
RIESZ-TYPE CRITERIA AND THETA TRANSFORMATION

ANALOGUES

ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Abstract. We give character analogues of a generalization of a result due to Ramanujan,
Hardy and Littlewood, and provide Riesz-type criteria for the Riemann Hypothesis for the
Riemann zeta function and Dirichlet L-function. We also provide analogues of the general
theta transformation formula and of recent generalizations of the transformation formulas
of W.L. Ferrar and G.H. Hardy for real primitive Dirichlet characters.

1. Introduction

In 1916, Riesz [31] gave the following equivalent criterion for the Riemann Hypothesis:

Let the function F (x) be defined by

F (x) :=

∞∑
n=1

µ(n)
x

n2
e−x/n

2
.

The estimate F (x) = Oδ

(
x

1
4
+δ
)

for all δ > 0 is a necessary and sufficient condition for the

validity of the Riemann Hypothesis.

One relevant aspect of Riesz’s criterion is that it involves the values of the Riemann zeta
function in the region of absolute convergence, more precisely at integers 2, 3, 4, · · · .

Same is the case with the following variant of the above criterion due to Hardy and Lit-
tlewood [18, p. 156, Section 2.5]:

Consider the function

P (y) :=
∞∑
k=1

µ(k)

k
e−y/k

2
=

∞∑
m=1

(−y)m

m!ζ(2m+ 1)
. (1.1)

Then, the estimate P (y) = Oδ

(
y−

1
4+δ

)
as y → ∞ for all positive values of δ is equivalent

to the Riemann Hypothesis.

Their intuition and motivation came from a beautiful identity in Ramanujan’s notebooks
[29] (see also [6, p. 468, Entry 37]). Ramanujan’s work [29, 5, 6, 30, 2] has always had an
element of surprise in it and this identity is no exception. It gives a nice transformation
between infinite series of the Möbius function. Ramanujan communicated his identity to
Hardy and Littlewood during his stay in Cambridge. The corrected version of this formula
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was given by Hardy and Littlewood [18, p. 156, Equation 2.516] and is as follows:

Let α and β be two positive numbers such that αβ = π. Assume that the series∑
ρ

(
Γ

(
1− ρ

2

)
/ζ
′
(ρ)

)
aρ

converges, where ρ runs through the non-trivial zeros of ζ(s) and a denotes a positive real
number, and that the non-trivial zeros of ζ(s) are simple. Then

√
α

∞∑
n=1

µ(n)

n
e−α

2/n2 −
√
β

∞∑
n=1

µ(n)

n
e−β

2/n2
= − 1

2
√
β

∑
ρ

Γ
(
1−ρ
2

)
ζ ′(ρ)

βρ. (1.2)

Various aspects of this identity have been presented by Berndt [6, p. 470], Bhaskaran [10],
Paris and Kaminski [27, p. 143] and Titchmarsh [33, p. 219, Section 9.8]. The following
one-variable generalization of (1.2) was recently obtained in [14] in the course of studying
transformation formulas of the form F (z, α) = F (iz, β), where αβ = 1 and i =

√
−1.

Let z ∈ C and let α and β be two positive numbers such that αβ = 1. Let 1F1(a; c; z)
denote the confluent hypergeometric function (see (1.8)). Assume that the series

∑
ρ

Γ
(
1−ρ
2

)
ζ ′(ρ)

1F1

(
1− ρ

2
;
1

2
;
−z2

4

)
π
ρ
2 aρ

converges, where ρ runs through the non-trivial zeros of ζ(s) and a denotes a positive real
number, and that the non-trivial zeros of ζ(s) are simple. Then

√
αe

z2

8

∞∑
n=1

µ(n)

n
e−

πα2

n2 cos

(√
παz

n

)
−
√
βe−

z2

8

∞∑
n=1

µ(n)

n
e−

πβ2

n2 cosh

(√
πβz

n

)

= − e−
z2

8

2
√
πβ

∑
ρ

Γ
(
1−ρ
2

)
ζ ′(ρ)

1F1

(
1− ρ

2
;
1

2
;
z2

4

)
πρ/2βρ. (1.3)

In (1.2) as well as in (1.3), it is not necessary to assume convergence of the series on the
right-hand side. Instead one can bracket the terms of the series as explained in [18, p. 158]
and [33, p. 220].

Motivated by (1.3) and the aforementioned variant of Riesz’s criterion, we establish the
following theorem which gives a more general Riesz-type criterion for the Riemann zeta
function. An analogue of this theorem for Dirichlet L-functions is given at the end of Section
4. Our result represents a family of criteria, parametrized by a complex variable z (although
only the z = 0 case gives a necessary and sufficient condition, while for z 6= 0 and arg(z) 6= −π

4 ,
it allows for finitely many possible zeros off the critical line).

Theorem 1.1. Fix z ∈ C. Consider the function

Pz(y) :=
∞∑
n=1

µ(n)

n
e−y/n

2
cosh

(√
yz

n

)
. (1.4)

Then we have the following:

(1) The Riemann Hypothesis implies Pz(y) = Oz,δ

(
y−

1
4+δ

)
as y →∞ for all δ > 0.
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(2) (a) If z = 0, the estimate Pz(y) = Oz,δ

(
y−

1
4+δ

)
as y → ∞ for all δ > 0 implies the

Riemann Hypothesis.

(b) If z 6= 0 and arg(z) 6= −π
4 , the estimate Pz(y) = Oz,δ

(
y−

1
4+δ

)
as y →∞ for all δ > 0

implies that ζ(s) has at most finitely many non-trivial zeros off the critical line.

In (1.2) and (1.3), one assumes simplicity of the zeros. It is known from the work of Bui,
Conrey and Young [11] that at least 40.58% non-trivial zeros of the Riemann zeta function lie
on the critical line and are simple. Also, the first 1.5× 109 non-trivial zeros of the Riemann
zeta function are on the critical line and are simple (see van de Lune, te Riele and Winter
[21]). By an appropriate modification of the right-hand side of (1.3), one can avoid the
assumption on the simplicity of the zeros and prove an unconditional result. We do this in
Theorem 1.2 below which generalizes (1.3) in the context of Dirichlet characters.

Theorem 1.2. Let z ∈ C and let α and β denote two positive numbers such that αβ = 1.
Let χ be a primitive Dirichlet character modulo q. Let G(χ) := G(1, χ) denote the Gauss
sum defined more generally by

G(n, χ) :=

q∑
m=1

χ(m)e2πimn/q. (1.5)

(i) If χ is even,√
αG(χ)e

z2

8

∞∑
n=1

χ(n)µ(n)

n
e
−πα

2

qn2 cos

(√
παz

n
√
q

)

−
√
βG(χ)e−

z2

8

∞∑
n=1

χ(n)µ(n)

n
e
−πβ

2

qn2 cosh

(√
πβz

n
√
q

)

= −
e−

z2

8

√
qG(χ)

2
√
πβ

∑
ρ

1

(mρ − 1)!

dmρ−1

dsmρ−1
(s− ρ)mρ

Γ
(
1−s
2

)
L(s, χ)

1F1

(
1− s

2
;
1

2
;
z2

4

)(
π

q

) s
2

βs

∣∣∣∣∣
s=ρ

.

