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ABSTRACT 

 

Human action recognition has a wide range of applications in-

cluding biometrics, surveillance, and human computer interaction. 

The use of multimodal sensors for human action recognition is 

steadily increasing. However, there are limited publicly available 

datasets where depth camera and inertial sensor data are captured 

at the same time. This paper describes a freely available dataset, 

named UTD-MHAD, which consists of four temporally synchro-

nized data modalities. These modalities include RGB videos, depth 

videos, skeleton positions, and inertial signals from a Kinect cam-

era and a wearable inertial sensor for a comprehensive set of 27 

human actions. Experimental results are provided to show how this 

database can be used to study fusion approaches that involve using 

both depth camera data and inertial sensor data. This public do-

main dataset is of benefit to multimodality research activities being 

conducted for human action recognition by various research groups. 

 

Index Terms— Multimodal human action dataset, human ac-

tion recognition, fusion of depth and inertial data 

 

1. INTRODUCTION 

 

Human action recognition is an active research topic involving 

many applications such as biometrics, surveillance, human com-

puter interaction, fitness monitoring, rehabilitation, etc. With the 

continuing advancements in sensor technology, human action 

recognition research is benefitting from the use of differing mo-

dality sensors such as RGB cameras, depth cameras, accelerome-

ters, and gyroscopes.  

In the past decade, recognizing human actions from video da-

ta captured by conventional RGB cameras has been extensively 

investigated. For example, space-time based methods (e.g., [1]) 

and motion history based methods (e.g., [2]) are popular methods 

developed for action recognition involving RGB cameras. There 

are RGB camera-based datasets such as KTH [1] and UCF50 [3] 

that have facilitated the comparison of different recognition ap-

proaches. Recent emergence of depth cameras (in particular, Mi-

crosoft Kinect) has made it possible to utilize depth images. Depth 

images have some advantages over conventional RGB images for 

human action recognition. Depth images are able to provide three-

dimensional structure and motion information towards distinguish-

ing different actions. They are also relatively insensitive to changes 

in lighting conditions. There exist human action datasets of depth 

images that have been created using the Kinect camera, e.g. MSR 

Action 3D dataset [4] and MSR Daily Activity 3D dataset [5]. 

With the advancement of Micro-Electro-Mechanical Systems 

(MEMS) and integrated circuit technologies, wearable inertial 

sensors such as accelerometers and gyroscopes are increasingly 

being utilized for human action recognition. For example, in [6] a 

wireless body area network composed of multiple wearable inertial 

sensors was developed to monitor daily activities for assisted phys-

ical rehabilitation. In [7], a wearable inertial sensor was employed 

to recognize the actions of hand-twist and hand-open for an intelli-

gent medication adherence monitoring system. In [8], an action 

recognition framework based on a hidden Markov model (HMM) 

was specifically designed for the distributed architecture of body 

sensor networks. There are also publicly accessible datasets for 

human action recognition using wearable inertial sensors which 

have been used for comparison of recognition algorithms (e.g., UC 

Berkeley Wearable Action Recognition Database (WARD) [9], 

and USC Human Activity Dataset (HAD) [10]). 

Depth cameras and wearable inertial sensors have been most-

ly used separately for human action recognition. In other words, 

the simultaneous utilization of both depth cameras and inertial 

sensors for action recognition has been limited in the literature. In 

[11, 12], data from a depth camera and an inertial sensor were 

fused within the framework of an HMM for robust hand gesture 

recognition. In [13], a fusion approach for improving human action 

recognition was developed based on depth and inertial sensors.  

Currently, publicly available human action datasets that in-

clude both depth and inertial sensor data are 

the Berkeley Multimodal Human Action Database (MHAD) [14] 

and the University of Rzeszow (UR) fall detection dataset [15]. To 

facilitate research activities in multimodal sensor fusion for human 

action recognition, this paper also provides a multimodal human 

action dataset employing a Kinect depth camera and a wearable 

inertial sensor, named University of Texas at Dallas Multimodal 

Human Action Dataset (UTD-MHAD). Our dataset covers a more 

comprehensive set of human actions and is meant to be used for 

applications where the data from a depth camera and an inertial 

sensor are to be fused or used at the same time. Our dataset pro-

vides temporally synchronized RGB videos, depth videos, skeleton 

joint positions, and inertial signals for a comprehensive set of hu-

man actions. Such a dataset is of benefit to researchers working in 

different fields such as image processing, computer vision, weara-

ble computing, and sensor fusion. 

