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a b s t r a c t 

This paper presents an effective scene classification approach based on collaborative rep- 

resentation fusion of local and global spatial features. First, a visual word codebook is 

constructed by partitioning an image into dense regions, followed by the typical k -means 

clustering. A locality-constrained linear coding is employed on dense regions via the visual 

codebook, and a spatial pyramid matching strategy is then used to combine local features 

of the entire image. For global feature extraction, the method called multiscale completed 

local binary patterns (MS-CLBP) is applied to both the original gray scale image and its Ga- 

bor feature images. Finally, kernel collaborative representation-based classification (KCRC) 

is employed on the extracted local and global features, and class label of the testing image 

is assigned according to the minimal approximation residual after fusion. The proposed 

method is evaluated by using four commonly-used datasets including two remote sens- 

ing images datasets, an indoor and outdoor scenes dataset, and a sports action dataset. 

Experimental results demonstrate that the proposed method significantly outperforms the 

state-of-the-art methods. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the last decade, scene classification has drawn increasing attention both in academia and industry [14,37,45,46,57,63] .

The task is to automatically classify an image by feature extraction and label assignment. Although great effort in extracting

features (e.g., hash codes [10,15,17] , manifold structures [24,56,58] , etc) has been made, it is still a challenging task due to

many factors to be considered such as variations in spatial position, illumination, and scale. 

In the early days, scene classification methods mainly concentrated on modeling [25] and using global spatial features

such as color and texture histograms [41] . The global features often have simple implementation and low computational cost

but offer limited performance. In [11,36,48,50,59,61] , the popular bag-of-visual-words (BoVW) model was adopted, which

represented an image with an orderless collection of local features. In this model, an image can be treated as a document,

similar to “words”. The image is usually partitioned into patches and represented by a codebook. To this end, it follows

three steps: (i) feature detection (commonly, the key point detection [30,31] is used.), (ii) feature description based on key

points [9,27] , and (iii) codebook generation. However, the BoVW model ignores the spatial layout of features. 
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To overcome this issue, spatial pyramid matching (SPM) was developed based on approximate global geometric corre-

spondence in [16] . This approach partitions an image into increasingly fine sub-regions and computes histograms of local

features in each sub-region. It is a simple extension of an orderless bag-of-features image representation and overcomes the

shortcoming of the BoVW model. Based on this SPM framework, many extensions have been proposed. In [52] , an improved

SPM method was developed by generalizing vector quantization (VQ) to sparse coding, followed by multiscale spatial max

pooling. A linear SPM kernel based on Lowes scale invariant feature transform (SIFT) [9,27] sparse codes was employed, pro-

viding excellent performance on several scene datasets. However, this method exhibits high computation complexity and is

extremely time-consuming. In [49] , a simple yet effective coding scheme called locality-constrained linear coding (LLC) was

proposed to replace the VQ coding. LLC utilizes the locality constraint to project each descriptor onto its local-coordinate

system and applies max pooling to the projected coordinates to generate the final representation. Compared with the sparse

coding in [3,52] , LLC not only guarantees sparsity but also solves the representation problem as a constrained least squares

fitting problem, which takes both accuracy and efficiency into consideration. 

With the success of the BoVW and SPM models in image scene classification, more algorithms have been developed

based on these frameworks. For example, a multi-resolution representation was incorporated into the BoVW model [69,70] ,

which constructed images with multiple resolutions and extracted local features from all the images with dense regions,

utilized the k -means clustering to generate visual codebook, and then represented each sub-region as a histogram of code-

word occurrences by mapping the local features to the codebook. In [8] , the pyramid histogram of multi-scale block local

binary pattern (PH-MBLBP) descriptor was employed, which can encode micro-and macro-structures of images, and the

PH-MBLBP descriptor was verified to be a powerful texture descriptor with low computational complexity. In [66] , a con-

centric circle-based spatial-rotation-invariant representation strategy for describing spatial information of visual words and 

a concentric circle-structured multi-scale BoVW method using multiple features were proposed to enhance image rotation

invariance, leading to excellent scene classification results. In [65] , a scene image was transformed into multi-features by

2-D wavelet decompositions, and the resulting feature maps were then employed by the BoVW and SPM models; after that,

all the features of different feature maps were stacked as inputs to a classic support vector machine (SVM) classifier. 