(1.6)

(ii) If χ is odd,√
αG(χ)e

z2

8

∞∑
n=1

χ(n)µ(n)

n
e
−πα

2

qn2 sin

(√
παz

n
√
q

)

−
√
βG(χ)e−

z2

8

∞∑
n=1

χ(n)µ(n)

n
e
−πβ

2

qn2 sinh

(√
πβz

n
√
q

)

= −
ze−

z2

8

√
qG(χ)

2
√
πβ

∑
ρ

1

(mρ − 1)!

dmρ−1

dsmρ−1
(s− ρ)mρ

Γ
(
2−s
2

)
L(s, χ)

1F1

(
2− s

2
;
3

2
;
z2

4

)(
π

q

) s
2

βs

∣∣∣∣∣
s=ρ

,

(1.7)

where in (1.6) (and analogously in (1.7)), mρ is the multiplicity of the zero ρ := δ + iγ of
L(s, χ) and the sum over ρ involves bracketing the terms so that the terms for which

|γ − γ′| < exp (−A1|γ|/ log(|γ|+ 3)) + exp
(
−A1|γ′|/ log(|γ′|+ 3)

)
,

where A1 is a positive constant, are included in the same bracket.
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Theorems 1.10 and 1.9 from [13] can be recovered as special cases, by letting z = 0 in (1.6),
and respectively, by dividing both sides of (1.7) by z and then letting z → 0. We expect
the pairs of zeros {ρ, ρ′} that need to be bracketed together in (1.6) and (1.7) to occur very
rarely. For various results on correlation of zeros of L-functions, the reader is referred to
Montgomery [23], Rudnick and Sarnak [32], Katz and Sarnak [19], [20], Murty and Perelli
[24], and Murty and one of the authors [25].

In identities (1.3), (1.6) and (1.7) appears Kummer’s confluent hypergeometric function

1F1(a; c;w) :=

∞∑
n=0

(a)nw
n

(c)nn!
, (1.8)

where (a)n is the rising factorial defined for a ∈ C by

(a)n := a(a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

It is the special case p = q = 1 of the generalized hypergeometric function given by [1, p. 62]

pFq(a1, · · · , ap; b1, · · · , bq;w) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

wn

n!
, (1.9)

and is an entire function of w.
An analogue of (1.3) for Hecke forms is provided in [15]. The identity in (1.3) can be easily

rephrased in the form F (z, α) = F (iz, β) (see [14, Equation (1.23)]). The best known example
of a formula of the type F (z, α) = F (iz, β) is the general theta transformation formula (see
the first equality in (1.27)). For more details, the reader is referred to [7, Equations 1.1, 1.2]
and the references therein.

We now discuss the second goal of this paper. Recently, the general theta transformation
formula and one-variable generalizations of the transformations of Ferrar and Hardy were
established in [14] as a by-product of evaluation of integrals of the form

F (z, α) :=

∫ ∞
0

f

(
t

2

)
Ξ

(
t

2

)
∇
(
α, z,

1 + it

2

)
dt, (1.10)

for specific choices of f(t). Here f(t) is of the form

f(t) = φ(it)φ(−it), (1.11)

where φ is analytic in t as a function of a real variable, Ξ(t) is the Riemann Ξ-function defined
by Ξ(t) := ξ(12 + it), where

ξ(s) :=
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s), (1.12)

and ∇(α, z, s) is the function defined by

∇(x, z, s) := ρ(x, z, s) + ρ(x, z, 1− s), (1.13)

where

ρ(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
1

2
;
z2

4

)
. (1.14)

In this paper, we work with two analogues of the integral in (1.10) for real primitive Dirichlet
characters. Let the function Ξ(t, χ) be defined by

Ξ(t, χ) := ξ

(
1

2
+ it, χ

)
, (1.15)
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where

ξ(s, χ) :=

(
π

q

)−(s+b)/2
Γ

(
s+ b

2

)
L(s, χ), (1.16)

with

b =

{
0, χ(−1) = 1,

1, χ(−1) = −1.
(1.17)

It is known [12] that ξ(s, χ) satisfies the functional equation

ξ(1− s, χ) = ε(χ)ξ(s, χ), (1.18)

where ε(χ) = ibq1/2/G(χ), where G(χ) is defined in (1.5). Since for real primitive characters,
we have

G(χ) =

{√
q, for χ even,

i
√
q, for χ odd,

(1.19)

the functional equation reduces simply to

ξ(1− s, χ) = ξ(s, χ). (1.20)

This also gives

Ξ(−t, χ) = Ξ(t, χ). (1.21)

For even real primitive Dirichlet characters, we work with the integral∫ ∞
0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt, (1.22)

for different choices of f(t). Here the functions f and ∇ are defined in (1.11) and (1.13)
respectively. Since ∇

(
α, z, 1+it2

)
= ∇

(
β, iz, 1+it2

)
(see [14, (1.12)]), this integral is invariant

under the simultaneous application of the maps α → β and z → iz, and hence generates
transformation formulas of the type F (z, α, χ) = F (iz, β, χ).

For odd real primitive Dirichlet characters, we work with the integral∫ ∞
0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt, (1.23)

where

∆(x, z, s) := ω(x, z, s) + ω(x, z, 1− s), (1.24)

with

ω(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
3

2
;
z2

4

)
. (1.25)

By Kummer’s first transformation for 1F1(a; c;w) [1, p. 191, Equation (4.1.11)], [28, p. 125,
Equation (2)], namely,

1F1(a; c;w) = ew1F1(c− a; c;−w), (1.26)

we also have ∆
(
α, z, 1+it2

)
= ∆

(
β, iz, 1+it2

)
, and so the integral, invariant under α→ β and

z → iz, gives formulas of the type F (z, α, χ) = F (iz, β, χ).
The difference between the forms of the functional equations for ξ(s, χ), when χ is even

or odd, necessitates the use of two different analogues, namely the ones given in (1.22) and
(1.23). Another reason is, we want to be able to explicitly evaluate the associated inverse
Mellin transforms when we convert these integrals into equivalent complex integrals, and this
requires working with the integrals in (1.22) and (1.23) as we shall see later. We now give
some examples.
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Consider the following extended version of the general theta transformation formula es-
tablished in [14]:

Let z ∈ C. If α and β are positive numbers such that αβ = 1, then

√
α

e− z28
2α
− e

z2

8

∞∑
n=1

e−πα
2n2

cos(
√
παnz)

 =
√
β

e z28
2β
− e−

z2

8

∞∑
n=1

e−πβ
2n2

cosh(
√
πβnz)


=

1

π

∫ ∞
0

Ξ(t/2)

1 + t2
∇
(
α, z,

1 + it

2

)
dt. (1.27)

Here, we establish the following character analogue of (1.27):

Theorem 1.3. Let z ∈ C and let α and β denote two positive numbers such that αβ = 1.
Let χ be a real primitive Dirichlet character modulo q.

(i) If χ is even,

√
αe

z2

8

∞∑
n=1

χ(n)e
−πα

2n2

q cos

(√
παnz
√
q

)
=
√
βe−

z2

8

∞∑
n=1

χ(n)e
−πβ

2n2

q cosh

(√
πβnz
√
q

)
=

1

8π

∫ ∞
0

Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt. (1.28)

(ii) If χ is odd,

√
αe

z2

8

∞∑
n=1

χ(n)e
−πα

2n2

q sin

(√
παnz
√
q

)
=
√
βe−

z2

8

∞∑
n=1

χ(n)e
−πβ

2n2

q sinh

(√
πβnz
√
q

)
=

z

8
√
πq

∫ ∞
0

Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt. (1.29)

Note that Berndt and Schoenfeld [9, Theorem 7.1] have derived a transformation formula
for a periodic theta function.

