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Abstract. For the completed Riemann zeta function ξ(s), it is known that the Riemann hypothesis

for ξ(s) implies the Riemann hypothesis for ξ(m)(s), where m is any positive integer. In this paper,
we investigate the distribution of the fractional parts of the sequence (αγ), where α is any fixed

non-zero real number and γ runs over the imaginary parts of the zeros of ξ(m)(s). We also obtain

a zero density estimate and an explicit formula for the zeros of ξ(m)(s). In particular, all our
results hold uniformly for 0 ≤ m ≤ g(T ), where the function g(T ) tends to infinity with T and
g(T ) = o(log log T ).

1. Introduction

The Riemann ξ-function is defined by

ξ(s) = H(s)ζ(s), (1.1)

where

H(s) :=
s

2
(s− 1)π−s/2Γ

(
s

2

)
, (1.2)

and ζ(s) denotes the Riemann zeta function. The non-trivial zeros of ζ(s) are identical to the
zeros of ξ(s). It is well known that the real parts of the zeros of ξ(s) lie in the critical strip
0 < Re s < 1. The Riemann hypothesis for ξ(s) states that these zeros lie on the critical line

Re s = 1/2. Moreover, the Riemann hypothesis for ξ(s) implies that the zeros of ξ(m)(s) also lie on
the critical line Re s = 1/2. In 1983, Conrey [5] showed that for m ≥ 0, the real parts of the zeros

of ξ(m)(s) also lie in the critical strip 0 < Re s < 1.
There has also been a great interest in studying the vertical distribution of the zeros of ξ(s).

Under the assumption of the Riemann hypothesis, Rademacher [29] first proved that the sequence
(αγ1), where γ1 denotes the imaginary part of a non-trivial zero of ζ(s) and α is any fixed non-zero
real number, is uniformly distributed modulo one. Hlawka [18] proved this result unconditionally.

Let {x} denote the fractional part of a real number x. Let ρ1 = β1 + iγ1 denote a non-trivial
zero of ζ(s). The discrepancy of the set {{αγ1} : 0 < γ1 ≤ T} is defined by

D∗α(T ) := sup
0≤y≤1

∣∣∣∣#{0 ≤ γ1 ≤ T ; 0 ≤ {αγ1} < y}
N(T )

− y
∣∣∣∣ ,

where N(T ) denotes the number of zeros of ζ(s) such that 0 ≤ β1 ≤ 1 and 0 < γ1 ≤ T .

For any integer x, let α = log x
2π . In 1975, Hlawka [18] showed that

D∗α(T )� log x

log T
(1.3)

under the Riemann hypothesis, while

D∗α(T )� log x

log log T
(1.4)
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unconditionally. In 1993, Fujii [16] improved this bound and showed that

D∗α(T )�α
log log T

log T
.

Recently, Ford and Zaharescu [14] investigated this result on discrepancy in more general settings.
In particular, they showed that the discrepancy of the set {h(αγ1) : 0 < γ1 ≤ T} is of the order
O (1/ log T ) for a large class of functions h : R/Z → C. Also, Akbary and Murty [1] obtained
similar results on the uniform distribution and the discrepancy for a large class of Dirichlet series
on the assumption of average density hypothesis.

Another very important result in this direction is due to Montgomery. In [25], he studied the pair
correlation of zeros of ζ(s) and showed that the distribution of consecutive spacing of imaginary
parts of zeros follows GUE distribution. These results were also extended for general L functions
by Murty and Perelli [27], and Murty and Zaharescu [28]. In his work [25], Montgomery mentioned
the connection between Landau-Siegel zeros and the gap between consecutive zeros of the Riemann
zeta function. Conrey and Iwaniec [4] showed that the existence of Landau-Siegel zeros implies
that spacing of consecutive zeros of ζ(s) are close to multiples of half the average spacing.

The vertical distributions of zeros of ξ′(s) have also been studied recently. In [10], Farmer,
Gonek and Lee initiated the study of consecutive spacing of zeros of ξ′(s). They investigated
the pair correlation of the zeros of ξ′(s) under the Riemann hypothesis. They obtained various
estimates on the consecutive spacing and multiplicity of the zeros of ξ′(s). Bui [2] improved some
of their results on consecutive spacing of zeros of ξ′(s).

One motivation of studying such distributions of ξ(m)(s) is to understand the distribution of
zeros of an entire function under differentiation. From the functional equation

ξ(s) = ξ(1− s) (1.5)

one can see that the entire function ξ(1/2 + it) is real on the real axis and has order one. Also,
from the work of Craven, Csordas and Smith [7], Ki and Kim [21], and Kim [22], one may observe

that for sufficiently large m, the Riemann hypothesis is true for ξ(m)(s) in a bounded region. Also,

the zeros of ξ(m)(s) approach equal spacing as m tends to infinity. For details, readers are directed
to the work of Farmer and Rhoades [11], Coffey [3], and Ki [20].

Since the small gaps between zeros become larger under differentiation, by the work of Conrey
and Iwaniec [4], one may disprove the existence of Landau-Siegel zeros by showing the gap between

consecutive zeros of ξ(m)(s) to be less than half of the average spacing for sufficiently many zeros;
for details, also see [10].

In 2009, Ford, Soundararajan and Zaharescu [13] established some connections between Mont-
gomery’s pair correlation function and the distribution of the fractional parts of αγ1. So one might
expect that the pair correlation result of Gonek, Farmer and Lee [10] would have connections with

the distribution of fractional parts of αγ, where ρ = β + iγ denotes a complex zero of ξ(m)(s).
Although much information on the distribution of fractional parts of αγ1 is known, the authors

cannot recall any results of the distribution of fractional parts of αγ. The main goal of this paper
to obtain some classical results on the distribution of the fractional parts of αγ analogous to the
results of Rademacher [29] and Hlawka [18]. Our first result in this direction is stated below.

Theorem 1.1. For α ∈ R, α 6= 0, and a positive integer m, the sequence (αγ) is uniformly

distributed modulo one, where γ runs over the imaginary parts of zeros of ξ(m)(s).

