πinα)1−s/2(1− s)Ss/2−2,s/2(2πinα)

− π(3−s)/2i1−s/2Γ
(
s+ 1

2

)(
ieiπs/4Is/2(2πnα)− 2

π
e−iπs/4Ks/2(2πnα)

)
.

Hence, using (2.3), we see that

− π(s−1)/2α−1+s/2ns−1

4
Γ

(
1− s

2

)
1F2

(
1;

1

2
,
1 + s

2
;π2n2α2

)
= − π2ns/2

4 cos
(
1
2πs
)Is/2(2πnα)− iπns/2e−iπs/2

2 cos
(
1
2πs
) Ks/2(2πnα)

− i1−
s
2
√
π
(n

2

)s/2
Γ

(
3− s

2

)
Ss/2−2,s/2(2πinα). (15.55)

Finally substituting (15.54) and (15.55) in (15.51), using (2.2) and (15.49), and simplifying,
we obtain

PV

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ns−1 − xs−1

n2 − x2

)
dx = (2in)s/2Γ

(
1 +

s

2

)
S−1−s/2,−s/2(2πinα)
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− i1−s/2
√
π
(n

2

)s/2
Γ

(
3− s

2

)
S−2+s/2,s/2(2πinα), (15.56)

that is, the integral in (15.56) can be written simply as a linear combination of two Lommel
functions of imaginary arguments, one of which belongs to the exceptional case. (Note that
we can replace the second subscript −s/2 of the first Lommel function in (15.56) by s/2, since
the Lommel function Sµ,ν(w) is an even function of ν (see [83, p. 348]). From (15.11), (15.33),
(15.35), and (15.57), we arrive at (15.32). This completes the proof of Theorem 15.9. �

Since the integral evaluation (15.56) is new and has not been recorded in the tables of
integrals such as [41] and [69], we record it below as a theorem and rewrite it in terms of the
modified Lommel function.

Theorem 15.10. Let −2 < σ < 3 and y, α > 0. Let the modified Lommel function Tµ,ν(y)
be defined in (15.31). Then

PV

∫ ∞
0

x2−s/2Ks/2(2παx)

(
ys−1 − xs−1

y2 − x2

)
dx (15.57)

= (2y)s/2Γ
(

1 +
s

2

)
T−1−s/2,−s/2(2παy)−

√
π
(y

2

)s/2
Γ

(
3− s

2

)
T−2+s/2,s/2(2παy).

Remark: The Ramanujan–Guinand formula [29, Theorem 1.2, Theorem 1.4], containing
infinite series involving σs(n) and the modified Bessel function Kν(z), is similar to the series
occuring in the Fourier expansion of non-holomorphic Eisenstein series [24], [60, p. 243]. In
view of the fact that the modular relation involving series of Lommel functions appearing
in Lewis and Zagier’s work [60, p. 217] characterizes the Fourier coefficients of even Maass
forms [60, p. 216, Proposition 3], we surmise that the modular transformation consisting
of the series involving σs(n) and the modified Lommel function that we have obtained in
Theorem 15.9 may also have some important implications in the theory of Maass forms.

15.3. An Integral Representation for f(x, s) Defined in (15.10) and an Equivalent
Formulation of Theorem 15.6. Some elegant integral transformations involving the func-
tion ϕ(x, s) defined in (6.6) or, in particular, the function ϕ(x, s) − xs/2−1ζ(s)/(2π), were
established in [30, Theorems 6.3, 6.4]. In this subsection, we derive an equivalent form of
Theorem 15.6 which yields yet another integral transformation involving this function. These
integrals also involve the Lommel function Sν,ν(w).

We first derive an integral representation for f(x, s) defined in (15.10).