Define ψ(a, χ) by

ψ(a, χ) = −
∞∑
n=1

χ(n)

n+ a
, (1.30)

where a ∈ C\Z<0. For a real character χ, this is consistent with the character analogue of the
digamma function which can be obtained by the logarithmic differentiation of the following
Weierstrass product form of the character analogue of the gamma function for real characters
derived by Berndt [3]:

Γ(a, χ) = e−aL(1,χ)
∞∏
n=1

(
1 +

a

n

)−χ(n)
eaχ(n)/n.

Then we prove the following character analogue of a generalization of a formula of Hardy [14,
Theorem 1.3]:

Theorem 1.4. Let z ∈ C and let α and β denote two positive numbers such that αβ = 1.
Let χ be a real primitive Dirichlet character modulo q and let ψ(x, χ) be defined as in (1.30).
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(i) If χ is even,

√
αe

z2

8

∫ ∞
0

ψ(x, χ)e
−πα

2x2

q cos

(√
παxz
√
q

)
dx

=
√
βe−

z2

8

∫ ∞
0

ψ(x, χ)e
−πβ

2x2

q cosh

(√
πβxz
√
q

)
dx

= −1

8

∫ ∞
0

Ξ
(
t
2 , χ
)
∇
(
α, z, 1+it2

)
cosh

(
1
2πt
) dt. (1.31)

(ii) If χ is odd,

√
αe

z2

8

∫ ∞
0

ψ(x, χ)e
−πα

2x2

q sin

(√
παxz
√
q

)
dx

=
√
βe−

z2

8

∫ ∞
0

ψ(x, χ)e
−πβ

2x2

q sinh

(√
πβxz
√
q

)
dx

= −z
√
π

8
√
q

∫ ∞
0

Ξ
(
t
2 , χ
)

∆
(
α, z, 1+it2

)
cosh

(
1
2πt
) dt. (1.32)

In a similar vein, we prove the following character analogues of a generalization of Ferrar’s
formula [14, Theorem 1.4]:

Theorem 1.5. Let z ∈ C and let Kν(z) denote the modified Bessel function of order ν. Let
α and β are positive numbers such that αβ = 1. Let χ be a real primitive Dirichlet character
modulo q.

(i) If χ is even,

√
αe

z2

8

∫ ∞
0

e
−πα

2x2

q cos

(√
παxz
√
q

) ∞∑
n=1

χ(n)K0

(
2πnx

q

)
dx

=
√
βe−

z2

8

∫ ∞
0

e
−πβ

2x2

q cosh

(√
πβxz
√
q

) ∞∑
n=1

χ(n)K0

(
2πnx

q

)
dx

=

√
q

32π
3
2

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt.

(1.33)

(ii) If χ is odd,

√
αe

z2

8

∫ ∞
0

xe
−πα

2x2

q sin

(√
παxz
√
q

) ∞∑
n=1

χ(n)nK0

(
2πnx

q

)
dx

=
√
βe−

z2

8

∫ ∞
0

xe
−πβ

2x2

q sinh

(√
πβxz
√
q

) ∞∑
n=1

χ(n)nK0

(
2πnx

q

)
dx

=
zq

32π2

∫ ∞
0

Γ

(
3 + it

4

)
Γ

(
3− it

4

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt.

(1.34)

The convergence of the integrals on the extreme right-hand sides of (1.28)-(1.29) and of
(1.31)-(1.34) follows from (2.6) and (2.7). When z = 0, we have∇

(
α, 0, 1+it2

)
= 2 cos

(
1
2 t logα

)
.
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This gives analogues of the theta transformation formula and formulas of Hardy and Ferrar
(Equations (1.1), (1.15), (6.19) respectively in [14]) for even real primitive Dirichlet char-
acters. Since ∆

(
α, 0, 1+it2

)
= 2 cos

(
1
2 t logα

)
too, we get corresponding analogues for odd

real primitive characters by dividing both sides in each of the Theorems 1.3, 1.4 and 1.5 by
non-zero z, letting z → 0 and then by using Lebesgue’s dominated convergence theorem.

This paper is organized as follows. In Section 2, we give preliminary results which are
used in subsequent sections. In Section 3, a proof of Theorem 1.2 is given. Then in Section
4, we give a proof of Theorem 1.1 and give a corresponding Riesz-type criterion for the
Riemann Hypothesis associated with the Dirichlet L-function. Section 5 is devoted to proving
Theorems 1.3, 1.4 and 1.5, where we prove them only in the case when χ is odd and leave
the even case for the reader.

2. Preliminary results

In this section, we give a result which transforms the integrals in (1.22) and (1.23) into
equivalent complex integrals. The latter can then be evaluated using Cauchy’s residue theo-
rem and the theory of Mellin transforms. We omit its proof since it is similar to the analogous
one for the Riemann zeta function [14, Theorem 3.1].

Theorem 2.1. Let

f(t) = φ(it)φ(−it),
where φ is analytic in t as a function of a real variable. Let χ be a real primitive Dirichlet
character modulo q. Let ∇(x, z, s), ρ(x, z, s) and Ξ(t, χ) be defined in (1.13), (1.14) and
(1.15) respectively. Assume that the integrals below converge. Then,

∫ ∞
0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt =

2

i

∫ 1
2
+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s, χ)ρ(α, z, s) ds,

∫ ∞
0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt =

2

i

∫ 1
2
+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s, χ)ω(α, z, s) ds.

(2.1)

In the proofs of Theorem 1.5, we will be making use of the following special case [8,
Theorem 2.1] of a general result of Berndt [4, Theorem 10.1]:

Theorem 2.2. Let x > 0. If χ is even with period q and Re ν ≥ 0, then
∞∑
n=1

χ(n)nνKν

(
2πnx

q

)
=

π
1
2

2xG(χ)

(qx
π

)ν+1
Γ

(
ν +

1

2

) ∞∑
n=1

χ(n)(n2 + x2)−ν−
1
2 ; (2.2)

if χ is odd with period k and Re ν > −1, then
∞∑
n=1

χ(n)nν+1Kν

(
2πnx

q

)
=

iπ
1
2

2x2G(χ)

(qx
π

)ν+2
Γ

(
ν +

3

2

) ∞∑
n=1

χ(n)n(n2 + x2)−ν−
3
2 . (2.3)

We will frequently use the following two lemmas in the proofs of subsequent theorems.
These lemmas already exist in the literature, for example, see [26, p. 47, Formulas 5.29, 5.30]
and [16, p. 318, 320, Formulas (10), (30)]. However, the first of these lemmas is incorrectly
given in both these references since the first argument of the confluent hypergeometric func-
tion in the formula should be 1 − s

2 instead of − s
2 . The correct version, which is also given

in [17, p. 503, Formula (3.952.7)], is as follows.
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Lemma 2.3. For c = Re s > −1 and Re a > 0, we have

1

2πi

∫ c+i∞

c−i∞

b

2
a−

1
2
− s

2 e−
b2

4aΓ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
b2

4a

)
x−s ds = e−ax

2
sin bx. (2.4)

Lemma 2.4. For c = Re s > 0 and Re a > 0, we have

1

2πi

∫ c+i∞

c−i∞

1

2
a−

s
2Γ
(s

2

)
e−

b2

4a 1F1

(
1− s

2
;
1

2
;
b2

4a

)
x−s ds = e−ax

2
cos bx. (2.5)

We note that [14, Equation (2.10)]