Next, we are interested in the discrepancy of the sequence (αγ). Let Nm(T ) denote the number

of zeros of ξ(m)(s) such that 0 ≤ β ≤ 1 and 0 < γ ≤ T . Conrey [5] proved that

Nm(T ) =
T

2π
log

T

2π
− T

2π
+Om(log T ). (1.6)
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Let D∗(α;T ) denote the discrepancy

D∗(α;T ) := sup
0≤y≤1

∣∣∣∣#{0 ≤ γ ≤ T ; 0 ≤ {αγ} < y}
Nm(T )

− y
∣∣∣∣ ,

of the set {{αγ} : 0 < γ ≤ T}.
We have the following bound for D∗(α;T ), which generalizes the results of Hlawka [18] for ζ(s).

Theorem 1.2. Let α ≥ log 2
2π and m be a non-negative integer. Then

D∗(α;T ) ≤ a1α

log log T
+
ea2m log log T√

log T

as T →∞, where a1 and a2 are absolute constants. Under the assumption of the Riemann hypoth-
esis,

D∗(α;T ) ≤ c1α

log T
+ exp

(
c2m log T

log log T

)
(log log T )2

T 1/3(log T )2

as T →∞, where c1 and c2 are absolute constants.

Remark: Let g(T ) tend to infinity with T and g(T ) = o(log log T ). Then for all 0 ≤ m ≤ g(T ),
the bound

D∗(α;T )� α

log log T

holds unconditionally and

D∗(α;T )� α

log T

holds under the assumption of the Riemann hypothesis. Theorem 1.2 shows that the distribution
of the sequence {αγ} depends on m. If we take m ≤ g(T ), where g(T ) tends to infinity with T
and g(T ) = o(log log T ), then the discrepancy vanishes as m tends to infinity. In other words, the
sequence {αγ} becomes more and more well spaced as m approaches infinity. This result can be
compared with that of Ki [20] who showed that

There exist sequences An and Cn, with Cn → 0 slowly, such that

lim
n→∞

Anξ
(2n)(Cns) = cos s

uniformly on compact subset of C,
which was conjectured by Farmer and Rhoades [11]. In other words, one can say, the zeros of
derivatives become more well spaced as m increases.

Hlawka’s discrepancy bounds (1.3) and (1.4) rely on the explicit formula of Landau [23]∑
0<γ1≤T

xρ1 = −Λ(x)
T

2π
+O(log T ), (1.7)

where Λ(n) is the von-Mangoldt function. Gonek [17] gave an explicit formula, similar to (1.7),
which is uniform in both x and T . Fujii [15] also obtained a similar result independently. Gonek’s
explicit formula can be stated as follows:∑

0<γ1≤T
xρ1 = −Λ(x)

T

2π
+O

(
x log2(2xT ) +

log 2T

log x

)
+O

(
log xmin

(
T,

x

〈x〉

))
, (1.8)

where 〈x〉 is the distance to the nearest integer prime power other than x itself.

In order to prove Theorems 1.1 and 1.3, we also need an explicit formula for the zeros of ξ(m)(s).
An essential ingredient in obtaining the explicit formulas (1.7) and (1.8) in the case of ζ(s) is the

Dirichlet series representation of ζ
′

ζ (s) for Re s > 1. There are no such Dirichlet series for ξ(m+1)

ξ(m) (s).
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We give an explicit formula for ξ(m)(s) with an extra parameter, which can be absorbed in the
error terms for small values of x.

Theorem 1.3. Let x > 1 and nx be the nearest prime power to x. Let g(T ) tends to infinity with
T and g(T ) = o(log log T ). Then, for T > 1 and any integer K ≥ 1,∑

0≤γ≤T
xρ = −Λ(nx)

2π
δx,T +O

(
T

K∑
k=1

k2mk logk+1 x

logk T

)
+O

(
x log2 4x

K∑
k=1

(Am log x)k

)

+O

(
x log(2xT ) log log 2x+ log 2T min

(
T,

1

log x

))
+O

(
xT

(
Bm log log T

log T

)K+1
3

)
,

(1.9)

holds uniformly for 0 ≤ m ≤ g(T ). Here Am and Bm are function of m with logAm � m and
logBm � m,

δx,T = T

if x = nx, and

δx,T � min

T, 1∣∣∣log x
nx

∣∣∣
 ,

if x is not an integer.

The first error term in (1.9) can be written as a main term with some more efforts. This error
term may also disappear if x is not an integer. Also the second error term in (1.9) can be improved
by a result of Erdös [8] for small values of K.

Differentiating (1.5) gives the functional equation

ξ(m)(s) = (−1)mξ(m)(1− s). (1.10)

Since ξ(m)(s) is real-valued for real values of s, it is clear from (1.10) that the zeros of ξ(m)(s) are
symmetric with respect to the line σ = 1/2. Therefore, for 0 < x < 1, we have∑

0≤γ≤T
xρ =

∑
0≤γ≤T

x1−ρ̄ = x
∑

0≤γ≤T

(
1

x

)ρ
. (1.11)

If we choose

K =

⌊
3 log T

log log T

⌋
,

then for a fixed x and for T sufficiently large, one can show that (1.9) can be written as∑
0≤γ≤T

xρ � Txε + xT ε,

for ε > 0, which may depend on T . Therefore, by the Riemann hypothesis we find that∑
0≤γ≤T

xiγ � Tx−
1
2

+ε + x
1
2T ε, (1.12)

which is non trivial for 2 ≤ x ≤ T 2−ε by (1.6). Now, if one assumes that {xiγ}γ behave like
independent random variables, then we may expect that∑

0≤γ≤T
xiγ � T

1
2

+ε (1.13)

for all x > 0. Clearly, this is not true for every x.
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By observing the bounds in (1.12) and (1.13), we have the following conjecture.

Conjecture 1.4. For all real numbers x, T ≥ 2 and any ε > 0,∑
0≤γ≤T

xiγ � Tx−
1
2

+ε + T
1
2xε

holds uniformly for 0 ≤ m ≤ g(T ).

To obtain the bounds in (1.3) and (1.4), another important result needed is to obtain a non-trivial
upper bound for ∑

0<γ1≤T

∣∣∣∣β1 −
1

2

∣∣∣∣ .
In 1924, Littlewood [24] proved that∑

0<γ1≤T

∣∣∣∣β1 −
1

2

∣∣∣∣� T log log T,

which was later improved by Selberg [30] in 1942. In particular, he obtained∫ 1

1
2

N(σ, T ) dσ � T,

where N(σ, T ) denotes the number of zeros ρ1 of ζ(s) such that β1 > σ and 0 < γ1 < T .

