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Sums of Magnetic Eigenvalues are Maximal
on Rotationally Symmetric Domains

Richard S. Laugesen, Jian Liang and Arindam Roy

Abstract. The sum of the first n ≥ 1 energy levels of the planar Laplacian
with constant magnetic field of given total flux is shown to be maximal
among triangles for the equilateral triangle, under normalization of the
ratio (moment of inertia)/(area)3 on the domain. The result holds for
both Dirichlet and Neumann boundary conditions, with an analogue for
Robin (or de Gennes) boundary conditions too. The square similarly max-
imizes the eigenvalue sum among parallelograms, and the disk maximizes
among ellipses. More generally, a domain with rotational symmetry will
maximize the magnetic eigenvalue sum among all linear images of that
domain. These results are new even for the ground state energy (n = 1).

1. Introduction

Eigenvalues of the Laplacian on a plane domain represent energy levels of a
quantum particle in two dimensions. These eigenvalues are known in closed
form only for special types of domain, such as disks and rectangles. Conse-
quently, a great deal of effort has gone into proving upper and lower bounds
on eigenvalues in terms of geometric properties of the domain, such as area
and perimeter.

For example, the Rayleigh–Faber–Krahn inequality says that the ground
state energy λ1 of a quantum particle with Planck constant � confined to a
region of area A is bounded below according to

λ1A ≥ �
2j2

0,1π

where j0,1 is the first zero of the Bessel function J0. Equality holds for the
disk. Such bounds provide not only hard estimates, but also soft intuition, for
they indicate how geometric attributes of the domain constrain the analytic
information encoded in the eigenvalues.
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Figure 1. A plane domain with 3-fold rotational symmetry,
and its image under a linear map T

A magnetic field imposed transversely through the domain makes the
energy levels even more difficult to determine theoretically. In this paper, we
aim to discover geometrically sharp estimates on such magnetic eigenvalues.

Given a bounded plane domain Ω, write λj(Ω, �, β) for the jth eigenvalue
of the Dirichlet Laplacian with Planck constant � > 0, under a constant trans-
verse magnetic field (0, 0, β). These Dirichlet eigenvalues are defined precisely
in the next section, as are the Neumann eigenvalues μj (assuming the domain
has Lipschitz boundary). The eigenvalue equations are

Dirichlet:

{
(i�∇ + F )2u = λu in Ω
u = 0 on ∂Ω

(1.1)

Neumann:

{
(i�∇ + F )2u = μu in Ω
�n · (�∇ − iF )u = 0 on ∂Ω

(1.2)

where the vector potential F (x) = β
2 (−x2, x1) creates the magnetic field ∇ ×

F = (0, 0, β).
Let A be the area and I the moment of inertia of Ω about its centroid:

I =
∫
Ω

|x − c|2 dx

with centroid c = 1
A

∫
Ω

x dx.
Our method works by linearly transforming a bounded plane domain D

having N -fold rotational symmetry, such as in Fig. 1. The main result, Theo-
rem 3.1, says that sums of magnetic eigenvalues decrease under linear transfor-
mation of the rotationally symmetric domain, provided the Planck constant
and field strength are transformed suitably too. This theorem encompasses
both Dirichlet and Neumann boundary conditions, and Robin–de Gennes con-
ditions are treated in Theorem 3.2. The ability to handle all three boundary
conditions is a striking feature of our method.

By expressing our main theorem geometrically, we will obtain:

Corollary 1.1. Assume D is a bounded plane domain with rotational symmetry
of order greater than or equal to 3, and that Ω is the image of D under a linear
transformation. Fix β ∈ R.
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Then for each n ≥ 1, the normalized eigenvalue sum[
λ1

(
Ω, �,

β

A

)
+ · · · + λn

(
Ω, �,

β

A

)]
A3

I
(1.3)

is maximal when Ω = D, for each n ≥ 1.
Maximality holds also for dilated, rotated, and reflected images of D; and

when n = 1 and β �= 0, every maximizing Ω is of that type.
The same conclusions hold for sums of Neumann eigenvalues.

The corollary is proved in Sect. 7.
Notice the total flux of the magnetic field is the same for each domain,

in the corollary, since multiplying the field strength β/A by area A gives β.
In particular, the corollary implies that the normalized eigenvalue sum

(1.3) is maximal among triangles for the equilateral, maximal among paral-
lelograms for the square, and maximal among ellipses for the disk. To apply
this result in practice, one would like explicit formulas for the eigenvalues of
the equilateral triangle and the square—but we do not know whether such
formulas exist for β �= 0.

Incidentally, for triangles the moment of inertia can be calculated in terms
of the side lengths as I = (l21 + l22 + l23)A/36, while for a parallelogram with
adjacent side lengths l1, l2, the moment of inertia equals I = (l21 + l22)A/12.

Two reasons for studying eigenvalue sums are that the sum represents
the energy needed to fill the lowest n states under the Pauli exclusion princi-
ple, and that summability methods improve the behavior of high eigenvalues,
which are difficult to study directly. An example of the improvement provided
by summation is that although the Pólya conjecture remains open, claiming
the Weyl asymptotic provides a lower bound for each eigenvalue of the Dirich-
let Laplacian, Li and Yau [25] were able to show that sums of these eigenvalues
are indeed bounded below by the analogous Weyl asymptotic.