1F1

(
1
4 − λ; 1

2 ; z
2

4

)
∼ ez2/8 cos

(√
λz
)
, (2.6)

as |λ| → ∞ and | arg(λz)| < 2π. Stirling’s formula for Γ(s), s = σ + it, in a vertical strip
α ≤ σ ≤ β given by

|Γ(s)| = (2π)
1
2 |t|σ−

1
2 e−

1
2π|t|

(
1 +O

(
1

|t|

))
, (2.7)

as |t| → ∞. Finally we note that the Whittaker function Mλ,µ(z) is defined by [17, p. 1024,
formula 9.220, no.2]

Mλ,µ(z) = zµ+
1
2 e−z/21F1

(
µ− λ+ 1

2 ; 2µ+ 1; z
)
. (2.8)

3. Character analogues of the generalization of
Ramanujan-Hardy-Littlewood result

We prove only Part (ii) of Theorem 1.2. First, letting a = 1, b = z, x =
√
πα/(n

√
q) in

Lemma 2.3, we see that for Re s > −1,

e
−πα

2

qn2 sin

(√
παz

n
√
q

)
=
ze−

z2

4

4πi

∫ c+i∞

c−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα

n
√
q

)−s
ds. (3.1)

Hence for −1 < Re s < 0, we have
∞∑
n=1

χ(n)µ(n)

n
e
−πα

2

qn2 sin

(√
παz

n
√
q

)

=
ze−

z2

4

4πi

∞∑
n=1

χ(n)µ(n)

n

∫ c+i∞

c−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα

n
√
q

)−s
ds

=
ze−

z2

4

4πi

∫ c+i∞

c−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s( ∞∑
n=1

χ(n)µ(n)

n1−s

)
ds

=
ze−

z2

4

4πi

∫ c+i∞

c−i∞

Γ
(
s+1
2

)
L(1− s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s
ds, (3.2)

where in the penultimate step, we interchanged the order of summation and integration,
which is valid because of absolute convergence, and in the ultimate step, we used the fact

that 1/L(1− s, χ) =
∑∞

n=1
χ(n)µ(n)
n1−s for Re s < 0. Now for odd χ, the functional equation for

L(s, χ) can be put in the form

Γ
(
s+1
2

)
L(1− s, χ)

=
πs−

1
2G(χ)

iqs
Γ
(
2−s
2

)
L(s, χ)

. (3.3)
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Employing (3.3) in (3.2), we have

∞∑
n=1

χ(n)µ(n)

n
e
−πα

2

qn2 sin

(√
παz

n
√
q

)

= −ze
− z

2

4 G(χ)

4π3/2

∫ c+i∞

c−i∞

Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
ds. (3.4)

In order to be able to use the Dirichlet series for 1/L(s, χ), we now shift the line of integration
from −1 < c = Re s < 0 to 1 < λ = Re s < 2. In this process, we encounter the non-trivial
zeros of L(s, χ). Consider a positively oriented rectangular contour formed by [c − iT, λ −
iT ], [λ− iT, λ+ iT ], [λ+ iT, c+ iT ] and [c+ iT, c− iT ], where T be a positive real number.
Let Rh(a) denote the residue of the function

h(s) :=
Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
at s = a. By the residue theorem, we have[∫ λ−iT

c−iT
+

∫ λ+iT

λ−iT
+

∫ c+iT

λ+iT
+

∫ c−iT

c+iT

]
Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
ds

= 2πi
∑

−T<Im ρ<T

Rh(ρ), (3.5)

where

Rh(ρ) :=
1

(mρ − 1)!
lim
s→ρ

dmρ−1

dsmρ−1
(s− ρ)mρ

Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
. (3.6)

As T → ∞, the integrals along the horizontal segments [c − iT, λ − iT ] and [λ + iT, c + iT ]
tend to zero, which can be shown using a similar reasoning as in the proof of Theorem 1.6 in
[14]. Thus, we find that∫ c+i∞

c−i∞

Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
ds

=

∫ λ+i∞

λ−i∞

Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
ds− 2πi

∑
ρ

Rh(ρ). (3.7)

We now evaluate the integral on the right-hand side of (3.7). Let w = 1 − s so that for
−1 < λ′ = Re w < 0, we have∫ λ+i∞

λ−i∞

Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s
ds

=

∫ λ′+i∞

λ′−i∞

Γ
(
w+1
2

)
L(1− w,χ)

1F1

(
w + 1

2
;
3

2
;
z2

4

)(√
qα
√
π

)w−1
dw

=

√
π

√
qα

∞∑
n=1

χ(n)µ(n)

n

∫ λ′+i∞

λ′−i∞
Γ

(
w + 1

2

)
1F1

(
w + 1

2
;
3

2
;
z2

4

)( √
π

nα
√
q

)−w
dw

=

√
πe

z2

4

√
qα

∞∑
n=1

χ(n)µ(n)

n

∫ λ′+i∞

λ′−i∞
Γ

(
w + 1

2

)
1F1

(
2− w

2
;
3

2
;−z

2

4

)(√
πβ

n
√
q

)−w
dw
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=
4π3/2iβ

z
√
q

∞∑
n=1

χ(n)µ(n)

n
e
−πβ

2

qn2 sinh

(√
πβz

n
√
q

)
, (3.8)

where in the penultimate step, we used (1.26), and in the last step we used (3.1) with z
replaced by iz and α replaced by β. From (3.4), (3.7) and (3.8), we see that

∞∑
n=1

χ(n)µ(n)

n
e
−πα

2

qn2 sin

(√
παz

n
√
q

)

= − iβe
− z

2

4 G(χ)
√
q

∞∑
n=1

χ(n)µ(n)

n
e
−πβ

2

qn2 sinh

(√
πβz

n
√
q

)

+
ize−

z2

4 G(χ)

2
√
π

1

(mρ − 1)!

∑
ρ

dmρ−1

dsmρ−1
(s− ρ)mρ

Γ
(
2−s
2

)
L(s, χ)

1F1

(
1− s

2
;
3

2
;
z2

4

)(√
qα
√
π

)−s∣∣∣∣∣
s=ρ

.

(3.9)

Finally, multiplying both sides of (3.9) by
√
α
√
G(χ)e

z2

8 and making use of the facts that

αβ = 1 and that
√
G(χ)G(χ) = i

√
q for odd primitive χ, we arrive at (1.7) upon simplifica-

tion.
The proof of (1.6) employs (2.5). The method involves similar steps to the one above, and

the proof is left to the reader.

4. Riesz-type criteria for the Riemann Hypothesis

We prove Theorem 1.1 here. Before beginning the proof, let us give the heuristic behind

why one gets the bound Pz(y) = Oz(y
−1/4). Representing e−πy/n

2
and cosh

(√
πyz
n

)
in the

definition of Pz(πy) in (1.4) by their Taylor series and interchanging the order of summation,
we have

Pz(y) := Pz(πy) =

∞∑
n=1

µ(n)

n

∞∑
m=0

(−πy/n2)m

m!

∞∑
t=0

(
√
πyz/n)2t

(2t)!

=
∞∑
m=0

(−πy)m

m!

∞∑
t=0

(
√
πyz)2t

(2t)!