For a fixed σ, let Nm(σ, T ) denote the number of zeros ρ = β + iγ of ξ(m)(s) such that β > σ

and 0 < γ < T . Our next result provides a zero density estimate for ξ(m)(s).

Theorem 1.5. Let g(T ) tends to infinity with T and g(T ) = o(log log T ). Then∫ 1

1
2

Nm(σ, T ) dσ ≤ C(m)T

holds uniformly for 0 ≤ m ≤ g(T ), where logC(m)� m.

Since the prior works suggest that the zeros of ξ(m)(s) migrate to the line σ = 1
2 , we have the

following conjecture.

Conjecture 1.6. The function C(m) is a decreasing function of m.

Remark: Note that for σ > 1
2 ,∫ 1

1
2

Nm

(
σ′, T

)
dσ′ ≥

(
σ − 1

2

)
Nm (σ, T ) .

Therefore,

Nm(σ, T ) = Om

(
T

σ − 1
2

)
(1.14)

holds for 1
2 < σ ≤ 1. Combining (1.6) and (1.14) we find that the zeros of ξ(m)(s) are clustered

near the line σ = 1
2 .
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2. Auxiliary lemmas

For a positive real number θ, and X = T θ, define

MX(s) =
∑
n≤X

µ(n)

ns+R/ log T
P

(
1− log n

logX

)
, (2.1)

where P is a polynomial with P (0) = 0 and P (1) = 1. We have the following result from [6].

Lemma 2.1. Let V (s) = Q
(
− 1

log T
d
ds

)
ζ(s) for some polynomial Q, and let MX(s) be defined as

in (2.1). For θ < 4/7 ∫ T

2

∣∣∣∣VMX

(
1

2
− R

log T
+ it

)∣∣∣∣2 dt ∼ cT,

where 0 < R� 1 and the constant c depends on P , Q, and R only.

For fixed P and R one has c � |Q(1)|2 (see [6, p. 10]). We also need the following result of
Conrey [5].

Lemma 2.2. Let L(s) = H′(s)
H(s) , where H(s) is defined in (1.2), and s = σ+ it. Then, for any fixed

integer k ≥ 1, the following holds:

(1) for |t| ≥ 1,

L(s) =
1

2
log

s

2π
+O

(
1

|t|

)
and

L(k)(s)� 1

|t|k
.

(2) For t > 10 and 0 < σ < A log log T , where A is a constant,

H(k)(s)

H(s)
= (L(s))k +O

(
logk−1 t

t

)
.

We also need the following lemma from [17].

Lemma 2.3. For x, T ≥ 1 and c = 1 + 1
log 2x ,

∞∑
n=2
n6=x

Λ(n)

nc
min

(
T,

1

| log x/n|

)
� log 2x log log 2x+ log xmin

(
T

x
,

1

〈x〉

)
,

where 〈x〉 is the distance to the nearest integer prime power other than x itself.

Weyl’s criterion [32] for uniformly distributed sequences is given by the following lemma.

Lemma 2.4. A sequence (xn)n≥1, is uniformly distributed mod 1 if and only if

lim
N→∞

1

N

N∑
n=1

e2πikxn = 0,

for all integers k 6= 0.

The following inequality is due to Erdös and Turán [9].



ON THE DISTRIBUTION OF ZEROS OF DERIVATIVES OF THE RIEMANN ξ-FUNCTION 7

Lemma 2.5. Let DN denote the discrepancy of a sequence (xn)n≥1 of real numbers. Then, for any
positive integer M ,

DN ≤
C1

M + 1
+ C2

M∑
k=1

1

k

∣∣∣∣∣ 1

N

N∑
n=1

e2πikxn

∣∣∣∣∣ ,
where C1 and C2 are absolute positive constants.

The following lemma is due to Montgomery and Vaughan [26].

Lemma 2.6. If
∑∞

n=1 n|an|2 converges, then∫ T

0

∣∣∣∣∣
∞∑
n=1

ann
−it

∣∣∣∣∣
2

dt =

∞∑
n=1

|an|2(T +O(n)).

The following lemma from [31, p. 213] will be used to bound the argument of an analytic function.

Lemma 2.7. Let f(s) be an analytic function except for a pole at s = 1 and be real for real s. Let
0 ≤ a < b < 2. Suppose that T is not an ordinate of any zero of f(s). Let |f(σ + it)| ≤ M for
σ ≥ a, 1 ≤ t ≤ T + 2 and Re(f(2 + it)) ≥ c > 0 for some c ∈ R. Then, for σ ≥ b,

| arg f(σ + iT )| ≤ c

log 2−a
2−b

(
logM + log

1

c

)
+

3π

2
.

Let Λk denote the generalized von-Mangoldt defined by

Λk(n) :=
∑
d|n

µ(d) logk
n

d
.

Therefore, for Re(s) > 1,
∞∑
n=1

Λk(n)

ns
= (−1)k

ζ(k)(s)

ζ(s)
. (2.2)

Let Λ∗lk denote the l-fold convolutions of Λk, i.e.,

Λ∗lk = Λk ∗ · · · ∗ Λk︸ ︷︷ ︸
l times

. (2.3)

Then, we have the following inequality.

Lemma 2.8. With the notation from (2.2) and (2.3)

(Λk log ∗Λ∗l1k1 ∗ · · · ∗ Λ∗lmkm )(n) ≤ (log n)1+k+k1+l1+···+kn+ln . (2.4)

Proof. From [19, p. 35], we have

Λk(n) ≤ logk n.

Using the above inequality and (2.2), we find that

(Λk log ∗Λk1)(n) =
∑
ab=n

Λk(a) log(a)Λk1(b) ≤ Λk(n) log(n)(1 ∗ Λk1)(n) ≤ logk+k1+1 n.

By repeating this argument, we complete the proof of the lemma. �

As an application of the Faà di Bruno formula [12, p. 188], we obtain the following result.

Lemma 2.9. For any non-zero analytic function f , we have

f (n)

f
(s) =

∑
µ1+2µ2+···+kµk=n
µ1+µ2+···+µk=k

k∏
i=1

n!