Theorem 15.11. Let f(x, s) and ϕ(x, s) be defined in (15.10) and (6.6), respectively. Then,
for −1 < σ < 1,

f(x, s) =
2

π
x−s/2

∫ ∞
0

t1+s/2

x2 + t2

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt. (15.58)

Proof. Note that from [30, equation (6.9)], for ±1
2σ < c = Re z < 1± 1

2σ,

1

2πi

∫ c+i∞

c−i∞

ζ
(
1− z + 1

2s
)
ζ
(
1− z − 1

2s
)

2 cos
(
1
2π
(
z + 1

2s
)) x−z dz = ϕ(x, s)− ζ(s)

2π
xs/2−1. (15.59)

Let s = 1 in (2.11), replace x by x2 and w by 1
2z −

1
4s, and use (2.2) to find that for

1
2σ < d′ = Re z < 2 + 1

2σ,

1

2πi

∫ d′+i∞

d′−i∞

π

sin
(
1
2π
(
z − 1

2s
))x−z dz =

2x−s/2

1 + x2
. (15.60)
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Hence, for ±1
2σ < c = Re z < 1± 1

2σ,

f(x, s) =
1

2πi

∫ c+i∞

c−i∞

ζ(1− z − 1
2s)ζ(1− z + 1

2s)

sin(πz)− sin
(
1
2πs
) x−z dz

=
1

π

1

2πi

∫ c+i∞

c−i∞

ζ(1− z − 1
2s)ζ(1− z + 1

2s)

2 cos
(
1
2π
(
z + 1

2s
)) π

sin
(
1
2π
(
z − 1

2s
)) dz

=
2

π
x−s/2

∫ ∞
0

t1+s/2

x2 + t2

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt, (15.61)

where in the last step we used (2.13). �

Now we are in a position to state and prove an equivalent formulation of Theorem 15.6.

Theorem 15.12. Let Sµ,ν(w) be the Lommel function defined in (15.29). For α, β > 0,
αβ = 1, and −1 < σ < 1,

√
α

∫ ∞
0

Ss/2,s/2(2παt)

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt

=
√
β

∫ ∞
0

Ss/2,s/2(2πβt)

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt

=
2s/2−2π−

5
2

Γ
(
1−s
2

) ∫ ∞
0

Γ

(
s− 1 + it

4

)
Γ

(
s− 1− it

4

)
Γ

(
−s+ 1 + it

4

)
Γ

(
−s+ 1− it

4

)
× Ξ

(
t− is

2

)
Ξ

(
t+ is

2

)
cos
(
1
2 t logα

)
t2 + (s+ 1)2

dt. (15.62)

Proof. Using (15.58), we write the extreme left side in (15.11) as

√
α

∫ ∞
0

Ks/2(2παx)f(x, s) dx

=
2
√
α

π

∫ ∞
0

x−s/2Ks/2(2παx)

∫ ∞
0

t1+s/2

x2 + t2

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt dx

=
2
√
α

π

∫ ∞
0

t1+s/2
(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)∫ ∞
0

x−s/2Ks/2(2παx)

x2 + t2
dx dt. (15.63)

The interchange of the order of integration given above is delicate and hence we justify it
below.

By Fubini’s theorem [77, p. 30, Theorem 2.2], it suffices to show that each of the two
double integrals are absolutely convergent. We begin with the first one. Thus,∫ ∞

0

∣∣∣x−s/2Ks/2(2παx)
∣∣∣ ∫ ∞

0

∣∣∣∣∣ t1+s/2x2 + t2

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)∣∣∣∣∣ dt dx
=

∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ ∞

0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
+

∫ ∞
1

x−σ/2
∣∣Ks/2(2παx)

∣∣ ∫ ∞
0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
=: I1(s, α) + I2(s, α).
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Consider I2(s, α) first. Note that

|I2(s, α)| =
∫ ∞
1

x−σ/2
∣∣Ks/2(2παx)

∣∣ ∫ ∞
0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
≤
∫ ∞
1

x−σ/2
∣∣Ks/2(2παx)

