Socket
Programming
in Python

Echo Client and Server
Benjamin Taylor // ITCS-3166-001




Introduction

e Purpose of the Project:

e We will explore the basics of socket programming, a
key concept for enabling communication between
applications on different devices over a network.

e By creating a simple client-server application, we'll
walk through the core steps of sending and receiving
data through network sockets.

e Key Concepts:

e Basic principles of network communication using
sockets

e Structure and coding of simple client and server
applications in Python

Server Port

Connection

Client Port

BCORD




Technical Setup

Tools Used: Concept of Loopback Address
@ Python e Theloopback address (127.0.0.1) is a unique IP
e A popular programming language offering address that allows a computer to communicate
comprehensive support for network with itself.
communications through its built-in libraries e Inthis project, I'll be using it to test our client and
@ Socket Library server application on the same machine so we

o ) ) ) don’t have to rely on any external network setup.
e This library is essential for creating and

managing network connections. It provides the
tools to send and receive data over the internet Client Server
or between processes on the same machine.

p Python Socket App p Python Socket App
Protocol: TCP Protocol: TCP
Internet: IP Internet: IP

Link Link




=
Client Program (client.py) & =

Import the © Create a »_ Connect
Socket gL Socket Object ” to Server
Load the Python library a Initialize a new socket a Establish a connection to
needed to create network using IPv4 addressing the server located at
connections (AF_INET) and TCP '127.0.0.1"' on port 12345
protocol (SOCK_STREAM)
Send a sz Receive a Close
Message = Response Connection
% The message "Hello, % The client waits and ﬁ Properly close the socket
server!" is encoded to receives a response from to free up the port and end
bytes and sent over the the server, decoding it back the session

network from bytes to string



[=

Client Program Code X =

™ Imports socket library needed for the
network communications

~1
~J

Initializes new TCP socket using IPv4
addressing

"B

Connects client to server using
loopback address (port 12345)

24
NI/

Stores and sends encoded message
to the server as bytes

B Receives and decodes response from
=2 server (limited to 1024 bytes)

@ Closes socket, ending connection

—

—

import socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_socket.connect(('127.0.0.1', 12345))
print("Connected to the server.")

message = "Hello, server!"
client_socket.send(message.encode())
print(f"Sent to server: {message}")

response = client_socket.recv(1024).decode()
print(f"Received from server: {response}")

client_socket.close()
print("Client connection closed.")



[=
Server Program (server.py) S =

Import the Create and Listen for
Socket Bind a Socket Connections
Import the necessary a Set up a new socket bound a Configure the server to
module for network t0'127.0.0.1"' and port accept one connection at a
communication 12345, preparingitto time

accept connections

y~a Accept Receive Message Close
Connection and Respond Connection
% Establish a live connection % After receiving a message % Closing both client and
with a client from the client, the server server sockets ensures no
sends back a confirmation resources are left hanging,
message which could lead to port

and memory leaks



Server Program Code

Imports socket library needed for the
network communications

Creates new socket object using IPv4
addressing and TCP protocol

Binds server socket to loopback address
and specifies port number

Configures server to accept connections
(one at atime)

Outputs message to console, indicating
server is listening

g Displays client information confirming a

connection

—
—

A
A

/
/

Receives data from client and decodes to /‘

string from bytes
Sends encoded message back
Closes client socket and server socket,

ending session with client and shutting
down server

A
—

import socket

(=
=

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(('127.0.0.1', 12345))

server_socket.listen(1)
print("Server is listening on port 12345.."")

client_socket, client_address = server_socket.accept()
print(f"Connected to client at {client_address}")

message = client_socket.recv(1024).decode()
print(f"Received from client: {message}")

response = "Hello, client! Your message was received."
client_socket.send(response.encode())

client_socket.close()
server_socket.close()

print("Server connection closed.")



Conclusion

Overview

e Successfully implemented a
client-server architecture using
Python’s socket programming abilities

e Demonstrated real-time
communication between a client and
server on a local machine using TCP/IP
protocol

Clients

i Server
=

Takeaways

Gained practical experience in
network socket management,
including opening, binding, listening,
and closing sockets

Enhanced understanding of the
TCP/IP protocol suite, ensuring
reliable data transmission and
connection management

Java Socket Programming Process

Response is sent
to client

L]




Resources

e https://en.wikipedia.org/wiki/Python %28programming language%29

e https://medium.com/@PubNub/python-socket-programming-client-server-peer-libraries-a
61023e98e1f

e https://realpython.com/python-sockets/

e https://www.javatpoint.com/socket-programming-in-c-or-cpp

e https://www.datacamp.com/tutorial/a-complete-guide-to-socket-programming-in-python

e https://techvidvan.com/tutorials/java-socket-programming/

e https://en.wikipedia.org/wiki/Client%E2%80%93server model



https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://medium.com/@PubNub/python-socket-programming-client-server-peer-libraries-a61023e98e1f
https://medium.com/@PubNub/python-socket-programming-client-server-peer-libraries-a61023e98e1f
https://realpython.com/python-sockets/
https://www.javatpoint.com/socket-programming-in-c-or-cpp
https://www.datacamp.com/tutorial/a-complete-guide-to-socket-programming-in-python
https://techvidvan.com/tutorials/java-socket-programming/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