µi!(i!)µi

((
f ′

f

)(i−1)

(s)

)µi
. (2.5)
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3. Proof of the explicit formula

Applying Leibnitz’s rule in (1.1), we find that

ξ(m)(s) = H(m)(s)Fm(s) (3.1)

where

Fm(s) := ζ(s) +
m∑
j=1

cj
H(m−j)(s)

H(m)(s)
ζ(j)(s) (3.2)

with cj =
(
m
j

)
. For t > 10, H(m)(s)

H(s) is non-zero by Lemma 2.2 and H(s) never vanishes, therefore

H(m)(s) does not have any complex zero for t > 10. Therefore, the complex zeros of Fm(s) are the

only zeros of ξ(m)(s). The logarithmic derivative of (3.2) yields

F ′m(s)

Fm(s)
=
ζ ′(s)

ζ(s)
+
E′m(s)

Em(s)
, (3.3)

where

Em(s) = 1 +
m∑
j=1

cj
H(m−j)(s)

H(m)(s)

ζ(j)(s)

ζ(s)
. (3.4)

Also,

E′m(s) =
m∑
j=1

cj

(
H(m−j)(s)

H(m)(s)

ζ(j)(s)

ζ(s)

)′

=

m∑
j=1

cj

(
ζ(j)(s)

ζ(s)

)′
H(m−j)(s)

H(m)(s)
+

m∑
j=1

cj

(
H(m−j)(s)

H(m)(s)

)′
ζ(j)(s)

ζ(s)

=: E′m1(s) + E′m2(s). (3.5)

Let c = 1 + 1
log 2x and consider the rectangle R defined by the vertices 1− c+ iT0, c+ iT0, c+ iT

and 1− c+ iT , where T0 is chosen later. Then, by the residue theorem,

1

2πi

∫
R

F ′m(s)

Fm(s)
xsds =

∑
T0≤t≤T

xρ. (3.6)

Since ξ(m)(s) is an entire function of order 1, by the Hadamard’s factorization theorem, one can
rewrite it as

ξ(m)(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
e−s/ρ,

where the product runs over all the zeros of ξ(m)(s), and A,B are certain constants. Also note that

all complex zeros of Fm(s) lie in the strip 0 < σ < 1. This implies that F ′
m
Fm

(s) is bounded at 2 + it

for any t ∈ R. Therefore, by logarithmic differentiation, (3.1), and Lemma 2.2, we obtain

F ′m
Fm

(σ + it) =
∑
ρ

(
1

s− ρ
− 1

ρ

)
+O(log t)

=
∑
ρ

(
1

s− ρ
− 1

2 + it− ρ

)
+O(log t). (3.7)
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Now, we consider the terms in the sum on the right side of (3.7) for which |γ − t| ≥ 1. From (1.6),
we have

Nm(t+ 1)−Nm(t)� f(m) log t, (3.8)

where log f(m) � m. From now on f(m) denotes a function of m, not necessarily same at each
occurence, and log f(m)� m. Using (3.8) we find that

∞∑
n=1

∑
n≤|γ−t|<n+1

2− σ
(s− ρ)(2 + it− ρ)

�
∞∑
n=1

∑
n≤|γ−t|<n+1

1

(γ − t)2

�
∞∑
n=1

∑
n≤|γ−t|<n+1

1

n2

�
∞∑
n=1

log(t+ n)

n2

� log t. (3.9)

Since 0 ≤ β ≤ 1, by (3.8) we have ∑
|γ−t|<1

1

2 + it− ρ
� log t. (3.10)

Invoking (3.9) and (3.10) in (3.7) we obtain

F ′m
Fm

(s) =
∑
|γ−t|<1

1

s− ρ
+O(log t). (3.11)

From (3.11), in (3.6) the integral along the top horizontal side of the rectangle R can be written as∑
|γ−T |<1

∫ 1−c+iT

c+iT

xs

s− ρ
ds+O

(
log 2T

∫ c

1−c
xσ dσ

)
=:

∑
|γ−T |<1

Iγ +O

(
x

log 2T

log 2x

)
. (3.12)

In order to compute Iγ , we shift the line of integration from Im s = T to Im s = T + 1. For
|γ − T | < 1, by the residue theorem, we see that

Iγ =

(∫ 1−c+i(T+1)

c+i(T+1)
+

∫ c+i(T+1)

c+iT
−
∫ 1−c+i(T+1)

1−c+iT

)
xs

s− ρ
ds+O(1)

� 1 +

∫ c

1−c

xσ√
(σ − β)2 + (T + 1− γ)2

dσ + x

∫ T+1

T

dt√
(c− β)2 + (t− γ)2

+
x1−c

β − 1 + c

� x log log 2x.

Note that the sum on the right side of (3.12) has log(2T ) terms. Therefore, the contribution from
the top horizontal integral is

1

2πi

∫ 1−c+iT

c+iT

F ′m(s)

Fm(s)
xsds� f(m)x log(2T ) log log(2x). (3.13)

Since F ′
m(s)
Fm(s) is bounded in the interval [1 − c + iT0, c + iT0], the contribution from the integral

along the lower horizontal of the rectangle R in (3.6) is given by

1

2πi

∫ 1−c+iT0

c+iT0

F ′m(s)

Fm(s)
xs ds� f(m)

x

log 2x
. (3.14)



10 AMITA MALIK AND ARINDAM ROY

Next, we compute the integral on the right vertical line of the rectangle R in (3.6). From (3.3),
one has∫ c+iT

c+iT0

F ′m
Fm

(s)xsds =

∫ c+iT

c+iT0

ζ ′

ζ
(s)xs ds+

∫ c+iT

c+iT0

E′m1

Em
(s)xs ds+

∫ c+iT

c+iT0

E′m2

Em
(s)xs ds

=: I1 + I2 + I3. (3.15)

From [31, sect. 6.19], we have the following bound for the Riemann zeta function

ζ ′

ζ
(σ + it)� log

2
3 t log

1
3 log t,

which holds uniformly on σ > 1−A log−
2
3 t log−

1
3 log t, where A is an absolute constant. Using the

Cauchy integral formula, for any positive integer n, we obtain(
ζ ′

ζ
(σ + it)

)(n)

� log
2
3 t log

1
3 log t,

which holds uniformly on σ > 1−A log−
2
3 t log−

1
3 log t. Hence, by Lemma 2.5,

ζ(n)

ζ
(σ + it)� f(n) log

2n
3 t log

n
3 log t (3.16)

and (
ζ(n)

ζ
(σ + it)

)(l)

� f(n) log
2n
3 t log

n
3 log t, (3.17)

for σ > 1−A log−
2
3 t log−

1
3 log t. As an application of Lemma 2.2, we deduce that

H(m)

H(m−j) (σ + it) =
1

2j
logj

s

2π

(
1 +O

(
1

t log t

))
(3.18)

and (
H(m)