∞∑
n=1

µ(n)

n2m+2t+1

=

∞∑
m,t=0

(m,t)6=(0,0)

(−1)m(πy)m+tz2t

m!(2t)!ζ(2m+ 2t+ 1)
. (4.1)

Thus, Pz(y) is an entire function of y. From (1.3), we know that for αβ = 1,

√
αe

z2

8 Piz(α
2)−

√
βe−

z2

8 Pz(β
2) = −e

− z
2

8

2
√
π

∑
ρ

Γ
(
1−ρ
2

)
ζ ′(ρ)

1F1

(
1− ρ

2
;
1

2
;
z2

4

)
πρ/2βρ−

1
2 . (4.2)

Assume the Riemann Hypothesis and the absolute convergence of

∑
ρ

Γ
(
1−ρ
2

)
ζ ′(ρ)

1F1

(
1− ρ

2
;
1

2
;
z2

4

)
πρ/2.
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Then the right-hand side of (4.2) is Oz(1) as β →∞. From definition for α→ 0, we have

Piz(α
2) =

∞∑
n=1

µ(n)

n
e−π

2α2/n2
cos

(√
παz

n

)

=

∞∑
n=1

µ(n)

n

(
1 +O

(
α2

n2

))(
1 +O

(
α2

n2

))

=
∞∑
n=1

µ(n)

n

(
1 +O

(
α2

n2

))
= O(α2),

where in the last step, we used the prime number theorem in the form
∑∞

n=1 µ(n)/n = 0.
Hence Piz(α

2)→ 0 as α→ 0, or equivalently, as β →∞. Thus from (4.2), we find that

Pz(β
2) =

∞∑
m=0

∞∑
t=0

(−1)m(πβ2)m+tz2t

m!(2t)!ζ(2m+ 2t+ 1)
= Oz

(
β−1/2

)
, (4.3)

which can also be rephrased as

Pz(y) = Oz

(
y−

1
4

)
(4.4)

as y →∞. This completes the heuristic.
Now we begin with the actual proof of Theorem 1.1, where we first prove the necessary

condition, i.e., we show that the bound Pz(y) = Oz,δ

(
y−

1
4+δ

)
, as y → ∞ for all positive

values of δ, implies the Riemann Hypothesis when z = 0, and when z 6= 0 and arg(z) 6= −π
4 ,

it implies that all but finitely many non-trivial zeros of ζ(s) are on the critical line. We first
prove the following identity involving Pz(y):

Lemma 4.1. Let 0 < Re(s) < 1. Then for any z, we have∫ ∞
0

y−s−1Pz(y) dy =
πsΓ(−s)1F1

(
−s; 1

2 ; z
2

4

)
ζ(2s+ 1)

. (4.5)

Proof. Let

ϕ(s, z) :=

∫ ∞
0

y−s−1Pz(y) dy. (4.6)

Employing the change of variable y = x/n2, we see that

n−2sϕ(s, z) :=

∫ ∞
0

x−s−1Pz

( x
n2

)
dx. (4.7)

Now multiply both sides of (4.7) by n−1 and sum over n from 1 to ∞ to obtain

ζ(2s+ 1)ϕ(s, z) =

∞∑
n=1

∫ ∞
0

1

n
x−s−1Pz

( x
n2

)
dx. (4.8)

It can be shown using Weierstrass M-test and the Lebesgue dominated convergence theorem
that

∞∑
n=1

∫ ∞
0

1

n
x−s−1Pz

( x
n2

)
dx =

∫ ∞
0

x−s−1
∞∑
n=1

1

n
Pz

( x
n2

)
dx. (4.9)
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From (4.1), we have

∞∑
n=1

1

n
Pz

( x
n2

)
=
∞∑
n=1

1

n

∞∑
k=0

∞∑
t=0

(−1)k(πx/n2)k+tz2t

k!(2t)!ζ(2k + 2t+ 1)

=
∞∑

k,t=0
(k,t)6=(0,0)

(−1)k(πx)k+tz2t

k!(2t)!ζ(2k + 2t+ 1)

∞∑
n=1

1

n2k+2t+1

=
∞∑

k,t=0
(k,t)6=(0,0)

(−1)k(πx)k+tz2t

k!(2t)!

=
∞∑
k=1

(−πx)k

k!
+
∞∑
t=1

(πx)tz2t

t!
+

∞∑
k,t=1

(−1)k(πx)k+tz2t

k!(2t)!

= (e−πx − 1) + (cosh(
√
πxz)− 1) + (e−πx − 1)(cosh(

√
πxz)− 1)

= e−πx cosh(
√
πxz)− 1. (4.10)

�

Substituting this in (4.8), we have

ζ(2s+ 1)ϕ(s, z) =

∫ ∞
0

x−s−1
(
e−πx cosh(

√
πxz)− 1

)
dx. (4.11)

Integrating by parts, for 0 < Re s < 1, we have∫ ∞
0

x−s−1
(
e−πx cosh(

√
πxz)− 1

)
dx

=

[
x−s (e−πx cosh(

√
πxz)− 1)

−s

]∞
0

+
1

s

∫ ∞
0

x−s
d

dx

(
e−πx cosh(

√
πxz)− 1

)
dx

=
1

s

∫ ∞
0

x−s
d

dx

(
e−πx cosh(

√
πxz)

)
dx,

(4.12)

since limx→∞ e
−πx cosh(

√
πxz) = 0. Next, observe that∫ ∞

0
x−s

d

dx

(
e−πx cosh(

√
πxz)

)
dx

= π

∫ ∞
0

x−se−πx
(

z

2
√
πx

sinh(
√
πxz)− cosh(

√
πxz)

)
dx

= π

(
z2

2

∞∑
n=0

(
√
πz)2n

(2n+ 1)!

∫ ∞
0

xn−se−πx dx−
∞∑
n=0

(
√
πz)2n

(2n)!

∫ ∞
0

xn−se−πx dx

)

= πs

(
z2

2

∞∑
n=0

z2nΓ(1 + n− s)
(2n+ 1)!

−
∞∑
n=0

z2nΓ(1 + n− s)
(2n)!

)

= πsΓ(1− s)

(
z2

2

∞∑
n=0

z2n(1− s)n
(2n+ 1)!

−
∞∑
n=0

z2n(1− s)n
(2n)!

)
,
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where in the penultimate step, we have utilized the fact that Re s < 1. Combining the two
infinite series in the last line in the above calculation, we have∫ ∞

0
x−s

d

dx

(
e−πx cosh(

√
πxz)

)
dx

= −πsΓ(1− s)

(
1 +

∞∑
n=0

(
(1− s)n+1z

2n+2

(2n+ 2)!
− (1− s)nz2n+2

2(2n+ 1)!

))

= −πsΓ(1− s)

(
1 +

∞∑
n=0

(1− s)nz2n+2

(2n+ 1)!

(
1− s+ n

2n+ 2
− 1

2

))

= −πsΓ(1− s)

(
1 +

∞∑
n=0

(−s)n+1(z)
2n+2

(2n+ 2)!

