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ABSTRACT

The task of cross-view image geo-localization aims to deter-
mine the geo-location (GPS coordinates) of a query ground-
view image by matching it with the GPS-tagged aerial (satel-
lite) images in a reference dataset. Due to the dramatic
changes of viewpoint, matching the cross-view images is
challenging. In this paper, we propose the GeoCapsNet
based on the capsule network for ground-to-aerial image geo-
localization. The network first extracts features from both
ground-view and aerial images via standard convolution lay-
ers and the capsule layers further encode the features to model
the spatial feature hierarchies and enhance the representa-
tion power. Moreover, we introduce a simple and effective
weighted soft-margin triplet loss with online batch hard sam-
ple mining, which can greatly improve the image retrieval ac-
curacy. Experimental results show that our GeoCapsNet sig-
nificantly outperforms the state-of-the-art approaches on two
benchmark datasets. The source code will be released soon.

Index Terms— Image geo-localization, Cross-view im-
age matching, Capsule network, Batch hard-mining

1. INTRODUCTION

Image geo-localization refers to the problem of determining
where (i.e. GPS coordinates) an image is taken from based
on the visual information only. This research has attracted
widespread attention in recent years, due to its potential ap-
plications in autonomous driving, augmented reality, to name
a few. Traditional geo-localization approaches requires ac-
curate telemetry and sensor model e.g. digital ortho-quad
(DOQ) [1], and Digital Elevation Map (DEM) to perform
geo-registration with the reference data. However, these accu-
rate models are difficult to obtain. Recently, geo-localization
based on image matching has attracted growing interest since
it is free from the constraint of requiring the meta data [2, 3].
A typical solution to this problem relies on matching “ground-
to-ground” using a reference database of geo-tagged pho-
tographs [2, 4, 5, 6, 7]. These methods are relatively easy be-
cause both query and reference images are ground-level and
they are in the same domain. One main drawback of such
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Fig. 1. Cross-view image geo-localization. Given a street-
view image as a query, the goal of geo-localization is to
determine its GPS location by matching it with a reference
database of overhead satellite images with GPS coordinates.
Due to viewpoint difference, the visual contents look very dif-
ferent in cross-view images.

approaches is that the reference dataset contains geo-tagged
images which are concentrated in cities and tourist attrac-
tions. However, ground-level images of some geo-graphical
locations may not have geo-location information. Therefore,
ground-level image matching based methods cannot scale to
global scale due to lack of reference data.

On the other hand, thanks to the advent of satellite
and aerospace surveys, aerial photographs densely cover the
entire planet. As a result, matching ground-level photos
to aerial imagery (e.g. Google satellite imagery) has be-
come an attractive alternative to the geo-localization problem
[8, 9, 6, 10, 11, 12, 13, 14, 15, 16, 17]. As shown in Fig.
1, cross-view image matching is a very challenging task be-
cause of the drastic change in viewpoint between ground and
aerial images. A key element of cross-view image matching
is to learn the powerful feature presentation of the cross-view
images, such that the distance of a matched pair of images is
small whereas the distance of the unmatched pair is large in
this feature space. However, learning feature embedding us-
ing pairs of images only considers the visual information sim-
ilarity. The geometric discrepancy between two cross-view
images is not properly addressed.



Motivation. Recently, capsule network has been pro-
posed [18] to address some of the limitations of convo-
lutional neural networks (CNN). Capsule network enables
building parts-to-whole relationship between entities and al-
lows capsules to learn viewpoint invariant representations. In-
spired by these properties of the capsule network, we propose
an aerial to ground view image geo-localization approach,
namely GeoCapsNet, by leveraging the feature representation
power of the capsule network. It tasks as input cross-view
(ground view and overhead view) image pairs, matched or
unmatched, and learns a feature embedding space such that
features of the matching image pairs are close and unmatched
image pairs are far apart. The contributions of the paper are:
• We propose an end-to-end network architecture GeoCap-

sNet for cross-view image-based geo-localization. Our
work expands the use of capsule network to the task of im-
age matching for the first time.