In the next section, two existing datasets that include both 

depth and inertial sensor data are briefly reviewed. Our dataset is 

described in section 3. Section 4 provides an example utilization of 

this database for human action recognition. The conclusion is final-

ly stated in section 5. 

 

2. EXISTING DATASETS 

 

2.1. Berkeley MHAD  

 

The Berkeley MHAD dataset [14] contains temporally synchro-

nized data from a motion capture system consisting of 12 RGB 

cameras, 2 Microsoft Kinect cameras, 6 wearable accelerometers, 

and 4 microphones. The dataset consists of 659 data sequences 

from 11 human actions performed by 12 subjects with 5 repetitions. 



Although the dataset includes data from depth cameras and accel-

erometers, one issue to note here is the practicality or intrusiveness 

associated with wearing multiple inertial sensors or accelerometers 

in a real-world setting. More importantly, the dataset includes 11 

human actions which are rather distinct and thus distinguishable 

from each other, whereas our dataset includes 27 human actions, 

and some of which are similar. 

 

2.2. UR Fall Detection Dataset 

 

The UR fall detection dataset [15] focuses on human fall detection. 

It contains 60 depth video and color video sequences recorded with 

2 Microsoft Kinect cameras as well as the data from an accelerom-

eter. The Kinect cameras were mounted on the ceiling and the 

accelerometer was worn near the spine on the lower back of a sub-

ject. Only two types of actions (falling and non-falling) are includ-

ed in this dataset, limiting the applicability of this dataset for eval-

uating recognition algorithms for other actions. 

 

3. UTD MULTIMODAL HUMAN ACTION DATASET 

 

3.1. Sensors 

 

For our multimodal action dataset, only one Microsoft Kinect cam-

era and one wearable inertial sensor were used. This was intention-

al due to the practicality or relatively non-intrusiveness aspect of 

using these two differing modality sensors. Both of these sensors 

are widely available, low cost, easy to operate, and do not require 

much computational power for the real-time manipulation of data 

generated by them. A picture of the Kinect camera is shown in Fig. 

1(a). It can capture a color image with a resolution of 640×480 

pixels and a 16-bit depth image with a resolution of 320×240 pix-

els. The frame rate is approximately 30 frames per second. It is 

also important to note that the Kinect SDK [16] is a publicly avail-

able software package which can be used to track 20 skeleton 

joints and their 3D spatial positions. 

The wearable inertial sensor used here is the low-cost wireless 

inertial sensor built in the ESSP Laboratory at the University of 

Texas at Dallas [17]. It consists of (i) a 9-axis MEMS sensor which 

captures 3-axis acceleration, 3-axis angular velocity and 3-axis 

magnetic strength, (ii) a 16-bit low power microcontroller, (iii) a 

dual mode Bluetooth low energy unit which streams data wireless-

ly to a laptop/PC, and (iv) a serial interface between the MEMS 

sensor and the microcontroller enabling control commands and 

data transmission. For the utilization of the magnetometer, a con-

trolled magnetic field without any distortion is required. Due to a 

lack of such magnetic fields in practice, only the signals associated 

with the 3-axis accelerometer and the 3-axis gyroscope are consid-

ered here. The wearable inertial sensor is shown in Fig. 1(b). The 

sampling rate of the wearable inertial sensor is 50 Hz. The measur-

ing range of the wearable inertial sensor is ±8g for acceleration and 

±1000 degrees/second for rotation. Again, for practicality reasons 

or the intrusiveness associated with asking subjects to wear multi-

ple inertial sensors, only one inertial sensor is considered here, 

either worn on the wrist (similar to a watch) or the thigh depending 

on the action of interest to be recognized in a particular application.  

 

3.2. Dataset Description 

 

Our dataset contains 27 actions performed by 8 subjects (4 females 

and 4 males). Each subject repeated each action 4 times. The pro-

tocol and consent were approved by the Institutional Review Board 

(IRB) at the University of Texas at Dallas. After removing three 

corrupted sequences, the dataset includes 861 data sequences. The 

27 actions performed are listed in Table 1. As seen from this table, 

this list constitutes a comprehensive set of human actions covering 

sport actions (e.g., bowling, tennis serve, and baseball swing), hand 

gestures (e.g., draw x, draw triangle, and draw circle), daily activi-

ties (knock on door, sit to stand, and stand to sit), and training 

exercises (e.g., arm curl, lunge, and squat). 