H(m−j) (σ + it)

)′
� f(j)

logj−1 t

t
(3.19)

for t large. Combining (3.16) and (3.18) with (3.4), we find that

|Em(σ + it)− 1| � f(m)
m∑
j=1

cj
log

2j
3 t log

j
3 log t

logj t
� f(m)

log
1
3 log t

log
1
3 t

<
1

2
(3.20)

for large t and uniformly for σ > 1 and m ≤ g(T ). Now, we choose T0 so that (3.18), (3.19), and
(3.20) hold for all t ≥ T0. Using (3.16), (3.18), (3.19), and (3.20) in (3.5), we have

E′m2

Em
(σ + it)� f(m)

m∑
j=1

cj
log

2j
3 t log

j
3 log t

t logj+1 t
(3.21)

for t ≥ T0 and uniformly for σ > 1. Therefore, integrating by parts, and using (3.20) and (3.21),
one deduces that

I3 � f(m)x. (3.22)

To compute I2, we first rewrite it as

I2 =
K−1∑
k=0

(−1)k
∫ c+iT

c+iT0

E′m1(s)(Em(s)− 1)kxs ds+

∫ c+iT

c+iT0

E′m1(s)(Em(s)− 1)K

Em(s)
xs ds

=: I21 + I22. (3.23)
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From (3.5), (3.17), and (3.18), we find that

E′m1(σ + it)� f(m)
m∑
j=1

cj
log

2j
3 t log

j
3 log t

logj t
� f(m)

log
1
3 log t

log
1
3 t

, (3.24)

for t ≥ T0 and uniformly for σ > 1. Hence, from (3.20), (3.24), and the definition of I22 in (3.23),
we have

I22 � xT

(
f(m) log

1
3 log T

log
1
3 T

)K+1

, (3.25)

where the implied constant in the bound is absolute, and the constant Cm depends only on m.
From (3.4) and (3.5), we have

K−1∑
k=0

E′m1(s)(Em(s)− 1)k =

m∑
j=1

cj

(
ζ(j)(s)

ζ(s)

)′
H(m−j)(s)

H(m)(s)

×
K−1∑
k=0

∑
l1+l2+···+lm=k

k!

m∏
i=1

1

li!

(
ci
ζ(i)(s)

ζ(s)

H(m−i)(s)

H(m)(s)

)li
. (3.26)

If k̃ = l1 + 2l2 + · · ·+mlm, then by (3.17) and (3.18), we obtain the following bound(
ζ(j)(s)

ζ(s)

)′
H(m−j)(s)

H(m)(s)

m∏
i=1

(
ζ(i)(s)

ζ(s)

H(m−i)(s)

H(m)(s)

)li
�

(
f(m) log

1
3 log t

log
1
3 t

)k̃+j

. (3.27)

The sum of coefficients of terms in (3.26) bounded by (3.27) is at most

m∑
j=1

cj

K−1∑
k=0

(−1)k
∑

l1+l2+···+lm=k

k!
m∏
i=1

1

li!
(ci)

li ≤ K2mK .

Therefore, the contribution from all terms on the right side of (3.26) those bounded by (3.27) with

k̃ + j > K is at most

K2mK
∞∑

k=K+1

(
Cm log

1
3 log t

log
1
3 t

)k
� K

(
f(m) log log t

log t

)K+1
3

(3.28)

for t ≥ T0. Let k̃+ j = L ≤ K. Then, from (3.16), (3.17), (3.18), and using trivial bounds, one has(
ζ(j)(s)

ζ(s)

)′
H(m−j)(s)

H(m)(s)

m∏
i=1

(
ζ(i)(s)

ζ(s)

H(m−i)(s)

H(m)(s)

)li
=

2L

logL(s/2π)

m∏
i=1

(
ζ(i)(s)

ζ(s)

)li (
ζ(j)(s)

ζ(s)

)′

+O

(
2L log

L
3 log t

t log
L
3

+1 t

)

�

(
f(m) log

1
3 log t

log
1
3 t

)L
. (3.29)

Thus, the sum of the coefficients of terms in (3.26) bounded by (3.29) is at most

m∑
j=1

cj

L−1∑
k=0

(−1)k
∑

l1+l2+···+lm=k

k!
m∏
i=1

1

li!
(ci)

li ≤ L2mL. (3.30)
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Also, from the definition of Λk (see (2.4)), the following Dirichlet series can be written as

ζ(k)(s)

ζ(s)
= (−1)k

∞∑
n=1

Λk(n)

ns
and

(
ζ(k)(s)

ζ(s)

)′
= (−1)k+1

∞∑
n=1

Λk(n) log n

ns

for σ > 1. Hence,

m∏
i=1

(
ζ(i)(s)

ζ(s)

)li (
ζ(j)(s)

ζ(s)

)′
= (−1)L

∞∑
n=1

bL(n)

ns
(3.31)

for σ > 1. Moreover, from Lemma 2.8, we find that bL(n) ≤ logL+1 n. Combining (3.29), (3.30)
and (3.31), we have∑

k̃+j=L
l1+···+lm=k

(
ζ(j)(s)

ζ(s)

)′
H(m−j)(s)

H(m)(s)
k!

m∏
i=1

clij
li!

(
ζ(i)(s)

ζ(s)

H(m−i)(s)

H(m)(s)

)li

=
(−2)L

logL(s/2π)

∞∑
n=1

aL(n)

ns
+O

(
CLm log

L
3 log t

t log
L
3

+1 t

)
, (3.32)

where aL(n) ≤ L2mL logL+1 n. Therefore, from (3.28), (3.32) and an integration by parts, we
deduce that

I21 =
K∑
L=1

∞∑
n=1

∫ c+iT

c+iT0

(−2)LaL(n)

logL(s/2π)

(x
n

)s
ds+O(f(m)x) +O

(
KxT

(
f(m) log log T

log T

)K+1
3

)
.

(3.33)

Let n′ be the nearest integer to x. Then,∫ c+iT

c+iT0

1

logL(s/2π)

( x
n′

)s
ds�

( x
n′

)c ∫ T

T0

1

logL t
dt� T

logL T
.