1.1. Prior Work

The topic originates with an old result of Pólya on the fundamental tone of a
membrane (as stated in [27] and proved in [28, Chapter IV]). He established
the case n = 1 of this paper, for vanishing magnetic field; that is, he studied the
first eigenvalue of the usual Dirichlet Laplacian. His method relied heavily on
uniqueness of the fundamental mode, and thus it failed to extend to Neumann
boundary conditions, higher eigenvalue sums or the magnetic spectrum, all of
which we treat in this paper.

Our work relies on the method of Rotations and Tight Frames, developed
recently by Laugesen and Siudeja [23] for finding upper bounds on eigenvalue
sums of the Laplacian. We extend this technique to handle magnetic fields.
The resulting theorems are new even when n = 1.

The magnetic situation presents two new challenges. First, the interac-
tions of the momentum (or gradient) operator with the magnetic field must
be averaged over the N -fold rotations of D; see the quantities Q2 and Q3 in
Sect. 5. Second, a new proof must be found for the equality statement (see
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Sect. 6), because the eigenfunction u is complex-valued in the magnetic situ-
ation, and so u and u are non-equal in formulas (6.4) and (6.5).

The only prior geometrically sharp estimate we know, for magnetic eigen-
values, is the Faber–Krahn type lower bound of Erdös [7]. That result says the
normalized ground state energy λ1(Ω, �, β

A )A is minimal for the disk among
all two dimensional domains. Notice the total flux is once again the same, for
each domain considered.

The lower bound of Erdös relates to our upper bound in Corollary 1.1 as
follows. One can rewrite our functional in (1.3) as (λ1+· · ·+λn)A·A2/I. Thus,
it arises from multiplying a Faber–Krahn term (λ1 + · · ·+λn)A that is normal-
ized by area with a purely geometric, scale-invariant term A2/I that penalizes
long, thin domains. Erdös studied solely the Faber–Krahn term, and only for
n = 1, although his work does apply to arbitrary domains. We would like to
extend our work to arbitrary domains too, but the task seems challenging even
in the absence of magnetic field [23, §4].

The scarcity of isoperimetric type inequalities for magnetic eigenvalues
contrasts with a profusion of results in the nonmagnetic setting, where one may
consult the surveys by Ashbaugh and Benguria [2] or Benguria and Linde [4],
and the monographs of Bandle [3], Henrot [15], Kawohl [16], Kesavan [17] and
Pólya–Szegő [29]. In particular, triangular domains have been much studied
[1,11,20–23,26,31]. Our aim in this paper is to begin developing a magnetic
isoperimetric theory of comparable richness.

1.2. Asymptotically Sharp Inequalities (Semi-Classical Constants)

Our work in this paper is “geometrically sharp”, since an extremal domain
exists for each fixed n. The Li–Yau inequality mentioned above (for eigenvalue
sums in the absence of magnetic field) is not geometrically sharp, but is asymp-
totically sharp since equality holds for each domain in the limit as n → ∞,
by the Weyl asymptotic. Other asymptotically sharp bounds on eigenvalue
sum functionals were studied recently by Dolbeault, Geisinger, Harrell, Hermi,
Kröger, Laptev, Loss, and Weidl (see [6,12,14,18] and references therein).

Fewer such estimates are known with magnetic field, and some natural
conjectures turn out to be false. Notably, the magnetic Pólya conjecture has
been disproved by Frank, Loss and Weidl [10], who constructed counterexam-
ples even for square domains. A magnetic Li–Yau inequality nonetheless holds
true for eigenvalue sums, by work of Erdös, Loss and Vougalter [8] extending
results of Laptev and Weidl [19].

1.3. Higher Dimensions

One would like to extend our inequalities to higher dimensions. Any such
results will be more complicated, since the moment of inertia must be evalu-
ated on an “inverse” domain (as seen already for vanishing magnetic field [24])
and in higher dimensions the magnetic field is no longer perpendicular to the
domain.
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Note that no sharp Faber–Krahn lower bound is known for the ground
state energy of the magnetic Laplacian, in higher dimensions. The lower bound
of Erdös in the plane has yet to be extended.

2. Assumptions and Notation

2.1. Vector Potentials

Throughout the paper, we consider a constant magnetic field on the plane,
written

B = (0, 0, β)

for some fixed β ∈ R. The field can be generated from the curl of a suitable
vector potential F ∈ C∞(R2; R2), as

B = ∇ × F = (0, 0, ∂1F2 − ∂2F1).

Most commonly we employ the potential

F (x) =
β

2
(−x2, x1),

but other choices are allowed too, such as β(−x2, 0) or β(0, x1). This non-
uniqueness of the potential illustrates the principle of gauge invariance,
whereby the magnetic field is unchanged by adding a gradient vector to the
potential, because the curl of a gradient equals zero.

2.2. Eigenvalues

Consider a bounded plane domain Ω. Denote by λj(Ω, �, β) the Dirichlet eigen-
values of the Laplacian on Ω with Planck constant � > 0 and constant magnetic
field B = (0, 0, β). These eigenvalues form an increasing sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞
and are determined from the Rayleigh quotient

R[u] =

∫
Ω

|(i�∇ + F )u|2 dx∫
Ω

|u|2 dx
where u ∈ H1

0 (Ω; C), u �≡ 0,

by the usual minimax variational principles. In particular, λ1 = minu R[u].
Note the gradient operator ∇ and the vector potential F are regarded as row
vectors.