 

        
                               (a)                                             (b) 
 

Fig. 1. (a) Microsoft Kinect camera; (b) wearable inertial sensor. 

 

Table 1. Human Actions in UTD-MHAD 
Wearable inertial sensor on right wrist 

1 

2 

3 

4 

5 

6 

7 

8 
9 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

20 

21 

right arm swipe to the left       

right arm swipe to the right     

right hand wave                       

two hand front clap                 

right arm throw           

cross arms in the chest      

basketball shoot             

right hand draw x              
right hand draw circle (clockwise)                   

right hand draw circle (counter clockwise)      

draw triangle  

bowling (right hand)                        

front boxing                       

baseball swing from right    

tennis right hand forehand swing       

arm curl (two arms)                
tennis serve                            

two hand push                    

right hand knock on door              

right hand catch an object                

right hand pick up and throw          

(swipe_left) 

(swipe_right) 

(wave) 

(clap) 

(throw) 

(arm_cross) 

(basketball_shoot) 

(draw_x) 
(draw_circle_CW) 

(draw_circle_CCW) 

(draw_triangle) 

(bowling) 

(boxing) 

(baseball_swing) 

(tennis_swing) 

(arm_curl) 
(tennis_serve) 

(push) 

(knock) 

(catch) 

(pickup_throw) 

Wearable inertial sensor on right thigh 

22 

23 

24 

25 
26 

27 

jogging in place                                     

walking in place                                   

sit to stand                               

stand to sit                        
forward lunge (left foot forward) 

squat (two arms stretch out)                                

(jog) 

(walk) 

(sit2stand) 

(stand2sit) 
(lunge) 

(squat) 

 

 
                                       (a)                               (b) 
 

Fig. 2. Placements of the wearable inertial sensor:  

(a) right wrist or (b) right thigh. 

 

During data recording, the Kinect camera was placed on a tri-

pod about 3 meters in front of the subjects to ensure that a subject’s 

entire body appeared in the camera field of view. The wearable 

inertial sensor was worn on the subject’s right wrist or the right 

thigh (see Fig. 2) depending on whether the action was mostly an 

arm or a leg type of action. Specifically, for actions 1 through 21, 

the wearable inertial sensor was placed on the subject’s right wrist; 

for actions 22 through 27, the wearable inertial sensor was placed  



 
 

Fig. 3. An example of the multimodality data corresponding to the action basketball-shoot: (a) the color images, (b) the depth images      

(the background of each depth frame was removed), (c) the skeleton joint frames, and (d) the inertial sensor data (acceleration and gyro-

scope signals).  

 

on the subject’s right thigh. Each subject performed an action 4 

times or 4 trials. The segmentation of each trial was conducted 

manually offline via visual inspection. This dataset possesses large 

intra-class variations due to the following reasons: (i) subjects 

performed the same action at different speeds in different trials, (ii) 

subjects had different heights, (iii) the same action was repeated in 

a natural way which made each trial slightly different. For exam-

ple, the number of claps by a subject for the action two-hand-front-

clap varied in different trials.  

Four data modalities of RGB videos, depth videos, skeleton 

joint positions, and the inertial sensor signals were recorded in 

three channels or threads. One channel was used for simultaneous 

capture of depth videos and skeleton positions, one channel for 

RGB videos, and one channel for the inertial sensor signals (3-axis 

acceleration and 3-axis rotation signals). For data synchronization, 

a time stamp for each sample was recorded. Since the frame rate of 

the Kinect camera and the sampling rate of the wearable inertial 

sensor were different, the start and the end of an action were syn-

chronized by using the time stamps of the depth images to serve as 

references.  

More specifically, let the time stamp of the first depth frame 

(the starting frame) of an action sequence be   
  and the time stamp 

of the last depth frame (the ending frame) of an action sequence be 

  
 . Then, the two time stamps (denoted by   

  and   
 ) of the inertial 

sensor data samples that were closest to   
  and   

  were found in 

order to identify the first and the last samples of the inertial sensor 

data. Note that the starting and ending depth frames of an action 

were annotated via visual inspection. An example of our multimo-

dality data corresponding to the action basketball-shoot is illustrat-

ed in Fig. 3. For each segmented action trial, the color data was 

stored in video (.avi) files, and the depth, skeleton and inertial 

sensor data were stored using the MATLAB computing environ-

ment as three .mat files, respectively. As a result, four data files for 

an action trial are included in the dataset. The dataset can be down-

loaded from the link http://www.utdallas.edu/~kehtar/UTD-

MHAD.html. 
 