If x is not an integer, then by integrating by parts, we obtain∫ c+iT

c+iT0

1

logL(s/2π)

(x
n

)s
ds� x

CLnc log(x/n)
,

where C is an absolute constant. Therefore,
∞∑
n=1

aL(n)

∫ c+iT

c+iT0

1

logL(s/2π)

(x
n

)s
ds� aL(n′)T

logL T
+
∞∑
n=1
n6=n′

xcaL(n)

CLnc log(x/n)
. (3.34)

Also,∑
1≤n≤n′/2

xcaL(n)

CLnc log(x/n)
+
∑
n≥2n′

xcaL(n)

CLnc log(x/n)
≤
∞∑
n=1

aL(n)

CLnc
� xL2mL

CL(c− 1)L+1
=
xL2mL logL+1 x

CL
.

For the remaining terms in the sum on the right side of (3.34), we have∑
n′/2≤n≤2n′

n6=n′

xcaL(n)

CLnc log(x/n)
� L2mL logL+1 x

CL

∑
n′/2≤n≤2n′

n6=n′

1

log(x/n)
.

Since

log
x

n
≥ log

n′

n
= − log

(
1− n′ − n

n′

)
≥ |n− n

′|
n′

,
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we have ∑
n′/2≤n≤2n′

n6=n′

1

log(x/n)
≤

∑
n′/2≤n≤2n′

n6=n′

n′

|n− n′|
� x log 2x.

Therefore, from (3.33),

I21 � T
K∑
k=1

k2(m+1)k logk+1 x

logk T
+ x log 4x

K∑
k=1

k2(m+1)k logk+1 x

Ck
+ xT

(
f(m) log

1
3 log T

log
1
3 T

)K+1

.

Using (3.25) and the above estimates in (3.23), we obtain

I2 � T
K∑
k=1

k2(m+1)k logk+1 x

logk T
+ x log 4x

K∑
k=1

k2(m+1)k logk+1 x

Ck
+ xT

(
f(m) log

1
3 log T

log
1
3 T

)K+1

.

(3.35)

Let nx be the nearest prime power to x. Then by Lemma 2.3

I1 =

∫ c+iT

c+iT0

ζ ′

ζ
(s)xs ds = −

∫ c+iT

c+iT0

∞∑
n=2

Λ(n)
(x
n

)s
ds

= −iΛ(nx)

∫ T

T0

(
x

nx

)it
dt+O

xc ∞∑
n=2
n6=nx

Λ(n)

nc log(x/nx)


= −iΛ(nx)δx,T +O (x log(2x) log log(2x)) , (3.36)

where

δx,T =

∫ T

0

(
x

nx

)it
dt.

Clearly δx,T � T . If x = nx then

δx,T = T

otherwise

δx,T =

(
x
nx

)iT
− 1

i log x
nx

�
∣∣∣∣log

x

nx

∣∣∣∣−1

.

Notice that the first term on the right side of (3.36) disappears if x is not an integer. Combining
(3.15), (3.22), (3.35), and (3.36) for the contribution from the integral along the right vertical side
of the rectangle R in (3.6), we arrive at∫ c+iT

c+iT0

F ′m
Fm

(s)xsds = −iΛ(nx)δx,T +O (x log(2x) log log(2x)) +O

(
xT

(
f(m) log log T

log T

)K+1
3

)

+O

(
T

K∑
k=1

k2mk logk+1 x

logk T

)
+O

(
x log2 4x

K∑
k=1

(f(m) log x)k

)
(3.37)

Now, we move on to estimate the integral along the left vertical side of the rectangle R in (3.6).
From the functional equation (1.10) one can derive

Fm+1

Fm
(s) = (−1)m+1Fm+1

Fm
(1− s) + (−1)m+1H

(m+1)

H(m)
(1− s)− H(m+1)

H(m)
(s).
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Thus, for the integral along the left vertical line, we have∫ 1−c+iT

1−c+iT0

Fm+1

Fm
(s)xsds = (−1)m+1

∫ 1−c+iT

1−c+iT0

Fm+1

Fm
(1− s)xsds

+

∫ 1−c+iT

1−c+iT0

(
−1)m+1H

(m+1)

H(m)
(1− s)− H(m+1)

H(m)
(s)

)
xs ds

=: I4 + I5. (3.38)

Integrating by parts and employing (3.18) and (3.19), we find that

I5 �
log 2T

log x
. (3.39)

Also, trivially we have

I5 � T log 2T.

We rewrite the integral I4 above as

I4 =

∫ 1−c+iT

1−c+iT0

ζ ′

ζ
(1− s)xs ds+

K−1∑
k=0

∫ 1−c+iT

1−c+iT0
E′m1(1− s)(Em(1− s)− 1)kxs ds

+

∫ 1−c+iT

1−c+iT0

E′m1(1− s)(Em(1− s)− 1)K

Em(1− s)
xs ds+

∫ 1−c+iT

1−c+iT0

E′m2

Em
(1− s)xs ds

=: I41 + I42 + I43 + I44. (3.40)

Now, we compute I41 defined above as follows.

I41 =

∫ 1−c+iT

1−c+iT0

ζ ′

ζ
(1− s)xs ds = ix1−c

∞∑
n=2

Λ(n)

nc

∫ T

10
(nx)it dt (3.41)

�

(
x1−c

∞∑
n=2

Λ(n)

nc log(xn)

)

�
(
x1−c

c− 1

)
� log x.

Proceeding in a similar fashion as for I21 earlier and using (3.33), we have

I42 =
K∑
L=1

∞∑
n=1

(−2)L
aL(n)

n

∫ 1−c+iT

1−c+iT0

1

logL(s/2π)
(nx)s ds+O

KT (f(m) log
1
3 log T

log
1
3 T

)K+1
 ,

(3.42)

where
∞∑
n=1

aL(n)

n

∫ 1−c+iT

1−c+iT0

1

logL(s/2π)
(nx)s ds�

∞∑
n=1

x1−caL(n)

CLnc log(nx)
� L2mL logL+1 x

CL
.

Proceeding similarly as we did for I22 and I3, we arrive at

I43 � T

(
f(m) log

1
3 log T

log
1
3 T

)K+1

and I44 � f(m). (3.43)
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Thus, from (3.38), (3.39), (3.40), (3.41), (3.43), and (3.42), the contribution from the integral along
the left vertical side of the rectangle R in (3.6) becomes∫ 1−c+iT

1−c+iT0

F ′m
Fm

(s)xsds = O

(
T

(
f(m) log log T

log T

)K+1
3

)
+O

(
log2 4x

K∑
k=1

(f(m) log x)k

)

+O

(
min

(
T log 2T,

log 2T

log x

))
. (3.44)

Using the estimates from (3.13), (3.14), (3.37), and (3.44) in (3.6), we now complete the proof
of Theorem 1.3.