Although the BoVW [54] and SPM, [6,55] models are popular in scene classification and have gained great success,

one of disadvantages is that they cannot well capture global structures in an image scene. Compared with the BoVM and

SPM models, some global feature based scene classification methods actually have achieved satisfying performance. In [4] ,

a global feature called completed local binary pattern (CLBP) was employed and multi-scale resolution was adopted to

generate multi-scale global features for land-use scene classification. In [5] , a global Gabor-filtering-based CLBP was ap-

plied to generate multi-features. Some other global feature representation methods for scene classification can be found in

[19,20,38,40,68] . It is known that the BoVW model with SPM can capture spatial information with ordered block partitions

but it is sensitive to rotation variations. On the other hand, the global feature representation focuses on global texture, such

as texture depth and global contrast, but ignores local details or small objects. 

Since each type of features (i.e., local features such as BoVW, and global features such as CLBP) has its own advantages

and limitations, we propose to fuse the global and local features together to characterize both local fine details and global

structures of scene images. In traditional methods, the fusion strategy mainly includes feature and decision level fusion [67] .

Nevertheless, it is difficult to combine different features in feature level because different features may not be compatible.

Moreover, it may impose a challenge of high feature dimensionality in feature level fusion. In decision level fusion, voting

may lead to a rough result. Thus, in this work, both feature and decision level-fusion methods are considered to mitigate

their individual shortcomings in the proposed framework. We first use the BoVW and SPM to generate local features and

employ the multi-scale CLBP (MS-CLBP) to extract global features. We then employ the feature representation method (e.g.,

kernel collaborative representation-based classification, KCRC [53] ) which is different from a conventional training-testing

classifier (e.g., SVM or extreme learning machine (ELM) [22] ). The features in training images can be presented as a dic-

tionary, then testing images are reconstructed by the training dictionary. After obtaining the representation residuals from

using two types of features, the sum of weighted residuals is calculated and the label is assigned according to the min-

imal residual class. Experimental results on four benchmark datasets demonstrate that our approach gains a remarkable

classification improvement over the state-of-the-art methods. 

The main contributions made in this paper can be summarized as follows. (1) To the best of our knowledge, it is the first

time that local and global features are employed together for scene image classification. The complementary nature of these

two types of features can effectively mitigate the shortcomings of local feature representation based methods (e.g., BoVW

and SPM) and global feature representation based methods (e.g., MS-CLBP). (2) A weighted sum of approximation residuals

of local and global features with collaborative representation fusion are proposed, which can overcome the difficulties in

feature or decision level fusion. 

The rest of the paper is organized as follows. Section 2 describes the proposed approaches, including local and global

feature extraction and the collaborative representation fusion strategy. Section 3 introduces four experimental datasets.

Section 4 represents the experimental results and provides some discussion. Section 5 draws the conclusions. 

2. Proposed approach 

The flow chart of the proposed method is illustrated in Fig. 1 . First, the local and global feature dictionaries are prepared

in advance. Then, for each testing image, the local and global features are extracted and collaboratively represented by the
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Fig. 1. Overview of the local and global features with collaborative representation fusion based scene classification. 

Fig. 2. Overview of the procedure of generating the local and global training dictionaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

training dictionary. The dictionary is constructed by the specific classes and the training samples of each class can be viewed

as a sub-dictionary. Through collaborative representation, local and global features are coded by the sub-dictionaries. The

coefficients of each sub-dictionary present the contribution of each class to the testing image. The reconstruction errors of

each class measure the similarity of the testing class and the training classes. Both the local and global features are used for

representation and two reconstruction residuals are fused. The label of the class with the minimal reconstruction residual

is then assigned to the testing image. In this way, both the local and global information can be utilized even when some

images mainly exhibit global information (e.g., beach scene and desert scene), or local information (e.g., indoor object scene).

The proposed method can deal with scene images with different levels of details by considering these two types of features

adaptively. 

2.1. Feature extraction and dictionary generation 

In recent years, visual descriptors have shown their outstanding performance in image classification. For instance, SIFT

[9,27] exhibits its powerful description capability in object recognition, detection, and image matching, etc [28,42] . In

[6,16,18] , it has been demonstrated that the dense feature extraction outperforms better than the interest point based fea-

ture extraction. This is because the interest points detected by Harris corner detector or difference of Gaussian pyramid are

always located at areas with great changes; however, smooth areas could also contain important scene information. 