The existence of these eigenvalues, and of a corresponding orthonormal
basis of smooth eigenfunctions, follows from standard elliptic theory [30, Corol-
lary III.7.8]. The key facts are that H1

0 imbeds compactly into L2 and the
Rayleigh quotient can be written R[u] = Q[u, u]/〈u, u〉L2(Ω) where the sesqui-
linear form

Q[u, v] = 〈(i�∇ + F )u, (i�∇ + F )v〉L2(Ω)

satisfies the following three properties. It is: (i) conjugate symmetric, (ii) con-
tinuous as a function of u, v ∈ H1

0 (Ω; C), and (iii) H1-coercive after adding a
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multiple of the L2-inner product (meaning Q[u, u]+ c1‖u‖2
L2 ≥ c2‖u‖2

H1 for all
u ∈ H1(Ω; C), for some c1, c2 > 0).

The eigenfunction equation (1.1) follows from the Euler–Lagrange con-
dition for a critical point of the Rayleigh quotient. Note the eigenfunctions
depend on the choice of vector potential, but the eigenvalues do not: they
depend merely on the field strength parameter β, by gauge invariance (see
Lemma A.2). Thus, our notation λ(Ω, �, β) need only indicate the dependence
of the eigenvalue on the field parameter β, not the vector potential.

The first eigenvalue is positive by diamagnetic comparison with the first
eigenvalue of the Dirichlet Laplacian (β = 0), or else by Lemma A.8. (Also
λ1(Ω, �, β) ≥ λ1(R2, �, β) = �|β| by domain monotonicity, but we will not need
this fact.)

The Neumann eigenvalues μj(Ω, �, β) arise from the same Rayleigh quo-
tient R[u], but the class of trial functions is larger, namely u ∈ H1(Ω; C);
we make the standing assumption that the domain has Lipschitz boundary
so that H1 imbeds compactly into L2. The first Neumann eigenvalue μ1 is
positive whenever β �= 0 by Lemma A.8. Note the boundary conditions in
(1.2) arise naturally in the Neumann case, from the Euler–Lagrange condition.

The magnetic eigenvalues are invariant with respect to rigid motions and
dilations of the domain. See Appendix A for precise statements.

2.3. Matrix Notation

Given a real or complex matrix M , write its Hilbert–Schmidt norm as

‖M‖HS =

⎛
⎝∑

j,k

|Mjk|2
⎞
⎠

1/2

= (tr MM†)1/2

where M† denotes the complex conjugate of the transpose matrix.
For example, the identity matrix has Hilbert–Schmidt norm equal to

√
2.

3. The Main Results: Sharp Upper Bounds on Eigenvalue Sums

Fix the Planck constant � > 0 and field parameter β ∈ R, throughout this
section.

3.1. Dirichlet and Neumann Eigenvalues

We start by linearly transforming a rotationally symmetric plane domain D.
The Planck constant and field strength are transformed suitably too, in order
to obtain a sharp result.

Theorem 3.1. If the bounded plane domain D has rotational symmetry of order
greater than or equal to 3, then

n∑
j=1

λj

(
T (D),

√
2

‖T−1‖HS
�,

√
2

‖T−1‖HS

β

| det T |

)
≤

n∑
j=1

λj(D, �, β)

for each n ≥ 1 and each invertible linear transformation T of R
2.
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Equality holds if T is a scalar multiple of an orthogonal transformation.
For nonzero magnetic fields (β �= 0), equality holds for the first eigenvalue
(n = 1) if and only if T is a scalar multiple of an orthogonal transformation.

The same results hold for Neumann eigenvalues.

The proof is in Sects. 5 and 6.
The rotationally symmetric domain D in the theorem need not be con-

vex, or a regular polygon, or have any axis of symmetry. For example, it could
be shaped like a three-bladed propeller.

The equality statement for the first eigenvalue under zero magnetic field
is more complicated than in the theorem, because rectangles (which do not
possess rotational symmetry) can also be extremal [23, Theorem 3.1]. On the
other hand, the equality case in this paper requires new ideas too, in order to
handle the magnetic interaction terms.

3.2. Robin–de Gennes Eigenvalues

Analogous results can be established for the boundary condition of the third
kind. This boundary condition was studied in thermodynamics by Robin and
in superconductivity by de Gennes. First we need some definitions. Denote the
Robin–de Gennes eigenvalues by ρj(Ω, �, β, σ) where the constant σ > 0 is the
Robin parameter. The Rayleigh quotient is

R[u]=

∫
Ω

|(i�∇ + F )u|2 dx +σ
∫

∂Ω
|u|2 ds∫

Ω
|u|2 dx

where u ∈ H1(Ω; C), u �≡ 0. (3.1)

As in the Neumann case, we assume the domain has Lipschitz boundary so
that the spectrum is well defined.

The eigenvalue equation and natural boundary conditions are easily
deduced from the variational characterization of the eigenvalues. They are:

Robin-de Gennes:

{
(i�∇ + F )2u = ρu in Ω,

�n · �(�∇ − iF )u + σu = 0 on ∂Ω.

Notice the Robin–de Gennes case reduces to Neumann when σ = 0, and re-
duces formally to the Dirichlet case when σ = ∞.