4. Proof of the zero density estimates: Theorem 1.5

As discussed earlier in the previous section, since the complex zeros of ξ(m)(s) are identical to
those of Fm(s), we prove the theorem for Fm(s) instead. Let

f(s) := MX(s)Fm(s)− 1, (4.1)

where MX is defined by (2.1). Consider

h(s) := 1− f2(s). (4.2)

Here h(s) is analytic except for the pole at s = 1. Let P (x) = x in Lemma 2.2. Then, for 0 < θ < 1
and X = T θ, we have

MX(s) =
∑
n≤X

µ(n)

ns

(
1 +O

(
log n

log T

))(
1− log n

logX

)

=
∑
n≤X

µ(n)

ns

(
1 +O

(
log n

log T

))
. (4.3)

Let σ ≥ 2. Then, from (3.2), (3.18), (4.1), and (4.3)

f(s)�

∣∣∣∣∣∣ζ(s)
∑
n≤X

µ(n)

ns
− 1

∣∣∣∣∣∣+
r(m)

log T
�
∑
n≥X

d(n)

nσ
+
r(m)

log T
� 1√

X
+
r(m)

log T

for T
2 ≤ t < T and log r(m)� m. From now on r(m) denotes a function of m, not necessarily same

at each occurence, and log r(m)� m. Therefore, for some X > X0, T > T0, m ≤ g(T ), and σ ≥ 2

|f(s)| < 1

2
. (4.4)

Combining (4.2) and (4.4), we find that h(2 + it) 6= 0 for t > T0 and X ≥ X0. Let ν(σ′, T ) denote
the number of zeros of h(s) in the rectangle σ > σ′ and 0 < t ≤ T . By the Hardy-Littlewood
Lemma (see [31, p. 221]), one has

2π

∫ 2

σ0

ν

(
σ,
T

2
, T

)
dσ =

∫ T

T/2
log|h(σ0 + it)| dt−

∫ T

T/2
log |h(2 + it)| dt

+

∫ 2

σ0

arg h(σ0 + iT ) dσ −
∫ 2

σ0

arg h(σ0 + iT/2) dσ, (4.5)

where ν
(
σ, T2 , T

)
= ν (σ, T )− ν

(
σ, T2

)
and σ0 ≥ 1

2 is fixed. From (4.2) and (4.4), we deduce that

Re(h(2 + it)) ≥ 1

2
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for t ≥ T0 and x ≥ X0. Since ζ(k)(s) ≤ tA for some constant A

h(σ + it)� r(m)XAtA

for σ ≥ 0 and sufficiently large t. Therefore, from Lemma 2.7, we have

arg h(σ + iT )− arg h

(
σ + i

T

2

)
� logX + log T + log r(M)

for σ ≥ σ0. This gives∫ 2

σ0

arg h(σ + iT ) dσ −
∫ 2

σ0

arg h

(
σ + i

T

2

)
dσ � logX + log T + log r(m)� log T (4.6)

for 0 < θ < 1, m ≤ g(T ) and X = T θ. From (3.2), (4.3), and for Re s > 1

MX(s)Fm(s) = ζ(s)MX(s) +
m∑
j=1

cj
H(m−j)(s)

H(m)(s)
ζ(j)(s)MX(s)

=

∞∑
n=1

aX(n)

ns
+

m∑
j=1

cj
H(m−j)(s)

H(m)(s)

∞∑
n=2

bj,X(n)

ns
, (4.7)

where aX(1) = 1,

aX(n) =
∑
d|n

µ(d)

(
1 +O

(
log d

log T

))
�

{
b(n)
log T , if 2 ≤ n < X,

d(n) + b(n)
log T , if n ≥ X,

(4.8)

and

bj,X(n) =
∑
d|n

logj
(n
d

)
µ(d)

(
1 +O

(
log d

log T

))
�

{
Λj(n) + c(n)

log T , if 2 ≤ n < X,

c1(n) + c(n)
log T , if n ≥ X.

(4.9)

Here, d(n) denotes the divisor function,

b(n) =
∑
d|n

µ2(d) log d, c1(n) =
∑
d|n

logj
(n
d

)
µ2(d), and c(n) =

∑
d|n

logj
(n
d

)
µ2(d) log d.

(4.10)

Therefore, for Re s > 1,
∞∑
n=1

b(n)

ns
= ζ(s)

(
ζ(s)

ζ(2s)

)′
,

∞∑
n=1

c1(n)

ns
= ζ(j)(s)

ζ(s)

ζ(2s)
, and

∞∑
n=1

c(n)

ns
= ζ(j)(s)

(
ζ(s)

ζ(2s)

)′
.

Since h(s) is analytic for σ ≥ 2 and h(s)→ 1 as σ →∞, by the residue theorem∫ T

T/2
log h(2 + it) dt =

∫ ∞
2

log h

(
σ + i

T

2

)
dσ −

∫ ∞
2

log h (σ + iT ) dσ. (4.11)

Also,

log |h(s)| ≤ log
(
1 + |f(s)|2

)
≤ |f(s)|2 (4.12)

and

log |h(s)| = Re(log h(s)).

Using this along with (3.18), (4.7), (4.11), and (4.12) we have∫ T

T/2
log |h(2 + it)| dt�

∫ ∞
2
|f(σ)|2 dσ � r(m). (4.13)
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Thus, it remains to estimate only the first integral in (4.5), which is done by using the convexity
theorem. From (4.1), we find that

I1 :=

∫ T

T/2

∣∣∣∣f (1

2
− R

log T
+ it

)∣∣∣∣2 dt�
∫ T

T/2

∣∣∣∣MXFm

(
1

2
− R

log T
+ it

)∣∣∣∣2 dt+ T.

From (3.18) and integrating by parts, we have∫ T

T/2

∣∣∣∣MXFm

(
1

2
− R

log T
+ it

)∣∣∣∣2 dt ∼
∫ T

T/2

∣∣∣∣MXV

(
1

2
− R

log T
+ it

)∣∣∣∣2 dt,

where

V (s) = ζ(s) +

m∑
k=1

2kck

logk T
ζk(s).

Also, by Lemma 2.2, ∫ T

T/2

∣∣∣∣MXV

(
1

2
− R

log T
+ it

)∣∣∣∣2 dt ∼ cT.