• We introduce a new weighted soft-margin triplet loss with
online hard sample mining in each training batch. We show
the batch hard-mining process is effective for improving
the generalization ability of the network and therefore can
boost the image retrieval performance.

• Extensive experiments on two datasets demonstrate that
our GeoCapsNet significantly outperforms the state-of-the-
art algorithms for cross-view image geo-localization.

2. RELATED WORK

In this section, we provide a review of the state-of-the-art so-
lutions to the cross-view image geo-localization problem. Lin
et al. [9] introduced the “discriminative translation” approach
in which an aerial image classifier is trained based on ground-
level scene matches for ground-to-overhead geo-localization.
Bansal et al. [8] matched query street-level facades to air-
borne imagery under viewpoint and illumination variation by
selecting the intrinsic facade motif scale and modeling facade
structure through self-similarity. Shan et al. [6] proposed
a fully automated ground-based multi-view stereo model for
matching ground-level photos to aerial imagery, which is ca-
pable of handling drastic viewpoint variations by adopting a
novel view-dependent feature matching approach. Workman
et al. [12] used multi-scale overhead images for the same
location in order to perform cross-view training by embed-
ding the feature representations from both views in a joint
semantic feature space. Vo et al. [13] introduced a distance-
based logistic loss to improve the performance of Siamese
network and Triplet network for cross-view geo-localization.
They also showed that explicit orientation supervision can
improve the localization accuracy. Zhai et al. [15] devel-
oped a new network architecture to predict semantic layout
of ground-level images from the corresponding overhead im-
ages, which can also be used for several other tasks such as
orientation estimation and geo-calibration. Hu et al. [17]

adopted the fully convolutional network to extract local im-
age features, which are then encoded into global image de-
scriptors using the NetVLAD [19]. Although a great deal of
effort has been devoted to build discriminative feature repre-
sentations for cross-view images, it still remains challenging
for cross-view image matching due to the large differences in
visual contents and scene structures.

3. PROPOSED GEOCAPSNET

3.1. Capsule Network

The capsule network [18] uses a group of neurons to repre-
sent an entity. The important information about the state of
the features detected by all capsules in the capsule network
is encapsulated in the form of a vector. Since the neurons
in the traditional network layers are too simple to represent a
concept, the capsule network uses vectors as feature represen-
tations in the capsule layers. The output vector of the capsule
represents two parts: (1) its length represents the probability
of occurrence of an instance (e.g. object, visual concept or
part thereof), (2) its direction indicates graphical properties
of the object (e.g. position, color, direction, shape, etc.)

In the cross-view image matching problem, aerial and
ground images share some semantics, e.g. road, tree, build-
ing, etc. Moreover, the scene layout and geometric structure
are also important cues for image matching. Inspired by the
capsule networks’ capability of modeling spatial relationships
(i.e. orientation and position) of extracted features, we pro-
pose an end-to-end cross-view image matching network in-
corporating the capsule layers, dubbed as GeoCapsNet, to en-
code the relative spatial relationship between features to ob-
tain a powerful image representation. In the following sec-
tion, we present the details of GeoCapsNet.

3.2. GeoCapsNet Architecture

The overall architecture of the proposed GeoCapsNet is
shown in Fig. 2. It follows the Siamese network [20] struc-
ture with two identical networks in parallel. The input to the
two networks is the ground and satellite image, respectively.
For higher-level capsules to obtain semantic representations,
we begin with a residual network structure called ResNetX to
extract the semantic features of images. Following the con-
vention of ResNet [21], the details of the ResNetX structure
are in Table 1. It consists of two convolutional layers and
four residual blocks (i.e. Conv3 x - Conv6 x). ResNetX uses
Batch Normalization at every layer. The max-pooling layer is
not used to preserve the information about the input data.