In this work, we employ the dense SIFT descriptor by partitioning an image into small patches. We refer to [49] for local

feature generation and adopt the MS-CLBP [4] for global features. The detailed process is presented in Fig. 2 . Specifically,

images from each class are randomly chosen to perform dense local feature extraction. A regular grid is used to partition an

entire image into patches. For each patch, the patch center is viewed as a key point, on which the SIFT feature is generated.

After that, k -means clustering is employed to generate the codebook which presents the visual words of the BoVW. Then,



212 J. Zou et al. / Information Sciences 348 (2016) 209–226 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vector quantization is used to encode the patches using the codebook and calculate the histogram of frequency of each

visual word. The SPM and LLC are further employed to calculate the local features due to that the SPM is able to avoid

the orderless bag-of-features representation which enhances the spatial order structure and leads to better representation

of local features. In addition, the LLC is used for reconstruction instead of direct vector quantization since it can reconstruct

the feature with high accuracy and low computational cost. 

Let X be a set of d -dimensional local descriptors extracted from an image with n entries, i.e., X = [ x 1 , x 2 , . . . , x n ] ∈ R d×n ,

and let the codebook with m entries be denoted as D = [ d 1 , d 2 , . . . , d m 

] ∈ R d×m . The vector quantization solves the following

constrained least squares fitting problem, 

arg min 

α

n ∑ 

i =1 

∥∥x i − D αi ‖ 

2 subject to ‖ 

αi ‖ 0 = 1 , ‖ 

αi ‖ 1 = 1 , αi ≥ 0 (1) 

where α = [ α1 , α2 , . . . , αn ] is a coding coefficient vector for X and αi ∈ R m × 1 . For each patch descriptor, the vector quan-

tization only finds the nearest atom from the codebook. It may cause large reconstruction errors and lead to class mis-

assignment. A better coding strategy is the sparse representation [26] or the collaborative representation [53] . Here, we do

not consider sparse coding but the LLC because the former requires large computational effort. The objective function of the

LLC can be expressed as 

arg min 

α
‖ 

x i − D αi ‖ 

2 + λ‖ 

l i � αi ‖ 

2 
subject to 1 

T αi = 1 (2) 

where � denotes the element-wise multiplication, and l i denotes the i th locality adaptor that assigns weights to each atom

according to its similarity to the input descriptor. Define l i = f ( x i , D ) , where f ( ·) measures the similarity between the input

descriptor and the atoms of codebook. To achieve sparsity of the LLC, only the most similar atoms are allowed to have

nonzero coefficients. For each training image, local features can be obtained. Thus, the training local feature dictionary

consists of the local features from all the training images. 

On the other hand, a global feature dictionary is generated based on CLBP [4,13] which is a completed modeling of the

typical local binary pattern (LBP) [33] . LBP is an effective measure of spatial structure information and has been widely

employed in face recognition and texture classification [1,35] . Given a center pixel y c and its neighboring pixels equally

distributed on a circle of radius r . If the coordinates of y c are (0, 0) and the coordinates of m neighbors { y i } m −1 
i =0 are

( −r sin ( 2 π i/m ) , r cos ( 2 π i/m ) ) . The LBP is computed by thresholding the neighbors with the center pixel to generate an

m -bit binary code, 

LB P m,r ( y c ) = 

m −1 ∑ 

i =0 

s ( y i − y c ) × 2 

i . (3) 

If y i − y c ≥ 0 , s ( y i − y c ) = 1 ; otherwise, s ( y i − y c ) = 0 . However, the LBP only uses the sign information and ignores the

magnitude information. CLBP is designed to combine both the sign and magnitude information for comprehensive modeling.

CLBP-Sign (CLBP_S) is equivalent to the traditional LBP and the CLBP-Magnitude (CLBP_M) is defined as, 

CLBP _ M m,r = 

m −1 ∑ 

i =0 

p ( | y i − y c | , γ ) × 2 

i , and p ( δ, γ ) = 

{
1 , δ ≥ γ
0 , δ < γ

(4) 

where γ is the mean value of | y i − y c | from the entire image. Then, an m -bit binary code can also be generated. The CLBP_S

is able to provide the spatial texture and the CLBP_M is mainly to describe the depth of texture. Note that we do not use the

CLBP-Center component in CLBP which encodes the pixel intensity for the purpose of reducing computational complexity.

The syncretic CLBP can describe both the spatial and depth information by mapping the CLBP_S and CLBP_M into histograms.