∣∣ ∫ ∞
0

t1+σ/2

1 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx.
Now use the definition of ϕ(t, s) in (6.6), the asymptotic expansion of Kν(z) from (2.18),
and the fact that σ < 1 to see that the inner integral converges as t → ∞. To analyze the
behavior of this integral as t→ 0, we observe from (7.3) and (7.4) that

ϕ(t, s)− ζ(s)

2π
ts/2−1 = −Γ(s)ζ(s)t−s/2

(2π)s
− ts/2

2
ζ(s+ 1) +

ts/2+1

π

∞∑
n=1

σ−s(n)

n2 + t2

= −Γ(s)ζ(s)t−s/2

(2π)s
− ts/2

2
ζ(s+ 1)

+
ts/2+1

π

∞∑
n=0

(−1)nζ(2n+ 2)ζ(2n+ 2 + s)t2n, (15.64)

where the last equality holds for |t| < 1. In the last step, we expanded 1/(1 + t2/n2) in a
geometric series, interchanged the order of summation, and then used (3.7). Now σ > −1
implies the convergence of this integral near 0. Thus,∫ ∞

0

t1+σ/2

1 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os(1). (15.65)

Using (2.18) and (15.65), we conclude that I2(s, α) converges.
Now consider I1(s, α). Split the inner integral as

I1(s, α) =

∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ { ∫ x

0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt
+

∫ ∞
x

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt} dx
=: I3(s, α) + I4(s, α). (15.66)

Using (15.64), we see that∫ x

0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os

(
1

x2

∫ x

0
t1+σ/2

(
tσ/2 + t−σ/2

)
dt

)
. (15.67)

Since 0 < t < x < 1, if 0 ≤ σ < 1, then tσ/2 + t−σ/2 = O
(
t−σ/2

)
, and so∫ x

0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os

(
1

x2

∫ x

0
t dt

)
= Os(1), (15.68)

whereas if −1 < σ < 0, then tσ/2 + t−σ/2 = O
(
tσ/2

)
, and hence∫ x

0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os

(
1

x2

∫ x

0
t1+σ dt

)
= Os(x

σ).

Thus, from (15.67) and (15.68),

I3(s, α) =

∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ x

0

t1+σ/2

x2 + t2

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
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= Os

(∫ 1

0

(
xσ/2 + x−σ/2

) ∣∣Ks/2(2παx)
∣∣ dx) . (15.69)

Lastly, it remains to consider I4(s, α). Since
1

x2 + t2
≤ 1

t2
,

I4(s, α) ≤
∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ ∞

x
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx. (15.70)

Next, split the latter integral into two integrals, one having the limits of its inner integral
from t = x to t = 1, and the other from t = 1 to t =∞. Since σ < 1, it is easy to see that∫ ∞

1
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os(1),

and thus ∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ ∞

1
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
= Os

(∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ dx)

= Os

(∫ 1

0

(
xσ/2 + x−σ/2

) ∣∣Ks/2(2παx)
∣∣ dx) . (15.71)

Now ∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ 1

x
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
=

∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ 1/2

x
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx
+

∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ 1

1/2
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx.
It is easy to see that ∫ 1

1/2
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os(1). (15.72)

Observe that another application of (15.64) yields∫ 1/2

x
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os

(∫ 1/2

x
tσ/2−1

(
tσ/2 + t−σ/2 + t1+σ/2

)
dt

)
= Os(x

σ) +Os (|log x|) +Os(x
σ+1). (15.73)

However, since 0 < x < 1 and −1 < σ < 1, Os(x
σ+1) = Os(x

σ). Thus, combining this with
(15.72) and (15.73), we arrive at∫ 1

x
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt = Os(x
σ) +Os(1) +Os (|log x|) .