From [6] it can be seen that log c� m. Hence I1 � r(m)T.
Next, we compute the integral

I2 :=

∫ T

T/2
|f (1 + δ + it)− 1|2 dt =

∫ T

T/2
|MXFm (1 + δ + it)− 1|2 dt.

From (3.18) and (4.7)

I2 �
∫ T

T/2

∣∣∣∣∣
∞∑
n=2

aX(n)

n1+δ+it

∣∣∣∣∣
2

dt+
m∑
j=1

1

log2j T

∫ T

T/2

∣∣∣∣∣
∞∑
n=2

bj,X(n)

n1+δ+it

∣∣∣∣∣
2

dt.

Employing Lemma 2.6, (4.8), (4.9), and (4.10), we have

I2 �
r(m)T

log2 T
.

From an easy modification of the classical convexity theorem (see [31, p. 233]), one can deduce that∫ T

T/2
|f(σ0 + it)|2 dt� r(m)T log1−2σ0 T, (4.14)

uniformly for 1
2 −

R
log T ≤ σ0 ≤ 1 + δ. From (4.12) and (4.14), we find that∫ T

T/2
log |h(σ0 + it)| dt� r(m)T log1−2σ0 T. (4.15)

Combining (4.5), (4.6), (4.13), (4.15), and the inequality∫ 2

σ0

ν

(
σ,
T

2
, T

)
dσ ≥

∫ 1

σ0

N

(
σ,
T

2
, T

)
dσ,

which follows from (4.2), we obtain∫ 1

σ0

N (σ, T ) dσ −
∫ 1

σ0

N

(
σ,
T

2

)
dσ � r(m)T log1−2σ0 T

uniformly for 1
2 ≤ σ0 ≤ 1. Now, we replace T by T/2n, n ≥ 0, in the above estimate, and sum over

n for 0 ≤ n ≤ ∞ to complete the proof of Theorem 1.5.
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5. Uniform distribution and Discrepancy Bounds: Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We start with the identity∑
0≤γ≤T

xiγ =
∑

0≤γ≤T
xρ−1/2 +

∑
0≤γ≤T

(
xiγ − xρ−1/2

)
, (5.1)

which holds for any x. Let x = e2πα, where α > 0 is any fixed real number. From (1.10), it can be

shown that the non-trivial zeros of ξ(m)(s) are symmetric respect to the line σ = 1/2. Therefore,∑
0≤γ≤T

(
xiγ − xρ−1/2

)
�

∑
0≤γ≤T
β>1/2

∣∣∣1− xβ−1/2
∣∣∣

�
√
x log x

∑
0≤γ≤T
β>1/2

(β − 1/2)

=
√
x log x

∫ 1

1
2

Nm(σ, T ) dσ,

where in the penultimate step, we use the mean value theorem. Combining this with Theorem 1.5,
we find that ∑

0≤γ≤T

(
xiγ − xρ−1/2

)
� C

√
xT log x, (5.2)

where logC � m. Let T be large enough such that

log x ≤ log T

log log T
.

For x > 1, from Theorem 1.3, we have∑
0≤γ≤T

xρ−1/2 � T log x√
x

+
√
x log(2xT ) log x+ C

√
xT log x+

√
x(C log x)K+2

+
√
xT

(
C log log T

log T

)K+1
3

, (5.3)

where logC � m. Combining the above estimates along with (1.6), (5.1), and (5.2), we have

1

Nm(T )

∑
0≤γ≤T

xiγ = o(1)

as T →∞ and uniformly for m ≤ g(T ). A similar result also holds for 0 < x < 1. In this case, we
first use (1.11) on the left side of (5.3), and then apply Theorem 1.3.

Invoking the Weyl criterion, Lemma 2.4, we conclude that the sequence (αγ) is uniformly dis-
tributed modulo one. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. case i): Unconditional bound
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From Lemma 2.5, (1.6), (5.1), (5.2), and (5.3), we have

D∗(α;T )� 1

M + 1
+

1

Nm(T )

M∑
k=1

1

k

∣∣∣∣∣∣
∑

0≤γ≤T
xikγ

∣∣∣∣∣∣
� 1

M + 1
+

1

T log T

M∑
k=1

(
T

log x

xk/2
+ xk/2 log T log x+ T

k log2 x

xk/2 log T
+
xk/2

k
(Ck log x)K+2

+
xk/2

k
T

(
C log log T

log T

)K+1

+ Cxk/2T log x

)

� 1

M + 1
+

1

T log T

(
T

log x

x1/2
+MxM/2 log T log x+ T

M log2 x

x1/2 log T
+ xM/2(CM log x)K+2

+xM/2T logM

(
C log log T

log T

)K+1

+ CMxM/2T log x

)
,

where K is any fixed positive integer and logC � m. Now, we set

M =

⌊
log log T

log x

⌋
.

Hence, we deduce that

D∗(α;T ) ≤ a1 log x

log log T
+
ea2m log log T√

log T
,

where a1 and a2 are absolute constants, holds uniformly for 0 ≤ m ≤ g(T ).
case ii): Assuming the Riemann hypothesis

Let β = 1
2 . Then, from Lemma 2.5 and Theorem 1.3, we have

D∗(α;T )� 1

M + 1
+

1

Nm(T )

M∑
k=1

1

k

∣∣∣∣∣∣
∑

0≤γ≤T
xikγ

∣∣∣∣∣∣
� 1

M + 1
+

1

T log T

M∑
k=1

(
T

log x

xk/2
+ xk/2 log T log x+ T

k log2 x

xk/2 log T
+
xk/2

k
(Ck log x)K+2

+
xk/2

k
T

(
C log log T

log T

)K+1
)

� 1

M + 1
+

1

T log T

(
T

log x

x1/2
+MxM/2 log T log x+ T

M log2 x

x1/2 log T
+ xM/2(CM log x)K+2

+xM/2T logM

(
C log log T

log T

)K+1
)
,

where logC � m. Set

M =

⌊
log T

log x

⌋
and K =

⌊
log T

log log T

⌋
.

Therefore, we obtain

D∗(α;T ) ≤ c1 log x

log T
+ exp

(
c2m log T

log log T

)
(log log T )2

T 1/3(log T )2
,
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where c1 and c2 are absolute constants, holds uniformly for 0 ≤ m ≤ g(T ). This completes the
proof of Theorem 1.2. �
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