To further enhance the representation power, the multi-scale representation of CLBP is considered. Specifically, the original

image is down-sampled using the bicubic interpolation to obtain multiple images with different sizes (or scales). Then, the

CLBP operator is applied with the same parameters to these images at different scales. Finally, the CLBP features are stacked

to form the global features. In addition, it has been verified that the Gabor features with LBP show excellent performance in

face recognition [64] . Therefore, global feature extraction is performed (as shown in Fig. 2 ) on the Gabor feature images in

addition to the original intensity images. As a result, MS-CLBP features from gray-level images and the corresponding Gabor

feature images are combined as the final global features. The training global feature dictionary can thus be obtained. 

2.2. Image classification by fusing reconstruction residuals 

After generating the local and global feature dictionaries, KCRC [53] is employed to represent a testing image using these

features. Furthermore, a weighted fusion strategy is considered for class label determination based on reconstruction errors

(residuals) as shown in Fig. 3 , where the image is first represented by training feature dictionary and then reconstructed by

each sub-dictionary. The middle histogram represents the residual of reconstruction error of each class according to each

feature. Fig. 3 further illustrates that the minimum residual and the second smallest value may be very close, introducing

classification error. However, after the local and global feature reconstruction errors are fused, the discrimination power is

enhanced. 
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Fig. 3. Illustration of representation residual fusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a testing image, local features are encoded via the training local feature dictionary by KCRC to obtain coding coeffi-

cients. The same operation is applied to global features. Before introducing the KCRC, we first briefly overview the original

collaborative representation-based classification (CRC) [23,62] . The KCRC can be viewed as a kernel version of CRC, which

codes a testing sample by a linear combination of all the training samples. Let y be the feature of a testing image and

the training dictionary be X = [ X 

1 , X 

2 , . . . , X 

C ] with C classes, where X 

l is a sub-dictionary for the l th class. The objective

function of CRC is, 

w = arg min 

{‖ 

y − Xw ‖ 

2 
2 + λ‖ 

w ‖ 

2 
2 

}
, (5)

where w is the weight vector and λ is the regularization parameter. Eq. (5) can be directly solved as 

̂ w = 

(
X 

T X + λI 
)−1 

X 

T y . (6)

After obtaining ̂ w , X and 

̂ w are separated into C class-specific segments, i.e., { X 

l } C 
l=1 

and { ̂  w 

l } C 
l=1 

. The class-specific residuals

can be calculated as, 

r l ( y ) = 

∥∥y − X 

l ̂ w 

l 
∥∥

2 
, l = 1 , 2 , . . . , C. (7)

The label of the testing image is then determined according to 

Class ( y ) = arg min 

l=1 ,...,C 
r l ( y ) . (8)

The CRC is a linear method in nature and may not handle samples with complex nonlinear variations due to pose, ex-

pression, and illumination. Nevertheless, the kernel-based methods [32,51] can effectively discover nonlinear structures by

mapping the samples into a high dimensional space. 

In this work, the KCRC algorithm is adopted to solve the nonlinear reconstruction problem. In a kernel method, data are

projected into a high-dimensional kernel-induced feature space by an implicit nonlinear mapping function �, i.e., y → �( y )

∈ R D × 1 ( D � d is the dimension of kernel feature space). Usually, the explicit mapping � is unknown. According to the

kernel trick, the inner product of two vectors, x and y , in the feature space is equal to the output of a kernel function, i.e.,

k (x , y ) = �(x ) T �(y ) . Here, we employ the Gaussian radial basis function (RBF) kernel k (x , y ) = exp 

(
−σ‖ x − y ‖ 2 

2 

)
( σ > 0 is

a parameter of the RBF kernel). 

In KCRC, the weight vector w is estimated as 

w = arg min 

∥∥�(y ) − �w 

∥∥2 

2 
+ λ

∥∥w 

∥∥2 

2 
, (9)

where � = [�(x 1 ) , �(x 2 ) , . . . , �(x n )] ∈ R 

D ×n , and the closed-form solution is 

̂ w = (K + λI ) −1 k (·, y ) , (10)

where k (·, y ) = [ k (x 1 , y ) , k (x 2 , y ) , . . . , k (x n , y )] T ∈ R 

n ×1 , and K = �T � ∈ R 

n ×n is the Gram matrix with K i, j = k (x i , x j ) . 