This in turn gives∫ 1

0
x−σ/2

∣∣Ks/2(2παx)
∣∣ ∫ 1

x
tσ/2−1

∣∣∣∣ϕ(t, s)− ζ(s)

2π
ts/2−1

∣∣∣∣ dt dx



90 BRUCE C. BERNDT, ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

= Os

(∫ 1

0

(
xσ/2 + x−σ/2 + x−σ/2 |log x|

) ∣∣Ks/2(2παx)
∣∣ dx) . (15.74)

From (15.66), (15.69), (15.70), (15.71), and (15.74), we deduce that

I1(s, α) = Os

(∫ 1

0

(
xσ/2 + x−σ/2 + x−σ/2 |log x|

) ∣∣Ks/2(2παx)
∣∣ dx) . (15.75)

From [1, p. 375, equations (9.6.9), (9.6.8)], as y → 0, Kν(y) ∼ 2ν−1Γ(ν)y−ν , when Re ν > 0,
and K0(y) ∼ − log y. Hence,

Ks/2(2παx) =

{
Os,α

(
x−|σ|/2

)
, if s 6= 0,

Oα(log x), if s = 0.

If s 6= 0, then ∫ 1

0

(
xσ/2 + x−σ/2 + x−σ/2 |log x|

) ∣∣Ks/2(2παx)
∣∣ dx

= Os,α

(∫ 1

0

(
1 + x−σ + x−σ |log x|

)
dx

)
= Os,α(1),

since σ < 1. If s = 0, then∫ 1

0

(
xσ/2 + x−σ/2 + x−σ/2 |log x|

) ∣∣Ks/2(2παx)
∣∣ dx

= Oα

(∫ 1

0

(
xσ/2 + x−σ/2 + x−σ/2 |log x|

)
|log x| dx

)
= Os,α(1),

as σ > −1.
Along with (15.75), this finally implies that I1(s, α) converges. Hence, the double integral∫ ∞

0
x−s/2Ks/2(2παx)

∫ ∞
0

t1+s/2

x2 + t2

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt dx

converges absolutely. Similarly, it can be shown that∫ ∞
0

t1+s/2
(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)∫ ∞
0

x−s/2Ks/2(2παx)

x2 + t2
dx dt

converges absolutely. This allows us to apply Fubini’s theorem and interchange the order of
integration in (15.63).

Now from [69, p. 346, equation 2.16.3.16], for Re u > 0, Re y > 0, and ± Re ν > −1
2 ,∫ ∞

0

x±ν

x2 + y2
Kν(ux) dx =

π2y±ν−1

4 cos(νπ)
(H∓ν(uy)− Y∓ν(uy)) , (15.76)

where Hν(w) is the first Struve function defined by [41, p. 942, formula 8.550.1]

Hν(w) :=

∞∑
m=0

(−1)m
(w/2)2m+ν+1

Γ
(
m+ 3

2

)
Γ
(
ν +m+ 3

2

) .
Also from [37, p. 42, formula (84)],

Hν(w) = Yν(w) +
21−νπ−1/2

Γ
(
ν + 1

2

) Sν,ν(w). (15.77)
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Hence, from (15.63), (15.76), (15.77), and (2.3),

√
α

∫ ∞
0

Ks/2(2παx)f(x, s)dx

=
Γ
(
1
2(1− s)

)√
α

2s/2
√
π

∫ ∞
0

Ss/2,s/2(2παt)

(
ϕ(t, s)− ζ(s)

2π
ts/2−1

)
dt. (15.78)

Using (15.11) and (15.78), we obtain (15.62). �

Remark: From (15.10), (15.58), and the evaluation [38, p. 345, formula (14)]∫ ∞
0

ts

x2 + t2
dt =

πxs−1

2 cos
(
1
2πs
) , −1 < σ < 1,

we find that
2

π
x−s/2

∫ ∞
0

t1+s/2ϕ(t, s)

x2 + t2
dt = f(x, s) +

xs/2−1ζ(s)

2π cos
(
1
2πs
) . (15.79)

Koshliakov’s formula [55, equation (7)]6, namely,∫ ∞
0

tϕ(t, 0)

1 + t2
dt = γ2 − 2γ1 −

1

4
+
π2

6
−
∞∑
n=1

d(n)

(
1

n
− 1

n+ 1

)
is a special case of (15.79) when s = 0 and x = 1.