The first eigenvalue ρ1 is positive for each value of β, by Lemma A.8.
The Robin–de Gennes eigenvalue sums are bounded sharply by the next

theorem.

Theorem 3.2. If D has rotational symmetry of order greater than or equal to 3,
then
n∑

j=1

ρj

(
T (D),

√
2

‖T−1‖HS
�,

√
2

‖T−1‖HS

β

| det T | ,
√

2
‖T−1‖HS

σ

)
≤

n∑
j=1

ρj(D, �, β, σ)

for each n ≥ 1 and each invertible linear transformation T of R
2.

Equality holds if T is a scalar multiple of an orthogonal transformation.
For nonzero magnetic fields (β �= 0), equality holds for the first eigenvalue
(n = 1) if and only if T is a scalar multiple of an orthogonal transformation.



R. S. Laugesen et al. Ann. Henri Poincaré

The proof is in Sect. 8.
One can also express the theorem in geometric terms, similarly to Corol-

lary 1.1. (See the nonmagnetic version in [23, Corollary 3.4].)

4. Tight Frame Identities

When proving the main theorem, we will need to average certain matrices
with respect to conjugation by the rotation group of order N . Let the matrix
Um represent rotation of the plane by angle 2πm/N . Write Id for the identity
matrix.

Lemma 4.1. If N ≥ 3, then for every 2 × 2 real matrix M one has

1
N

N∑
m=1

UmMU†
m =

(
1
2

tr M

)
Id +

1
2

(M − M†).

Proof. Begin by decomposing M into its symmetric and antisymmetric parts
as M = Ms + Ma, where Ms = (M + M†)/2 and Ma = (M − M†)/2. To
handle the symmetric part, we argue as for Schur’s Lemma in representation
theory: let

V =
1
N

N∑
m=1

UmMsU
†
m

and observe that V is symmetric. Notice U1V U†
1 = V for each m (because

U1Um = Um+1 and UN+1 = U1). Thus V commutes with the rotation U1. Let
α ∈ R be an eigenvalue of the symmetric matrix V , with eigenvector x. Then

V (U1x) = U1(V x) = α(U1x).

Hence, U1x is also an eigenvector belonging to α. Since x and U1x are linearly
independent (noting that U1 rotates by angle 2π

N < π, because N ≥ 3), by tak-
ing linear combinations we deduce that every vector in R

2 is an eigenvector
of V with eigenvalue α. Hence, V = α Id. Taking the trace yields α = 1

2 tr V .
Also

tr V =
1
N

N∑
m=1

tr Ms = tr Ms = tr M.

Therefore V = 1
2 (tr M)Id, which gives the first part of the formula in the

Lemma.
Since M is real, its antisymmetric part can be written Ma = b

(
0 −1
1 0

)
for

some b ∈ R. Thus Ma consists of rotation by π/2 followed by rescaling by b.
Hence Ma commutes with the rotation Um, and so

1
N

N∑
m=1

UmMaU†
m = Ma =

1
2

(M − M†),

which proves the second term of the formula in the Lemma. �
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Next, we collect some immediate consequences of Lemma 4.1.

Lemma 4.2. Let N ≥ 3, and suppose M and T are 2 × 2 real matrices, with T
invertible. Then

1
N

N∑
m=1

UmT−1(T−1)†U†
m =

1
2
‖T−1‖2

HS Id,

1
N

N∑
m=1

UmT †M†MTU†
m =

1
2
‖MT‖2

HS Id.

If tr M = 0 then

1
N

N∑
m=1

UmT−1MTU†
m =

1
2

(T−1MT − (T−1MT )†).

Also, by applying Lemma 4.1 with M = T †T and then putting y† on the
left and y on the right, we find:

Lemma 4.3. Let N ≥ 3 and suppose T is a 2 × 2 real matrix and y ∈ R
2 is a

unit column vector. Then

1
N

N∑
m=1

|TU−1
m y|2 =

1
2
‖T‖2

HS.

4.1. Connection to Equiangular Tight Frames

Fix a vector y ∈ R
2 of length 1. Then M = yy† is a symmetric 2 × 2 matrix.

Lemma 4.1 implies that

1
N

N∑
m=1

Umyy†U†
m =

1
2

Id.

Conjugating with x ∈ R
2 yields

1
N

N∑
m=1

x†Umyy†U†
mx =

1
2
|x|2,

or in other words
N∑

m=1

|x · Umy|2 =
N

2
|x|2, x ∈ R

2.

This Plancherel type identity says that the system of vectors {Umy}N
m=1 (con-

sisting of the Nth roots of unity, rotated to start at y) forms a tight frame
with constant N/2.

More information on frames and their applications in Hilbert spaces may
be found in the monograph by Christensen [5] or the text by Han et al. [13].
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5. Proof of Theorem 3.1: The Inequality

We prove the Dirichlet inequality in the theorem. The Neumann proof is vir-
tually identical.

Without loss of generality, we may assume T is diagonal with

T =
(

t1 0
0 t2

)
where t1, t2 > 0, by a singular value decomposition of T and using invariance
of the spectrum under rotations and reflections (Appendix A).

Choose the vector potential to be

F (x) =
β

2
(−x2, x1) = β(Mx)† where M =

1
2

(
0 −1
1 0

)
,

so that the magnetic field is ∇ × F = (0, 0, β) as required. (Aside. This vec-
tor potential points tangentially to circles centered at the origin, and so it
interacts well with rotations of the domain.)