4. ACTION RECOGNITION USING  

DEPTH AND INERTIAL SENSOR FUSION 

 

To demonstrate the utility of this multimodality dataset for human 

action recognition, this section provides the outcome of a data 

fusion approach for human action recognition when using our 

UTD-MHAD dataset. In the experiments conducted, the data from 

the subject numbers 1, 3, 5, 7 were used for training, and the data 

for the subject numbers 2, 4, 6, 8 were used for testing.  

The existing feature extraction methods previously used to ex-

tract features from depth images and inertial sensors were consid-

ered here with the understanding that feature extraction or recogni-

tion algorithm is not the focus of this paper. Depth motion maps 

(DMMs) described in [18, 19] constituted the features which were 

extracted from the depth images. A brief explanation of these fea-

tures is given here, more details appear in [18]. For a depth video 

sequence, all the depth frames were projected onto three orthogo-

nal Cartesian planes to form the projected images corresponding to 

the three projection views - front ( ), side ( ), and top ( ) views.  



 
 

Fig. 4. Class specific accuracy and overall accuracy of the 27 UTD-MHAD human actions involving different sensor modalities when us-

ing a CRC classifier.  

 

 

The absolute difference between two consecutive projected images 

was accumulated through the entire depth video creating three 

DMMs (    ,     , and     ) from the three projection 

views. In our experiments, the sizes of     ,     , and      

were set to 150×75, 150×100, and 100×75 as noted in [18]. The 

three DMMs of a depth sequence were stacked to form a feature 

vector. Principal component analysis (PCA) was applied to the 

concatenated feature vector to reduce the dimensionality. The prin-

cipal components that accounted for 95% of the total variation of 

the training features were then used. 

For the inertial sensor feature extraction, the method de-

scribed in [13] was used. That is, each acceleration and gyroscope 

signal sequence was partitioned into   temporal windows. Statisti-

cal features including mean, variance, and standard deviation, 

were calculated for each direction per temporal window. All the 

features from   windows were concatenated to form a feature 

vector.  = 6 generated the best outcome and it was thus used in the 

subsequent experimentations. For the fusion approach, the feature 

sets from the depth camera and the inertial sensor were fused to-

gether as a single feature set before feeding it into a classifier. 

For action recognition, the collaborative representation classi-

fier (CRC) described in [20] was utilized to evaluate the effective-

ness of the fusion approach. The regularization parameter λ of the 

CRC classifier was tuned based on a five-fold cross validation.  

The recognition performance of the fusion was compared with 

the performance of each individual sensor modality. The results 

obtained are displayed in Fig. 4. As can be seem from this figure, 

by combining the features from the depth camera and the wearable 

inertial sensor, the overall recognition accuracy was improved by 

more than 11% over the situations when using the Kinect camera 

alone or the inertial sensor alone. This figure shows that the recog-

nition accuracy of most of the actions was improved when using 

the fusion of depth and inertial sensor data. For example, the accu-

racies of the actions right arm throw, draw x, and draw circle 

(counter clockwise) were improved over 15% as compared to the 

situation when using the Kinect camera alone or the inertial sensor 

alone.  

It is important to note that the accuracies of the fusion ap-

proach for some actions did not improve compared to when using 

the inertial sensor alone or when using the depth camera alone. 

This demonstrated that a fusion approach in general is helpful for 

those actions that generate depth and inertial data that are comple-

mentary. In other words, for those actions that a single modality 

sensor provides adequate discriminatory power, fusion may not 

provide any improvement.  

 

5. CONCLUSION 
 

This paper has provided a public domain dataset, named the UTD 

Multimodal Human Action Dataset (UTD-MHAD), for the exami-

nation and comparison of different human action recognition 

methods, in particular those involving fusion or using both a depth 

camera and an inertial sensor. The dataset includes four data mo-

dalities including RGB videos, depth videos, skeleton positions 

from a Kinect camera and inertial signals (acceleration and rotation 

signals) from a wearable inertial sensor. It incorporates 861 data 

sequences by 8 subjects for a comprehensive set of 27 human ac-

tions. This public domain dataset is of benefit to multi-modality 

research activities being conducted for human action recognition 

by various research groups.   
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