16. Some Results Associated with the Second Koshliakov Transform

In Section 15.1, we studied a modular transformation associated with the function f(x, s)
defined in (15.10), which in turn, was found by choosing the function F (z, s) given in (15.12).
Then in (15.58) of Section 15.3, we found an integral representation for f(x, s). This, however,
completely obscures the discovery of this choice of F (z, s), and in fact, it was discovered by
first considering (15.59) and asking ourselves, what function needs to be multiplied with
1/
(
2 cos

(
π
2

(
z + s

2

)))
in order to form a function F (z, s) that satisfies F (z, s) = F (1 − z, s)

and hence to be able to use Theorem 15.2. This motivated us to consider the function defined
by the integral in the second equality in (15.61), which we then evaluated in two different
ways, leading to f(x, s) and its aforementioned integral representation.

With the same intention of constructing an F (z, s) satisfying F (z, s) = F (1−z, s) towards
applying Theorem 15.4 and obtaining a modular transformation, we introduce a function
defined by means of the integral

1

2πi

∫ c′+i∞

c′−i∞

2 sin
(
1
2π
(
z − 1

2s
))

(2π)2z
Γ
(
z − s

2

)
Γ
(
z +

s

2

)
ζ
(
z − s

2

)
ζ
(
z +

s

2

)
x−z dz

for ±1
2σ < c′ = Re z < 1± 1

2σ. We first evaluate this integral in the half-plane Re z > 1± 1
2σ

as well as in the vertical strip ±1
2σ < c′ = Re z < 1 ± 1

2σ . It is easy to see, using (3.14),
(3.15), and (2.5), that this integral converges in both of these regions.

Theorem 16.1. For c′ = Re z > 1± 1
2σ,

1

2πi

∫ c′+i∞

c′−i∞

2 sin
(
1
2π
(
z − 1

2s
))

(2π)2z
Γ
(
z − s

2

)
Γ
(
z +

s

2

)
ζ
(
z − s

2

)
ζ
(
z +

s

2

)
x−z dz

= η(x, s), (16.1)

6Note that there is a misprint in Koshliakov’s formulation of this identity, namely, there is a plus sign in
front of the infinite sum, which actually should be a minus sign.
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where

η(x, s) := 2i
∞∑
n=1

σ−s(n)ns/2
(
eπis/4Ks

(
4πeπi/4

√
nx
)
− e−πis/4Ks

(
4πe−πi/4

√
nx
))

.

Moreover, if

κ(x, s) := η(x, s)− 1

2π2x

(
Γ(1 + s)ζ(1 + s)

(2π
√
x)s

+
Γ(1− s)ζ(1− s) cos

(
πs
2

)
(2π
√
x)−s

)
, (16.2)

then for ±1
2σ < c = Re z < 1± 1

2σ,

1

2πi

∫ c+i∞

c−i∞

2 sin
(
1
2π
(
z − 1

2s
))

(2π)2z
Γ
(
z − s

2

)
Γ
(
z +

s

2

)
ζ
(
z − s

2

)
ζ
(
z +

s

2

)
x−z dz

= κ(x, s). (16.3)

Remark: Note that η(x, s) is merely i times the series in (1.19).

Proof. The proof of (16.1) is similar to that given by Koshliakov in [54, equation (11)] for
the special case s = 0 of the series (6.6), and employs (15.7) along with (15.14). Then
(16.3) follows from (16.1) by shifting the line of integration from c′ = Re z > 1 ± 1

2σ to

±1
2σ < c = Re z < 1 ± 1

2σ, considering the contribution of the poles of the integrand at

1± 1
2s, and employing the residue theorem. �

Given below is an analogue of Theorem 15.11.