The output of ResNetX is 2048 feature maps with spa-
tial size 7×7, which are served as input to the capsule layer.
We use two layers of capsules: PrimaryCaps and GeoCaps.
The PrimaryCaps layer has 32 primary capsules whose job
is to take basic features detected by the ResNetX and pro-
duce combinations of the features. The “primary capsules”
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Fig. 2. The architecture of GeoCapsNet, which is a two-branch Siamese network takes as input a pair of cross-view images.
Each network branch consists of two parts: ResNetX and Capsule layers (PrimaryCaps and GeoCaps layers).

Layer name Output size Layer
Conv1 112× 112 7× 7, 64, stride 2
Conv2 56× 56 3× 3, 64, stride 2

Conv3 x 56× 56

1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv4 x 28× 28

1× 1, 128
3× 3, 128
1× 1, 256

× 4

Conv5 x 14× 14

1× 1, 256
3× 3, 256
1× 1, 1024

× 6

Conv6 x 7× 7

1× 1, 512
3× 3, 512
1× 1, 2048

× 3

Table 1. The structure of ResNetX.

are very similar to convolutional layer in their nature [18].
Each capsule applies eight 3×3×2048 convolutional kernels
(with stride 1) to the 7×7×2048 input volume and therefore
produces 5×5×8 output tensor. Since there are 32 such cap-
sules, the output volume has shape of 5×5×8×32. The Geo-
Caps layer has 32 capsules, one for an entity in image. Each
capsule takes as input a 5×5×8×32 tensor i.e. 5×5×32
8-dimensional vectors. As per the dynamic routing algo-
rithm [18], each of these input vectors gets their own 8×64
weight matrix that maps 8-dimensional input space to the 64-
dimensional capsule output space. The 32×64-dimensional
vector representation of an image is obtained.

Concretely, let Ig and Is denote the ground and satellite
image, respectively. fg(·) and fs(·) indicate the correspond-
ing ResNetX structure for Ig and Is. In other words, the
ResNetX models for Ig and Is have separate model weights.
The resulting features are Fg = fg(Ig) and Fs = fs(Is) as
shown in Fig. 2. Fg and Fs are passed to the PrimaryCaps
layer of each branch, generating the output vectors of each
capsule: usi = fscaps(Fs), ugi = fgcaps(Fg). Then usi and
ugi are fed into the corresponding GeoCaps layer through the
dynamic routing algorithm, and the output of each capsule is

vxj , where x ∈ {s, g}, and

ûx
j|i = wx

iju
x
i , sx

j =
∑
i

cxijû
x
j|i, vx

j =

∥∥sx
j

∥∥2
1 +

∥∥sx
j

∥∥2 sx
j∥∥sx
j

∥∥
wx
ij is a weight matrix that needs to be learned, cij are cou-

pling coefficients that are determined by the iterative dynamic
routing process. The representation of an image can be for-
mulated as vx = {vx1 ,vx2 ,vx3 , · · ·vxk}, where k represents the
number of capsules in GeoCaps layer and x ∈ {s, g} indi-
cates the satellite or ground branch.

According to the weights learning strategy for the cap-
sule layers in the two branches, we develop two variants of
GeoCapsNet. Specifically, we denote two capsule branches
with different model weights, i.e. fscaps(·) 6= fgcaps(·), as
GeoCapsNet-I, and two capsule branches sharing the same
model weights, i.e. fscaps(·) = fgcaps(·), ws

ij = wg
ij , c

s
ij =

cgij , as GeoCapsNet-II.

4. OBJECTIVE FUNCTION

In image retrieval tasks, Contrastive loss [22], Triplet loss
[23, 24], and Quadruplet loss [25] are popular loss functions
to train the deep neural networks. In image geo-localization,
the goal of the loss function is to make the distance between
the images of the same geo-location (positive pairs) as small
as possible, and the distance between the images of differ-
ent geo-locations (negative pairs) as large as possible. Take
triplet loss as an example, a triplet is ensembled by randomly
sampling three images from the training data, including an
Anchor (a), a Positive sample (p) and a Negative sample (n).
(a, p) forms a positive pair and (a, n) forms a negative pair.
However, if the sample pairs are easy to distinguish, the net-
work cannot learn a good feature representation, leading to
poor generalization ability. To this end, we introduce a batch-
wise hard sample mining method.