)

= −πsΓ(1− s)

(
1 +

∞∑
n=0

(−s)n+1(z
2/4)n+1

(n+ 1)!
(
1
2

)
(n+1)

)

= −πsΓ(1− s)1F1

(
−s; 1

2
;
z2

4

)
. (4.13)

From (4.11), (4.12) and (4.13), we arrive at

ϕ(s, z) =
πsΓ(−s)1F1

(
−s; 1

2 ; z
2

4

)
ζ(2s+ 1)

. (4.14)

Remark. Letting z = 0 in (4.5) gives the following result of Hardy and Littlewood [18,
Equation (2.544)]: ∫ ∞

0
y−s−1P (y) dy =

πsΓ(−s)
ζ(2s+ 1)

, (4.15)

where P (y) is defined in (1.1). Multiplying both sides of (4.5) by sζ(2s+ 1), we have

sζ(2s+ 1)

∫ ∞
0

y−s−1Pz(y) dy = πsΓ(1− s)1F1

(
−s; 1

2
;
z2

4

)
. (4.16)

We now show that the bound Pz(y) = Oz,δ(y
− 1

4
+δ) for any δ > 0 as y → ∞ implies that

(4.16) holds for −1
4 < Re s ≤ 0 as well. Splitting the integral on the left-hand side into

two integrals, one from 0 to 1 and another from 1 to ∞, and applying the bound for Pz(y)
for the latter integral, one can see that the integral is analytic on −1

4 < Re s ≤ 0. Since
the pole of ζ(2s + 1) at s = 0 is annihilated by the zero of s at s = 0, we see that the
left-hand side of (4.16) is analytic. Since Γ(1− s) does not have any poles in −1

4 < Re s ≤ 0

and 1F1

(
−s; 1

2 ; z
2

4

)
is an entire function of s, the right-hand side of (4.16) is also analytic on

−1
4 < Re s ≤ 0. Since (4.16) holds for 0 < Re s < 1, by the principle of analytic continuation,

it holds on −1
4 < Re s ≤ 0 as well. Since the Gamma function does not have any zeros, the

zeros of the right-hand side of (4.16) are the zeros of 1F1

(
−s; 1

2 ; z
2

4

)
. Now if z = 0, the fact

that 1F1

(
−s; 1

2 ; z
2

4

)
= 1 implies that the left-hand side of (4.16) is non-zero in −1

4 < Re

s < 0. Since the integral on the left is analytic in this interval, this implies that ζ(2s + 1)
does not have any zeros in −1

4 < Re s < 0. This implies the Riemann Hypothesis, thereby
proving part (2)(a) of Theorem 1.1.
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Let us now consider the case when z 6= 0. For |λ| → ∞ and | arg(
√
λz)| < π, the following

estimate for Mλ,µ(z), where Mλ,µ(z) is defined in (2.8), is well-known [22, p. 318]:

Mλ,µ(z) = π−1/2z1/4λ−µ−1/4Γ(2µ+ 1) cos
(

2
√
λz − π

4
− µπ

)
+O

(
|λ|−µ−3/4

)
. (4.17)

From (2.8) and (4.17), as |λ| → ∞,

1F1

(
µ− λ+

1

2
; 2µ+ 1; z

)
= π−1/2(λz)−µ−1/4ez/2Γ(2µ+ 1) cos

(
2
√
λz − π

4
− µπ

)
+Oz,µ

(
|λ|−µ−3/4

)
. (4.18)

This gives for |s| → ∞,

1F1

(
−s; 1

2
;
z2

4

)
= e

z2

8 cos

(
z

√(
s+

1

4

))
+Oz

(∣∣∣∣s+
1

4

∣∣∣∣− 1
2

)
. (4.19)

For s = σ+it, since−1
4 < σ < 1 and |s| → ∞, we have |t| → ∞. Since z 6= 0 and arg(z) 6= −π

4 ,
this implies that the main term on the right-hand side of (4.19) tends to ∞ in absolute value

as |s| → ∞, implying that for t large enough, we have
∣∣∣1F1

(
−s; 1

2 ; z
2

4

)∣∣∣ > 0, i.e., for a fixed

non-zero z, there exists a number Tz such that for t > Tz, we have 1F1

(
−s; 1

2 ; z
2

4

)
6= 0.

Hence, the left-hand side of (4.16) has zeros at most up to a fixed height Tz depending on z.
But ζ(s) has only finitely many zeros up to any fixed height T . This proves part (2)(b) of
Theorem 1.1.

Remark. Note that if arg(z) = −π
4 , then z

√
s+ 1/4 is almost real, and so cos

(
z
√
s+ 1/4

)
will be essentially bounded, thereby making the main term in (4.19) bounded. Hence we need
the condition arg(z) 6= −π

4 .
Now we prove part (1) of Theorem 1.1, i.e., the Riemann Hypothesis implies the bound

Pz(y) = Oz,δ(y
− 1

4
+δ) for any δ > 0 as y → ∞. It is known that the Riemann Hypothesis

implies M(x) :=
∑

n≤x µ(n) = Oε(x
1
2
+ε) for all ε > 0. By partial summation, it is easy to

see that

M(ν, n) :=
n∑

m=ν

µ(m)

m
= Oε(ν

− 1
2
+ε) (4.20)

uniformly in n. From (1.4),

Pz(β
2) =

∞∑
n=1

µ(n)

n
e
−πβ2

n2 cosh

(√
πβz

n

)

=

[
ν−1∑
n=1

+

∞∑
n=ν

]
µ(n)

n
e
−πβ2

n2 cosh

(√
πβz

n

)
= P1 + P2, (4.21)

say, where ν = [β1−ε]. Here

P2 =
∞∑
n=ν

µ(n)

n
e
−πβ2

n2 cosh

(√
πβz

n

)
. (4.22)
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For any integer N > ν, we have

N∑
n=ν

µ(n)

n
e
−πβ2

n2 cosh

(√
πβz

n

)
=
µ(ν)

ν
e
−πβ2

ν2 cosh

(√
πβz

ν

)
+

∑
ν<n≤N

(M(ν, n)−M(ν, n− 1))e
−πβ2

n2 cosh

(√
πβz

n

)

=
µ(ν)

ν
e
−πβ2

(ν+1)2 cosh

(√
πβz

ν + 1

)
+M(ν,N)e

−πβ2

N2 cosh

(√
πβz

N

)
+

∑
ν≤n<N−1

M(ν, n)

(
e
−πβ2

n2 cosh

(√
πβz

n

)
− e

−πβ2

(n+1)2 cosh

(√
πβz

n+ 1

))

=
∑

ν≤n<N−1
M(ν, n)

(
e
−πβ2

n2 cosh

(√
πβz

n

)
− e

−πβ2

(n+1)2 cosh

(√
πβz

n+ 1

))
+Oε(ν

− 1
2
+ε) + ν−

1
2
+εO(N−2). (4.23)

Letting N tend to infinity, from (4.22) and (4.23) we derive

P2 =
∞∑
n=ν

M(ν, n)e
−πβ2

λ2n

(
2πβ2

λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

))
+Oε(ν

− 1
2
+ε),

(4.24)

where the mean value theorem with n < λn < n+ 1 is used in the last step. Using (4.20), we
see that

P2 = Oε

(
ν−

1
2
+ε
∞∑
n=ν

e
−πβ2

λ2n

∣∣∣∣2πβ2λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

)∣∣∣∣
)

= Oε

ν− 1
2
+ε

[Cβ]∑
n=ν

+
∞∑

n=[Cβ]+1

 e
−πβ2

λ2n

∣∣∣∣2πβ2λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

)∣∣∣∣


= Oε

(
ν−

1
2
+ε(P3 + P4)

)
,

(4.25)

say, where the constant C will be chosen later. Note that for n ≥ Cβ,

2πβ2

λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

)
=

(
β2

n3
OC,z(1) +

β

n2
OC,z

(
β

n

))
= OC,z

(
β2

n3

)
. (4.26)

Hence,

P4 =

∞∑
n=[Cβ]

e
−πβ2

λ2n

∣∣∣∣2πβ2λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

)∣∣∣∣
= OC,z

 ∞∑
n=[Cβ]

β2

n3


= OC,z(1). (4.27)
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For ν ≤ n ≤ Cβ,

2πβ2

λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

)
= OC,z

(
β2

n3
e
√
πβ|Rez|
n

)
. (4.28)

Hence,

P3 =

[Cβ]∑
n=ν

e
−πβ2

λ2n

∣∣∣∣2πβ2λ3n
cosh

(√
πβz

λn

)
−
√
πβz

λ2n
sinh

(√
πβz

λn

)∣∣∣∣
= OC,z

[Cβ]∑
n=ν

β2

n3
e
−πβ2

λ2n
+
√
πβ|Rez|
n

 . (4.29)

Choose C =
√
π

1+4|Rez| . Then one sees that for each n in the interval [ν, [Cβ]] the corresponding

exponent on the right-hand side of (4.29) is negative, so∣∣∣∣∣e−πβ
2

λ2n
+
√
πβ|Rez|
n

∣∣∣∣∣ ≤ 1.