For brevity in what follows, we write

b =
√

2
‖T−1‖HS

=

√
2

t−2
1 + t−2

2

, c =
√

2
‖T−1‖HS

1
| det T | =

√
2

t21 + t22
.

Then bc = 2/(t1t−1
2 + t−1

1 t2).
We will need the Rayleigh–Poincaré variational principle [3, p. 98], which

characterizes the sum of the first n ≥ 1 eigenvalues as

n∑
j=1

λj = min

⎧⎨
⎩

n∑
j=1

R[vj ] : v1, . . . , vn ∈ H1
0 (Ω; C) are pairwise L2 − orthogonal

⎫⎬
⎭ .

Specifically, we will construct trial functions vj on the domain T (D) by linearly
transplanting eigenfunctions uj of D, and then we will average with respect to
the rotations of D by means of the tight frame lemmas in Sect. 4.

Let u1, u2, u3, . . . be orthonormal eigenfunctions on D for the vector po-
tential F , corresponding to the eigenvalues λj(D, �, β), j = 1, 2, 3, . . .. Consider
an orthogonal 2 × 2 matrix U that fixes D, so that U(D) = D. Define trial
functions

vj = uj ◦ U ◦ T−1

on the domain E = T (D), noting vj ∈ H1
0 (E; C) because uj ∈ H1

0 (D; C). The
functions vj are pairwise orthogonal, since∫

E

vjvk dx =
∫
D

ujuk dx · | det TU−1| = 0

when j �= k. Thus by the Rayleigh–Poincaré principle, we have
n∑

j=1

λj(E, b�, cβ) ≤
n∑

j=1

∫
E

|(ib�∇ + cF )vj |2 dx∫
E

|vj |2 dx
. (5.1)
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For each function v = vj , we change variable in the right side of (5.1) with
x �→ TU−1x and use that the uj are normalized in L2, thus finding

∫
E

|(ib�∇ + cF )v|2 dx∫
E

|v|2 dx

=

∫
D

|ib�∇u(x)UT−1 + cβ(MTU−1x)†u(x)|2 dx · | det TU−1|∫
D

|u|2 dx · | det TU−1|
=
∫
D

|ib�∇u(x)UT−1 + cβ(MTU−1x)†u(x)|2 dx

=
∫
D

(Q1 + Q2 + Q3) dx

by expanding the square, where

Q1 = b2
�

2∇u[UT−1(T−1)†U†](∇u)†,

Q2 = 2bc�β Re{iu∇u[UT−1MTU†]x},

Q3 = c2β2|u|2x†[UT †M†MTU†]x.

Let N ≥ 3 be the order of rotational symmetry of D, and choose U
to be the matrix Um representing rotation by angle 2πm/N . Averaging over
m = 1, . . . , N implies by Lemma 4.2 that

1
N

N∑
m=1

Q1 = b2
�

2 1
2
‖T−1‖2

HS|∇u|2

= �
2|∇u|2,

1
N

N∑
m=1

Q2 = bc�β Re{iu∇u[T−1MT − (T−1MT )†]x}

= 2�β Re{iu(∇u)Mx},

1
N

N∑
m=1

Q3 =
1
2
c2β2‖MT‖2

HS|u|2|x|2

=
1
4
β2|u|2|x|2,

where we used for Q2 that tr M = 0 and where we simplified the three expres-
sions by substituting the definitions of the matrices M and T and the constants
b and c.
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Hence, by averaging (5.1) over m = 1, . . . , N we deduce that
n∑

j=1

λj(E, b�, cβ)

≤
n∑

j=1

∫
D

[
�

2|∇uj |2 + 2�β Re{iuj(∇uj)Mx} +
1
4
β2|uj |2|x|2

]
dx

=
n∑

j=1

∫
D

|(i�∇ + β(Mx)†)uj |2 dx

=
n∑

j=1

λj(D, �, β)

which completes the proof of the inequality in the theorem.

6. Proof of Theorem 3.1: The Case of Equality

We continue to treat the Dirichlet eigenvalues. The Neumann case proceeds
exactly the same way.

Sufficient Conditions for Equality. When T is an orthogonal matrix, equality
holds in the theorem because the eigenvalues are invariant under orthogonal
transformations (see Appendix A) and T−1 = T † has Hilbert–Schmidt norm
(tr T †T )1/2 = (tr Id)1/2 =

√
2. Scalar multiples preserve equality too, because

λj(rD, r�, β/r) = λj(D, �, β)

by Lemma A.7.

Necessary Conditions for Equality, When n = 1. Now assume β �= 0 and that
equality holds in the theorem for the first eigenvalue, so that

λ1

(
T (D),

√
2

‖T−1‖HS
�,

√
2

‖T−1‖HS

β

| det T |

)
= λ1(D, �, β). (6.1)

Our task is to show that T is a scalar multiple of an orthogonal matrix.
We may assume T =

(
t1 0
0 t2

)
is diagonal with t1, t2 > 0, by applying the

singular value decomposition exactly as in the previous section. If t1 = t2 then
the diagonal matrix T is a scalar multiple of the identity, and so the original
T was a scalar multiple of an orthogonal matrix, as desired.