Batch construction and hard sample mining. We select
M ground images in each training batch. For each ground
image a in the batch, its matching satellite image p is used
to construct the positive pair. Then a set of M − 1 satellite
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Fig. 3. Example cross-view images from two datasets.

images in different geo-locations as a can be used to form
negative pairs in the batch. This negative set of images is
denoted as B. The triplet loss function is expressed as:

Ltri =
1

M

∑
a∈batch

(da,p −min
n∈B

da,n + θ)+ (1)

As shown in Eq. 1, da,p is the distance between the
capsule feature of a (i.e. vg(a), see Fig. 2) and the cap-
sule feature of p (i.e. vs(p)). min

n∈B
da,n finds the negative

sample which is closest to a, i.e. the hardest sample in the
batch, to calculate the triplet loss. θ ≥ 0 is the margin, and
(·)+ = max(0, ·).

To avoid manually setting the margin θ, we adopt the
soft-margin triplet loss [17]: Lsoft = ln

(
1 + ed

)
, where

d = da,p − da,n. To improve the convergence rate, the
weighted soft-margin ranking loss [17] scales d in Lsoft by
a coefficient α: Lweighted = ln

(
1 + eαd

)
. Therefore,

our weighted soft-margin triplet loss with batch hard-mining
(Soft-TriHard Loss) can be expressed as:

Lsth =
1

M

∑
a∈batch

ln

(
1 + e

α

(
da,p−min

n∈B
da,n

))
(2)

5. EXPERIMENTAL RESULTS

Datasets. We evaluate our GeoCapsNet on two cross-view
datasets - CVUSA [15] and Vo and Hays [13]. The CVUSA
consists of matching pairs of ground panoramas and satellite
image. It contains 35532 image pairs for training and 8884
image pairs for testing. Vo and Hays dataset consists of street-
view and overhead images from 11 different cities in the U.S.
with more than 1 million pairs of images. Follow the same
experimental setting in [17], we randomly select 9 cities, 8 of
which are used to train our network, and the 9th – Denver city
is for testing. Fig. 3 shows a few examples from the datasets.
Evaluation metric. The models are evaluated by the recall
accuracy at top 1% for our networks, as is done in [17]. The
recall at top 1% is percentage of cases in which the correct
satellite match of the query ground view image is ranked
within top 1 percentile.
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Fig. 4. Top-K recall accuracy on CVUSA.

5.1. Implementation Details

The proposed model is trained for 50 epochs on the training
set with a batch size of 32 (M = 32). We implement GeoCap-
sNet in Tensorflow. Adam optimizer [26] is used for training
the model with an initial learning rate of 10−3. RELU is the
activation unit. Regularization is implemented in combina-
tion of L2-regularization and Batch Normalization. α is set
to 15 in the Soft-TriHard loss. In GeoCaps layer, we set the
number of capsule to 32, and the number of dynamic routing
iterations to 4. L2 normalization is applied to the last layer
feature of GeoCapsNet.

Recall @top1%
Vo and Hays [13] CVUSA [15]

Workman et.al [12] 15.40% 34.30%
Vo and Hays [13] 59.90% 63.70%

Zhai et al [15] —- 43.20%
CVM-Net [17] 67.90% 91.40%
GeoCapsNet-I 69.59% 96.52%
GeoCapsNet-II 76.83% 98.07%

Table 2. Performance comparison of our GeoCapsNet with
the state-of-the-art cross-view geo-localization approaches.