Hence

P3 = Oz

[Cβ]∑
n=ν

β2

n3

 = Oz

(
β2

ν2

)
= Oz(β

2ε). (4.30)

Therefore, P2 = Oz

(
ν−

1
2
+εβ2ε

)
. Now for β2ε >

√
π|Rez|
π−1 ,

P1 =

ν−1∑
n=1

µ(n)

n
e
−πβ2

n2 cosh

(√
πβz

n

)

�
ν−1∑
n=1

e
−πβ2

n2
+
√
πβ|Rez|
n

� νe−
β2

ν2

� νe−β
2ε
. (4.31)

Combining the bounds for P1 and P2 above, one obtains the desired bound for Pz(β
2).

Replacing β2 by y proves part (i) of Theorem 1.1. This completes the proof of Theorem 1.1.
Now in the case of a primitive Dirichlet character, the associated Dirichlet L-function does

not have a pole at s = 1, or in other words,

∞∑
n=1

χ(n)µ(n)

n
6= 0.

Thus, in order to obtain an analogue of Theorem 1.1 for Dirichlet L-functions, it seems
appropriate to work with the derivative of the analogue of Pz(y) rather than the function
itself. This analogue of Pz(y) is defined by

Pz(y, χ) :=
∞∑
n=1

χ(n)µ(n)

n

(
e
− πy

qn2 cosh

(√
πyz

n
√
q

)
− 1

)
(4.32)
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for χ even, and by

Pz(y, χ) :=

∞∑
n=1

χ(n)µ(n)

n

e− πy

qn2

√
πyz
n
√
q

sinh

(√
πyz

n
√
q

)
− 1

 (4.33)

for χ odd.

Theorem 4.2. Let χ denote a primitive Dirichlet character modulo q, where q ≥ 3. Fix
z ∈ C. Let b be defined in (1.17). Consider the function

Qz(y, χ) :=
∞∑

m,k=0

(m+ k)(−1)m(π/q)m+kym+kz2k

m!(2k + b)!L(2m+ 2k + 1, χ)
, (4.34)

Then we have the following:

(1) The Riemann Hypothesis for L(s, χ) implies Qz(y, χ) = Oz,χ,δ

(
y−

1
4
+δ
)

as y →∞ for

all positive values of δ.

(2) (a) If z = 0, the estimate Qz(y, χ) = Oz,χ,δ

(
y−

1
4
+δ
)

as y → ∞ for all positive values

of δ implies the Riemann Hypothesis for L(s, χ).

(b) If z 6= 0 and arg(z) 6= −π
4 , the estimate Qz(y, χ) = Oz,χ,δ

(
y−

1
4
+δ
)

as y → ∞ for all

positive values of δ implies that L(s, χ) has at most finitely many non-trivial zeros off the
critical line.

Note that upon writing the right-hand sides of (4.32) and (4.33) in terms of the Taylor series

of e
− πy

qn2 cosh
(√

πyz
n
√
q

)
and e

− πy

qn2

(
sinh

(√
πyz
n
√
q

)
/
(√

πyz
n
√
q

))
, changing the order of summation

and then simplifying, it is seen in both the cases that ∂
∂yPz(y, χ) = Qz(y, χ)/y. We refrain

from giving the details of the proof of the above theorem since the reasoning is similar to
that in the proof of Theorem 1.1. However, we note that the following identity, which is
interesting in its own right, plays a crucial role in the proof.

Lemma 4.3. Let Qz(y, χ) and the number b be defined as in (4.34) and (1.17) respectively.
Let 0 < Re(s) < 1. Then for any z, we have∫ ∞

0
y−s−1Qz(y, χ) dy =

−(π/q)sΓ(1− s)1F1

(
−s; 1

2 + b; z
2

4

)
L(2s+ 1, χ)

. (4.35)

5. Proofs of the character analogues of some well-known transformation
formulas

In this section, we prove Theorems 1.3, 1.4, 1.5 for odd real χ. The case when χ is even
and real can be similarly proved.

Proof of Theorem 1.3. Let χ be odd and real, z ∈ C\{0}, and let φ(s) ≡ 1. Using the
second equation in (2.1), we have∫ ∞

0
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt

=
2
√
αqe−

z2

8

i
√
π

∫ 1
2
+i∞

1
2
−i∞

Γ

(
s+ 1

2

)
L(s, χ)1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s
ds



RIESZ-TYPE CRITERIA AND THETA TRANSFORMATION ANALOGUES 19

=
2
√
αqe−

z2

8

i
√
π

∞∑
n=1

χ(n)

∫ 1+δ+i∞

1+δ−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
παn
√
q

)−s
ds, (5.1)

where 0 < δ < 1. The last expression comes from the residue theorem since one does not
encounter any pole when one moves the line of integration from Re s = 1/2 to Re s = 1 + δ,
and also from the fact that

∑∞
n=1 χ(n)n−s converges absolutely for Re s > 1 and is equal to

L(s, χ). Now letting b = z 6= 0, a = 1 in Lemma 2.3 and simplifying, for c = Re s > −1, we
obtain

1

2πi

∫ c+i∞

c−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)
x−s ds =

2

z
e−x

2+ z2

4 sinxz. (5.2)

Use (5.2) in (5.1) to get

1

8
√
πq

∫ ∞
0

Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt =

√
αe

z2

8

z

∞∑
n=1

χ(n)e
−πα

2n2

q sin

(√
παnz
√
q

)
. (5.3)

The proof is complete once we observe the fact that the left-hand side of (5.3) is invariant
under the simultaneous replacement of α by β and of z by iz. �

Proof of Theorem 1.4. Again, assume that χ is odd and real. Let φ(s) =
s+ 1

2

2
√
2π

Γ
(
1
4 + s

2

)
Γ
(
−1

4 + s
2

)
so that

f(t) = φ(it)φ(−it) =
1
4 + t2

8π2
Γ

(
1

4
+
it

2

)
Γ

(
−1

4
+
it

2

)
Γ

(
1

4
− it

2

)
Γ

(
−1

4
− it

2

)
.

