
Socket
Programming
in Python
Echo Client and Server
Benjamin Taylor // ITCS-3166-001

Introduction
● Purpose of the Project:

● We will explore the basics of socket programming, a
key concept for enabling communication between
applications on different devices over a network.

● By creating a simple client-server application, we’ll
walk through the core steps of sending and receiving
data through network sockets.

● Key Concepts:

● Basic principles of network communication using
sockets

● Structure and coding of simple client and server
applications in Python

Concept of Loopback Address

Technical Setup
Tools Used:

● Python

● A popular programming language offering
comprehensive support for network
communications through its built-in libraries

● Socket Library

● This library is essential for creating and
managing network connections. It provides the
tools to send and receive data over the internet
or between processes on the same machine.

● The loopback address (127.0.0.1) is a unique IP
address that allows a computer to communicate
with itself.

● In this project, I’ll be using it to test our client and
server application on the same machine so we
don’t have to rely on any external network setup.

Client Program (client.py)

Load the Python library
needed to create network

connections

Initialize a new socket
using IPv4 addressing

(AF_INET) and TCP
protocol (SOCK_STREAM)

The message "Hello,
server!" is encoded to

bytes and sent over the
network

The client waits and
receives a response from

the server, decoding it back
from bytes to string

Import the
Socket

Establish a connection to
the server located at

'127.0.0.1' on port 12345

Properly close the socket
to free up the port and end

the session

Send a
Message

Create a
Socket Object

Connect
to Server

Receive a
Response

Close
Connection

Client Program Code
import socket

client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_socket.connect(('127.0.0.1', 12345))

print("Connected to the server.")

message = "Hello, server!"

client_socket.send(message.encode())

print(f"Sent to server: {message}")

response = client_socket.recv(1024).decode()

print(f"Received from server: {response}")

client_socket.close()

print("Client connection closed.")

Imports socket library needed for the
network communications

Connects client to server using
loopback address (port 12345)

Stores and sends encoded message
to the server as bytes

Receives and decodes response from
server (limited to 1024 bytes)

Closes socket, ending connection

Initializes new TCP socket using IPv4
addressing

Server Program (server.py)

Import the necessary
module for network

communication

Set up a new socket bound
to '127.0.0.1' and port
12345, preparing it to

accept connections

Establish a live connection
with a client

After receiving a message
from the client, the server
sends back a confirmation

message

Import the
Socket

Configure the server to
accept one connection at a

time

Closing both client and
server sockets ensures no
resources are left hanging,

which could lead to port
and memory leaks

Accept
Connection

Create and
Bind a Socket

Listen for
Connections

Receive Message
and Respond

Close
Connection

Server Program Code
import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(('127.0.0.1', 12345))

server_socket.listen(1)
print("Server is listening on port 12345...")

client_socket, client_address = server_socket.accept()
print(f"Connected to client at {client_address}")

message = client_socket.recv(1024).decode()
print(f"Received from client: {message}")

response = "Hello, client! Your message was received."
client_socket.send(response.encode())

client_socket.close()
server_socket.close()

print("Server connection closed.")

Imports socket library needed for the
network communications

Binds server socket to loopback address
and specifies port number

Configures server to accept connections
(one at a time)

Outputs message to console, indicating
server is listening

Receives data from client and decodes to
string from bytes

Creates new socket object using IPv4
addressing and TCP protocol

Sends encoded message back

Closes client socket and server socket,
ending session with client and shutting
down server

Displays client information confirming a
connection

Conclusion
Overview Takeaways

● Successfully implemented a
client-server architecture using
Python’s socket programming abilities

● Demonstrated real-time
communication between a client and
server on a local machine using TCP/IP
protocol

● Gained practical experience in
network socket management,
including opening, binding, listening,
and closing sockets

● Enhanced understanding of the
TCP/IP protocol suite, ensuring
reliable data transmission and
connection management

Resources
● https://en.wikipedia.org/wiki/Python_%28programming_language%29

● https://medium.com/@PubNub/python-socket-programming-client-server-peer-libraries-a
61023e98e1f

● https://realpython.com/python-sockets/

● https://www.javatpoint.com/socket-programming-in-c-or-cpp

● https://www.datacamp.com/tutorial/a-complete-guide-to-socket-programming-in-python

● https://techvidvan.com/tutorials/java-socket-programming/

● https://en.wikipedia.org/wiki/Client%E2%80%93server_model

https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://medium.com/@PubNub/python-socket-programming-client-server-peer-libraries-a61023e98e1f
https://medium.com/@PubNub/python-socket-programming-client-server-peer-libraries-a61023e98e1f
https://realpython.com/python-sockets/
https://www.javatpoint.com/socket-programming-in-c-or-cpp
https://www.datacamp.com/tutorial/a-complete-guide-to-socket-programming-in-python
https://techvidvan.com/tutorials/java-socket-programming/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