Theorem 16.2. Let κ(x, s) be defined in (16.2), and let

Φ(x, s) := 2

∞∑
n=1

σ−s(n)ns/2Ks(4π
√
nx)− Γ(1 + s)ζ(1 + s)x−1−s/2

(2π)2+s

− Γ(1− s)ζ(1− s)x−1+s/2

(2π)2−s

Then, for −1 < σ < 1,

Φ(x, s) =
x−s/2

π

∫ ∞
0

t1+s/2κ(t, s)

t2 + x2
dt.

Proof. The proof simply uses the identity [30, equation (5.26)]

Φ(x, s) =
1

2πi

∫ c+i∞

c−i∞
Γ
(
z − s

2

)
Γ
(
z +

s

2

)
ζ
(
z − s

2

)
ζ
(
z +

s

2

) x−z

(2π)z
dz,

valid for ±1
2σ < c = Re z < 1± 1

2σ, (15.60), which is valid for 1
2σ < d′ = Re z < 2 + 1

2σ, and
(2.13). �

As of now, we have been unable to use (16.3) to construct an f(x, s) in (15.5) to produce
a modular transformation of the form (15.6).
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17. The Second Identity on Page 336

On page 336 of his lost notebook, Ramanujan claims the following:

Let σs(n) =
∑

d|n d
s and let ζ(s) denote the Riemann zeta function. If α, and

β are positive numbers such that αβ = 4π2, then

α(s+1)/2

{
1

α
ζ(1− s) +

1

2
ζ(−s) tan

(
1
2πs
)

+

∞∑
n=1

σs(n) sinnα

}

= β(s+1)/2

{
1

β
ζ(1− s) +

1

2
ζ(−s) tan

(
1
2πs
)

+
∞∑
n=1

σs(n) sinnβ

}
. (17.1)

As remarked in [13], this formula is easily seen to be false because the series are divergent.
Fix an s. If a correct version of Ramanujan’s identity (17.1) exists, we believe that it should

be a special case of (15.27), where G(x, s) = H(x, s) = f(x, s), and f(x, s) is self-reciprocal
with respect to the kernel

−2π sin
(
1
2πs
)
Js(4π

√
xt)− cos

(
1
2πs
) (

2πYs(4π
√
xt)− 4Ks(4π

√
xt)
)

;

in other words, f is equal to its first Koshliakov transform.
The appearance of tan

(
1
2πs
)

in Theorem 15.6 of Section 15 is pleasing when compared
with (17.1). Thus, a series analogue of this theorem (as attempted in Section 15.2) or a series
transformation through Guinand’s formula (15.27) with the choice of G(x, s) = H(x, s) =
f(x, s), with f(x, s) defined in (15.10), may shed some light on (17.1), provided, of course, a
correct version of (17.1) does exist.
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[38] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Tables of Integral Transforms, Vol. I, Bateman

Manuscript Project, McGraw-Hill, New York, 1954.
[39] M. L. Glasser, Integral representations for the exceptional univariate Lommel functions, J. Phys. A:

Math. Theor. 43 (2010) 155–207.
[40] S. Goldstein, On the Vortex Theory of Screw Propellers, Proc. R. Soc. Lond. A 123 (1929), 440–465.



NEW PATHWAYS AND CONNECTIONS IN NUMBER THEORY AND ANALYSIS 95

[41] I. S. Gradshteyn and I. M. Ryzhik, eds., Table of Integrals, Series, and Products, 7th ed., Academic Press,
San Diego, 2007.

[42] A. P. Guinand, Summation formulae and self-reciprocal functions (II), Quart. J. Math. 10 (1939), 104–
118.

[43] A. P. Guinand, Some rapidly convergent series for the Riemann ξ-function, Quart.J. Math. (Oxford) 6
(1955), 156–160.

[44] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981),
181–186.

[45] G. H. Hardy, On Dirichlet’s divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1–25.
[46] G. H. Hardy, Collected Papers of G. H. Hardy, Vol. II, Clarendon Press, Oxford, 1967.
[47] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford University

Press, Oxford, 2008.
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