Using twice the reflection formula Γ(z)Γ(−z) = −π/(z sinπz), z /∈ Z, we find that f
(
t
2

)
=

1/ cosh
(
1
2πt
)
. Thus, using the second equation in (2.1) and the fact that zΓ(z) = Γ(z + 1),

we get∫ ∞
0

Ξ
(
t
2 , χ
)

∆
(
α, z, 1+it2

)
cosh 1

2πt
dt

=

√
αqe−

z2

8

π
5
2 i

∫ 1
2
+i∞

1
2
−i∞

Γ
(s

2

)
Γ2

(
s+ 1

2

)
Γ

(
1− s

2

)
Γ
(

1− s

2

)
L(s, χ)1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s
ds

=
2
√
αqe−

z2

8

i
√
π

∫ 1
2
+i∞

1
2
−i∞

Γ

(
s+ 1

2

)
L(s, χ)

sinπs
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s
ds, (5.4)

where in the last step we have used the duplication formula Γ(z)Γ
(
z + 1

2

)
= 21−2z

√
πΓ(2z)

twice as well as the reflection formula.
Now in order to use the Dirichlet series representation for L(s, χ), we shift the line of

integration from Re s = 1
2 to Re s = 1 + δ, where 0 < δ < 1. Consider a positively oriented

rectangular contour with sides [12 + iT, 12 − iT ], [12 − iT, 1 + δ− iT ], [1 + δ− iT, 1 + δ+ iT ] and

[1 + δ+ iT, 12 + iT ], where T is any positive real number. While shifting, we have to take care
of the pole of order 1 of the integrand (due to sinπs). Thus using the residue theorem and
noting that by (2.7) the integrals along the horizontal line segments tend to zero as T →∞,
and then interchanging the order of summation and integration while evaluating the integral
on the line Re s = 1 + δ, which is valid because of absolute convergence, we have∫ 1

2
+i∞

1
2
−i∞

Γ

(
s+ 1

2

)
L(s, χ)

sinπs
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s
ds
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=

∞∑
n=1

χ(n)G(z, α, n)− 2πi lim
s→1

(s− 1)

sinπs
Γ

(
s+ 1

2

)
L(s, χ)1F1

(
1− s

2
,
3

2
,
z2

4

)(√
πα
√
q

)−s
,

(5.5)

where

G(z, α, n) =

∫ 1+δ+i∞

1+δ−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2 ; 3
2 ; z

2

4

)
sinπs

(√
παn
√
q

)−s
ds. (5.6)

Using the residue theorem once again, we have for 0 < c = Re s < 1,

G(z, α, n) =

∫ c+i∞

c−i∞
Γ

(
s+ 1

2

)
1F1

(
1− s

2 ; 3
2 ; z

2

4

)
sinπs

(√
παn
√
q

)−s
ds

+ 2πi lim
s→1

(s− 1)

sinπs
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
παn
√
q

)−s
. (5.7)

Since for 0 < c < 1, we have [27, p. 91, Equation (3.3.10)]

1

2πi

∫ c+i∞

c−i∞

x−s

sinπs
ds =

1

π(1 + x)
, (5.8)

and since [27, p.83, Equation (3.1.13)],

1

2πi

∫ c+i∞

c−i∞
F (s)G(s)w−s ds =

∫ ∞
0

f(x)g
(w
x

) dx
x
, (5.9)

where F (s) and G(s) are Mellin transforms of f(x) and g(x) respectively, we deduce using
(5.2) that

G(z, α, n) = 2πi

2e
z2

4

πz

∫ ∞
0

e−x
2

sinxz

x+
√
παn√
q

dx−
√
q

αnπ
3
2
1F1

(
1

2
;
3

2
;
z2

4

) , (5.10)

which after a simple change of variable gives

G(z, α, n) =
4ie

z2

4

z

∫ ∞
0

e
−πα

2x2

q sin
(√

παxz√
q

)
x+ n

dx−
2i
√
q

αn
√
π
1F1

(
1

2
;
3

2
;
z2

4

)
. (5.11)

Substituting (5.11) in (5.5), simplifying and then combining with (5.4), we see that

−
√
π

8
√
q

∫ ∞
0

Ξ
(
t
2 , χ
)

∆
(
α, z, 1+it2

)
cosh 1

2πt
dt = −

√
αe

z2

8

z

∞∑
n=1

χ(n)

∫ ∞
0

e
−πα

2x2

q sin
(√

παxz√
q

)
x+ n

dx

=

√
αe

z2

8

z

∫ ∞
0

ψ(x, χ)e
−πα

2x2

q sin

(√
παxz
√
q

)
dx,

(5.12)

where ψ(x, χ) is defined in (1.30) and the interchange of summation and integration is jus-
tified because of absolute convergence. Finally we obtain (1.32) from the above equation by
simultaneously replacing α by β and z by iz and noting that the integral on the left-hand
side is invariant under these replacements. �
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Proof of Theorem 1.5. Let φ(s) = Γ
(
3
4 + s

2

)
and let

I(z, α, χ) :=

∫ ∞
0

Γ

(
3 + it

4

)
Γ

(
3− it

4

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt. (5.13)

Using (2.1), we have

I(z, α, χ) =

√
αqe−

z2

8

i

∫ 1
2
+i∞

1
2
−i∞

B

(
1 + s

2
, 1− s

2

)
Γ

(
s+ 1

2

)
L(s, χ)1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
√
q

)−s
ds,

(5.14)

where B(s, z − s) is the Euler beta function given by

B(s, z − s) =

∫ ∞
0

xs−1

(1 + x)z
dx =

Γ(s)Γ(z − s)
Γ(z)

, 0 < Re s < Re z. (5.15)

Now shift the line of integration from Re s = 1
2 to Re s = 1 + δ, 0 < δ < 2, and observe that

this does not introduce any poles, so that by the residue theorem and replacing L(s, χ) by
its Dirichlet series, we get

I(z, α, χ) =

√
αqe−

z2

8

i

∞∑
n=1

χ(n)

∫ 1+δ+i∞

1+δ−i∞
B

(
1 + s

2
, 1− s

2

)
Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
παn
√
q

)−s
ds,

(5.16)

where the interchange of summation and integration is justified by absolute convergence.
Using (5.15), we have for −1 < c = Re s < 2,

1

2πi

∫ c+i∞

c−i∞
B

(
1 + s

2
, 1− s

2

)
x−s ds =

2x

(1 + x2)
3
2

. (5.17)

Thus, from (5.2), (5.9) and (5.17), we obtain upon simplification

I(z, α, χ) =
4π
√
αqe

z2

8

z

∞∑
n=1

χ(n)

∫ ∞
0

2

(√
παn/

√
q
)

x

(
1 +

(√
παn/

√
q

x

)2
)−3

2

e−x
2

sinxz dx.

(5.18)

Making a change of variable x →
√
παx√
q and interchanging the order of summation and

integration, we have

I(z, α, χ) =
8π
√
αqe

z2

8

z

∫ ∞
0

xe
−πα

2x2

q sin

(√
παxz
√
q

) ∞∑
n=1

nχ(n)

(n2 + x2)
3
2

dx. (5.19)

Now use (2.3) with χ real and ν = 0, use (1.19) and simplify to obtain
∞∑
n=1

nχ(n)

(n2 + x2)
3
2

=
4π

q
3
2

∞∑
n=1

χ(n)nK0

(
2πnx

q

)
. (5.20)

Substitute (5.20) in (5.19) to obtain

q

32π2
I(z, α, χ) =

√
αe

z2

8

z

∫ ∞
0

xe
−πα

2x2

q sin

(√
παxz
√
q

) ∞∑
n=1

χ(n)nK0

(
2πnx

q

)
dx. (5.21)

Now note that this proves (1.34) completely since I(z, α, χ) is invariant under the simultane-
ous application of the maps α→ β and z → iz. �
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