Thus we may suppose from now on that t1 �= t2. We will deduce a con-
tradiction, thus ruling out this possibility and completing the proof of the
equality case in the theorem.

Write u = u1 for a first eigenfunction on D, with respect to the vector
potential F (x) = β

2 (−x2, x1). Then u satisfies the eigenequation (i�∇+F )2u =
λ1(D, �, β)u, which expands to say
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− �
2(ux1x1 + ux2x2) + i�β(−x2, x1) · ∇u +

β2

4
(x2

1 + x2
2)u = λ1(D, �, β)u.

(6.2)

Inspecting the proof of the theorem in the previous section, we see that one
of the trial functions on T (D) is v = u ◦ T−1, in other words v(x1, x2) =
u(x1/t1, x2/t2). (This trial function arises when m = N , since UN = Id.) Since
equality must hold in the Rayleigh principle (5.1) with n = 1, we deduce that
this trial function must be a first eigenfunction on T (D) using Planck constant
b� and field parameter cβ. That is, v satisfies the eigenequation

−b2
�

2(vx1x1 + vx2x2) + ibc�β(−x2, x1) · ∇v +
c2β2

4
(x2

1 + x2
2)v

= λ1(T (D), b�, cβ)v.

In terms of u, and using equality of the eigenvalues in (6.1), we can rewrite
this last equation as

− 2�
2

t−2
1 + t−2

2

(
ux1x1

t21
+

ux2x2

t22

)
+

2i�β

t1t
−1
2 + t−1

1 t2
(−t2x2, t1x1) ·

(
ux1

t1
,
ux2

t2

)

+
β2

2(t21 + t22)
(t21x

2
1 + t22x

2
2)u = λ1(D, �, β)u. (6.3)

By solving the simultaneous linear Equations (6.2) and (6.3) (which can
be done since t1 �= t2), we obtain expressions for the second partial derivatives
in terms of lower order derivatives:

−ux1x1 = +
iβ

�
x2ux1 − β2

4�2
x2

2u +
λ1(D, �, β)

2�2
u,

−ux2x2 = − iβ

�
x1ux2 − β2

4�2
x2

1u +
λ1(D, �, β)

2�2
u.

These formulas are equivalent to

− (eiβx1x2/2�u)x1x1 = ω2(eiβx1x2/2�u), (6.4)

−(eiβx1x2/2�u)x2x2 = ω2(eiβx1x2/2�u), (6.5)

where ω =
√

λ1(D, �, β)/2�2. Note ω > 0 because the eigenvalue λ1 is positive
(Lemma A.8).

Given any point y ∈ D, take a rectangular neighborhood R ⊂ D cen-
tered at y with the sides of the rectangle being parallel to the axes. On that
neighborhood, we can solve the ODEs (6.4) and (6.5) finding that

eiβx1x2/2�u = a(x2)eiωx1 + b(x2)e−iωx1 ,

e−iβx1x2/2�u = c(x1)eiωx2 + d(x1)e−iωx2 ,

for some functions a, b, c, d. Hence,

a(x2)eiωx1 + b(x2)e−iωx1 = eiβx1x2/�(c(x1)eiωx2 + d(x1)e−iωx2). (6.6)

Let 0 < z1 < π/ω with 4z1 being smaller than the width of R. Consider
Eq. (6.6) with two different x1-values, namely x1 = y1 + z1 and x1 = y1 + 2z1,
and with any x2-value that cuts through the rectangle R. The resulting two
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equations provide simultaneous linear equations for the unknowns a(x2) and
b(x2). These simultaneous equations can be solved (since 0 < 2ωz1 < 2π). The
solution for a(x2) has the form

a(x2) = eiβy1x2/� × (linear combination of terms eiγx2 with
frequencies γ = ±ω + νβz1/�, where ν = 1, 2). (6.7)

The same conclusion holds for any other sufficiently small value of z1, which
implies that a(x2) is identically zero, as we now explain.

Since β �= 0 we may choose δ = ω�/|β|k where the integer k ≥ 9 is
taken so large that z1 = 4δ is smaller than π/ω and 4z1 is less than the
width of the rectangle R. Let ε = β/|β| so that ε = ±1. Then for the fre-
quency γ = ±ω + νβz1/� we have eiγx2 = ei(±k+4ε)(ωx2/k) when ν = 1, and
eiγx2 = ei(±k+8ε)(ωx2/k) when ν = 2; these four exponentials determine the
linear combination for a(x2) in (6.7). On the other hand, we could choose
z1 = δ, in which case the linear combination for a(x2) would involve the
four exponentials ei(±k+ε)(ωx2/k) and ei(±k+2ε)(ωx2/k). These two different lin-
ear combinations for a(x2) involve eight distinct frequencies: the eight integers
±k+ε,±k+2ε,±k+4ε,±k+8ε are distinct because k ≥ 9. The linear combina-
tions for a(x2) are equal for a whole interval of x2-values, and so the coefficient
of each of the eight exponentials must be 0, because a nontrivial trigonometric
polynomial can have at most finitely many zeros. Hence a(x2) ≡ 0.

Similarly, b(x2) must vanish identically and so u is identically zero on R,
and hence on all of D, which is impossible because u is an eigenfunction. This
contradiction concludes the proof.