5.2. Results and Ablation Study

Comparison to existing approaches. We compare our pro-
posed GeoCapsNets to four state-of-the-art methods [12, 13,
15, 17] on two datasets. Table 2 shows the top 1% accuracies
of our GeoCapsNet and other methods. Both GeoCapsNet-
I and GeoCapsNet-II outperform all the other approaches by
considerable margins on two datasets, leading to new state-
of-the-art results. The results also reveal that GeoCapsNet-
II achieves better performance than GeoCapsNet-I, suggest-
ing that the weight sharing scheme of the two branch capsule
layers forces the network to learn close and similar internal
relationship representation between the cross-view images.
It is also noted that all approaches have higher accuracy on
CVUSA than Vo and Hays [13] dataset because the ground
image in CVUSA is panoramic, which contains more infor-
mation than the single-view image in Vo and Hays [13].
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Fig. 4 plots the Top-K (K=1–80) recall accuracy of our
GeoCapsNets and other approaches on the CVUAS dataset.
It is evident that our GeoCapsNets achieve much better per-
formance than other approaches. The performance gain of
GeoCapsNets over the state-of-the-art CVM-Net [17] is sig-
nificant especially in the range of Top-1 to Top-20 recall, e.g.
20.53% improvement at Top-1 recall (GeoCapsNet-II 55.09%
vs CVM-Net 34.56%).

To understand the effectiveness of our proposed GeoCap-
sNet, we conduct several ablation experiments to investigate
the contribution of each important component.
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Fig. 5. Recall accuracy of Geo-
CapsNet without capsule layers on
CVUSA.

Capsule layers. In
this experiment, we re-
place the capsule layers
(PrimaryCaps and Geo-
Caps layer) in our Geo-
CapsNets with a fully
connected layer as the fi-
nal feature representation
to form the ResNetX-fc-
I and ResNetX-fc-II net-
works. The proposed
soft-TriHard loss is used. The results in Fig. 5 clearly demon-
strate the advantage of using capsule layers for encoding more
discriminative features.

Triplet Soft-TriHard
GeoCapsNet-I 70.38% 96.52%
GeoCapsNet-II 77.46% 98.07%

Table 3. Recall@top1% of GeoCapsNet with different losses.

Batch hard-mining. To demonstrate the effectiveness of
the batch hard sample mining procedure, we remove this pro-
cess in our Soft-TriHard loss function. Therefore, the loss
reduces to the weighted soft-margin triplet loss [17], repre-
sented by Triplet in Table 3. The results on the CVUSA datast
suggest that batch hard-mining is very effective and is able to
significantly boost the performance.

Batch size. As described in Section 4, we select M
ground images in each training batch and construct the pos-

itive and negative pairs. We analyze the performance of our
GeoCapsNets with different batch sizes. Specifically, we tune
different values of batch size while keep other parameters the
same. In Figure 6, as the batch size increases, the Top 1%
recall accuracy of our GeoCapsNets becomes higher. This is
because in our batch-hard mining method, the larger the batch
size, the larger the search range of the samples, so that harder
samples can be obtained. To balance the performance and
memory requirement, we set M = 32.

Model comparison. Table 4 provides a model compari-
son between GeoCapsNet and CVM-Net in terms of the pa-
rameter size of the network, the storage size of the model, and
the length of the feature encoding for image retrieval. The
number of parameters in our GeoCapsNet is much smaller
than that of the CVM-Net, leading to a more compact model.
In addition, the code length (i.e. feature dimension) of Geo-
CapsNet is only half the length of CVM-Net. In image re-
trieval, the shorter length of image feature coding means less
computational complexity and faster retrieval speed. Finally,
we show a few examples of geo-localizing query ground-view
images using our GeoCapsNet in Fig. 7. Please refer to the
supplementary material for more examples and analysis.

# Parameters Model size Code length
CVM-Net [17] 160,311,424 1.8G 4096
GeoCapsNet-I 82,764,672 947.51M 2048
GeoCapsNet-II 64,938,624 743.51M 2048

Table 4. Comparison of GeoCapsNets and CVM-Net [17].

6. CONCLUSION

In this paper, we presented a cross-view image geo-
localization method by matching query ground images with
geo-tagged reference satellite images. We proposed the Geo-
CapsNet architecture which captures high-level semantic fea-
tures of images and their relationships due to the capsule lay-
ers. An effective batch hard sample mining is incorporated
into the weighted soft-margin ranking loss, which greatly im-
proves the retrieval accuracy of our network. Our approach
significantly outperforms the state-of-the-art methods on two
large-scale datasets.
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