7. Proof of Corollary 1.1

Assume Ω = T (D) for some linear transformation T . Pulling out the coefficient
of the Planck constant in Theorem 3.1 implies that

2
‖T−1‖2

HS

n∑
j=1

λj

(
T (D), �,

β

| det T |
)

≤
n∑

j=1

λj(D, �, β).

The Hilbert–Schmidt norm of T−1 can be interpreted in terms of moment of
inertia of the image domain T (D), with

2
‖T−1‖2

HS

=
A3

I
(T (D))

/A3

I
(D)

by [23, Lemma 5.3]. And obviously

1
| det T | =

A(D)
A(T (D))

.

Substituting these expressions now proves the desired inequality in the Corol-
lary, after replacing β with β/A(D) on both sides.

The “maximality” statement follows from the “equality” statement in
Theorem 3.1.
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8. Proof of Theorem 3.1

The proof follows the Dirichlet and Neumann cases (see the proof of Theo-
rem 3.1), except that we must handle also the boundary integral appearing
in the Rayleigh quotient (3.1). This we now do, by following Laugesen and
Siudeja’s proof from the case of vanishing magnetic field [23, Theorem 3.3].

The boundary contribution to the Rayleigh quotient of the trial function
v on the domain E = T (D) is∫

∂E
|v|2 ds(x)∫

E
|v|2 dx

=

∫
∂E

|u(UT−1x)|2 ds(x)∫
E

|u(UT−1x)|2 dx

=

∫
∂D

|u(Ux)|2|Tτ(x)| ds(x)∫
D

|u(Ux)|2 dx · | det T |
by x �→ Tx, where τ(x) denotes the unit tangent vector to ∂D at x. Geomet-
rically, |Tτ(x)| is the factor by which T stretches the tangent direction to ∂D
at x.

The rotational symmetry of D ensures that tangent vectors rotate accord-
ing to τ(U−1x) = U−1τ(x). Thus after replacing x with U−1x in the last
formula we obtain∫

∂E
|v|2 ds(x)∫

E
|v|2 dx

= | det T |−1

∫
∂D

|u(x)|2|TU−1τ(x)| ds(x).

Choosing U = Um and averaging the preceding quantity over m, and then
applying Cauchy–Schwarz, gives the upper estimate

| det T |−1

∫
∂D

|u(x)|2
{

1
N

N∑
m=1

|TU−1
m τ(x)|2

}1/2

ds(x)

= | det T |−1 1√
2
‖T‖HS

∫
∂D

|u(x)|2 ds(x)

by Lemma 4.3. After multiplying by σ
√

2/‖T−1‖HS and substituting the rela-
tion

‖T−1‖HS =
1

| det T | ‖T‖HS

(which is valid for 2 × 2 matrices, by the formula for T−1 in terms of T ) we
obtain the quantity

σ

∫
∂D

|u(x)|2 ds(x).

Now we can easily modify the proof of Theorem 3.1 to handle the Rayleigh
quotient (3.1) for the Robin–de Gennes eigenvalues.

The equality statement follows exactly as for Theorem 3.1.
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Appendix A. Invariance and Positivity of the Spectrum

Our proofs rely on rotations, reflections and dilations of the domain. These
reductions are justified by the invariance lemmas in this appendix, which we
prove for the sake of readers unfamiliar with the magnetic Laplacian.

Throughout this appendix, Ω is a bounded plane domain, further assumed
to have Lipschitz boundary in the Neumann and Robin–de Gennes situations.
We give proofs for the Dirichlet eigenvalues only. The proofs are identical for
Neumann conditions, except using H1 instead of H1

0 . For Robin–de Gennes
conditions, we indicate (when needed) how to treat the boundary integral in
the Rayleigh quotient.

In the first lemma, we go against the notation used in the rest of the paper
and write the eigenvalues as depending on the vector potential rather than on
its curl, the magnetic field. Let F̃ , F ∈ C∞(R2; R2) be vector potentials defined
on the whole plane that generate magnetic fields B̃ = ∇ × F̃ , B = ∇ × F ,
respectively. These fields are not necessarily constant.

Lemma A.1 (Gauge invariance). If two vector potentials differ by a gradient
vector, then they generate the same magnetic eigenvalues. That is, if F̃ =
F + ∇f for some function f ∈ C∞(R2) then

λj(Ω, �, F̃ ) = λj(Ω, �, F ), j = 1, 2, 3, . . .

and similarly for the Robin–de Gennes and Neumann eigenvalues.

Proof. For the Dirichlet spectrum, given a trial function u ∈ H1
0 (Ω; C) we

define v = eifu ∈ H1
0 (Ω; C). Then |v|2 = |u|2 and

(i�∇ + F̃ )v = eif (i�∇ + F )u

by direct calculation. Taking the magnitude and then squaring and integrating
shows that the Rayleigh quotient of v with potential F̃ equals the Rayleigh
quotient of u with potential F . Hence, the lemma follows from the variational
characterization of the eigenvalues [3, p. 97]. �

Next we show that the eigenvalues depend only on the curl of the poten-
tial, so that we are justified in writing λj(Ω, �, B) instead of λj(Ω, �, F ).

Lemma A.2 (Independence from choice of potential). If B̃ = B on R
2 then F̃

and F generate the same magnetic eigenvalues.
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Proof. Since R
2 is simply connected and the vector potentials F̃ and F have

the same curl, the potentials differ by a gradient vector. Hence, they generate
the same magnetic spectrum, by Lemma A.1. �
Lemma A.3 (Independence from direction of magnetic field). The fields B and
−B generate the same magnetic eigenvalues.

Proof. Given a trial function u to be used for the field B, define a trial function
v = u for the field −B. Obviously |u| = |v| and |(i�∇ + F )u| = |(i�∇ − F )v|,
and so the respective Rayleigh quotients of u and v are equal, which proves
the lemma by the variational characterization of eigenvalues. �

For the remainder of the appendix we assume the magnetic field is con-
stant, with B = (0, 0, β) for some β ∈ R.

Lemma A.4 (Invariance under rotation). If V is a 2 × 2 rotation matrix then
λj(V (Ω), �, β) = λj(Ω, �, β) for each j, and similarly for the Robin–de Gennes
and Neumann eigenvalues.

Proof. Choose the vector potential F (x) = β(Mx)† = β
2 (−x2, x1) where M =(

0 −1/2
1/2 0

)
, which gives the field ∇×F = (0, 0, β). We use this vector potential

on both the domains Ω and V (Ω).
Given a trial function u on Ω, define v = u ◦ V −1 on V (Ω). Obviously u

and v have the same L2 norms, and thus the denominators of their respective
Rayleigh quotients are equal. The numerator of the Rayleigh quotient for v
has integrand

|(i�∇ + F )v(x)|2 = |i�(∇u)(V −1x)V −1 + u(V −1x)F (x)|2
= |i�(∇u)(V −1x) + u(V −1x)F (V −1x)|2

because F (x) = F (V −1x)V −1 (using that rotations commute in 2 dimensions
and so M† commutes with V ). Hence, after integrating and changing variable
with x �→ V x we see that the numerators of the Rayleigh quotients of v and u
are equal. (Also, in the Robin case

∫
∂V (Ω)

|v|2 ds =
∫

∂Ω
|u|2 ds.)

The lemma follows immediately from the variational characterization of
the eigenvalues. �
Lemma A.5 (Invariance under reflection). If V is a 2×2 reflection matrix then
λj(V (Ω), �, β) = λj(Ω, �, β) for each j, and similarly for the Robin–de Gennes
and Neumann eigenvalues.

Proof. In view of the rotation invariance in the preceding lemma, we may
assume the reflection occurs across the x2-axis, with V =

(−1 0
0 1

)
. Choose

vector potential F (x) = β(0, x1), for which ∇ × F = (0, 0, β), and check
that F (x) = −F (V −1x)V −1. Now adapt the proof of Lemma A.4 to show
λj(V (Ω), �, β) = λj(Ω, �,−β). Then replace −β with β on the right side, by
Lemma A.3. �
Lemma A.6 (Invariance under translation). If y ∈ R

2 then λj(Ω + y, �, β) =
λj(Ω, �, β) for each j, and similarly for the Robin–de Gennes and Neumann
eigenvalues.
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Proof. Straightforward, by translating the potential along with the domain.
�

Lemma A.7 (Invariance under dilation). If r > 0 then λj(rΩ, r�, β/r) =
λj(Ω, �, β) for each j, and similarly for the Neumann eigenvalues. For the
Robin–de Gennes eigenvalues, ρj(rΩ, r�, β/r, rσ) = ρj(Ω, �, β, σ).

Proof. We use the potential F (x) = β(0, x1) on Ω, giving field strength β, and
potential F (x/r) = β

r (0, x1) on rΩ, giving field strength β/r.
Given a trial function u on Ω, define v(x) = r−1u(x/r) on rΩ. Then u

and v have the same L2 norms, and so the denominators of their Rayleigh
quotients are the same. The numerator of the Rayleigh quotient for v is∫

rΩ

|(ir�∇ + F (x/r))v(x)|2 dx =
∫
Ω

|i�(∇u)(x) + F (x)u(x)|2 dx,

which equals the numerator of the Rayleigh quotient for u. In the Robin case,
note also that the boundary term transforms according to rσ

∫
∂(rΩ)

|v|2 ds =
σ
∫

∂Ω
|u|2 ds.
Once again the lemma follows from the variational characterization of

the eigenvalues. �
Finally we show the eigenvalues are positive, when the field is nonzero.

Lemma A.8 (Positivity of the energy). If β �= 0 then the first eigenvalues
λ1(Ω, �, β), ρ1(Ω, �, β) and μ1(Ω, �, β) are all positive.

Proof. Suppose one of the first eigenvalues equals 0, and let u be a corre-
sponding eigenfunction using the potential F (x) = (0, βx1). Since the Rayleigh
quotient of u equals 0, we deduce i�∇u + Fu ≡ 0 in Ω.

Consider a point at which u �= 0. Near that point we have i�∇ log u ≡ −F ,
so that F is locally a gradient vector. Therefore F must satisfy the compati-
bility condition ∂1F2 = ∂2F1, which says β = 0. �

The first Dirichlet and Robin eigenvalues remain positive even when β =
0. The Neumann eigenvalue μ1 equals 0, when β = 0.

Incidentally, monotonicity of the first Neumann eigenvalue μ1(Ω, �, β)
with respect to the field strength is relevant in superconductivity. Monotonic-
ity has been proved for large β by Fournais and Helffer [9].
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