After computing the weight vector ̂ w in the kernel space, the class-specific error residual can be calculated as 

r l ( y ) = 

∥∥�l ̂ w 

l − �(y ) 
∥∥

2 

= 

√ 

(�(y ) − �l ̂ w 

l ) 
T 
(�(y ) − �l ̂ w 

l ) 

= 

√ 

k (y , y ) + ( ̂  w 

l ) T K 

l ̂ w 

l − 2( ̂  w 

l ) T k 

l (·, y ) , (11)
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Fig. 4. Example images from the 21-class land-use dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where �l represents the kernel sub-dictionary for class l and K 

l is the Gram matrix of the samples in class l . Finally, class

label of the testing image is determined using Eq. (8) . 

In the proposed local-global-fusion (LGF) strategy, each testing image is generated two types of features, i.e., y L and y G 
representing local and global features, respectively. The KCRC is employed to calculate the approximation residuals of both

local and global features denoted by r l 
L ( y ) and r l 

G ( y ) , and the local and global residuals are fused as, 

r l LGF ( y ) = μr l L ( y ) + ( 1 − μ) r l G ( y ) , (12) 

where μ is the weighting parameter. Finally, class label of the testing image is determined using Eq. (8) based on r l 
LGF ( y ) .

As illustrated in Fig. 3 , individual decisions based on residuals from local or global features are wrong, but the proposed LGF

method generates a correct result after residual fusion. 

3. Experimental datasets 

The first dataset is the well-known UC Merced Land Use dataset [54] consisting of 21 land-use classes, i.e., agricultural,

airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, 

medium density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and

tennis courts. Each class contains 100 images of size 256 × 256 pixels. It is up to now the first public land-use scene image

dataset with ground truth, which is created by Yang and Newsam 

1 . This dataset was downloaded from United States Geolog-

ical Survey (USGS) National Map. Sample images of each land-use class are illustrated in Fig. 4 . This benchmark dataset has

a large geographical scale. In order to facilitate a fair comparison, we follow the same experimental setup reported in [54] .

We randomly choose 80 images from each land-use class for training and the remaining for testing. All the experiments are

repeated 10 trials with different realizations of training and testing images. 

The second dataset used in our experiments is the 19-class satellite scene dataset [4,44] . It consists of 19 classes of high-

resolution satellite scenes including airport, beach, bridge, commercial, desert, farmland, football field, forest, industrial,

meadow, mountain, park, parking, pond, port, railway station, residential, river and viaduct. There are 50 images of size 600

× 600 pixels for each class. Sample images of each class are shown in Fig. 5 . This benchmark dataset also focuses on images

with a large geographical scale. We follow the same experimental setup in [4] . We randomly choose 30 images from each

class for training and the remaining for testing. All the experiments are repeated 10 trials. 

The third dataset includes the 15-scene categories [8] . The initial 8 classes were collected by Oliva and Torralba [34] ,

and the 5 categories were added by Li and Perona [18] , the rest categories were introduced by Lazebnik [16] . The 15 scene

categories are: bedroom (216 images), CAL-suburb (241 images), industrial (311 images), kitchen (210 images), livingroom

(289 images), MIT-cost (360 images), MIT-forest (328 images), MIT-highway (260 images), MIT-insidecity (308 images), MIT-

mountain (374 images), MIT-opencountry (410 images), MITstreet (292 images), MIT-tallbuilding (356 images), PAR-office 

(215 images), and store (315 images). It contains a total of 4485 images of size 300 × 250 pixels. This is the most widely-

used dataset in literature so far. It is a challenging dataset since it contains a wide range of indoor and outdoor images.

Both local and global scales images are included. Sample images of each class are shown in Fig. 6 . Following the same

experimental procedure [16] , we randomly choose 100 images per class for training and the rest for testing. 

The fourth dataset has sports event categories collected from the Internet [19] . The eight sports event categories are:

bocce (137 images), croquet (236 images), polo (182 images), rowing (250 images), snowboarding (190 images), badminton
1 http://vision.ucmerced.edu/datasets . 

http://vision.ucmerced.edu/datasets
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Fig. 5. Example images from the 19-class satellite scene dataset. 

Fig. 6. Example images from the 15-scene categories dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(200 images), sailing (190 images), and rock climbing (194 images). Sample images of each class are shown in Fig. 7 . This

event dataset is also very challenging mainly because: (1) the background of images is highly cluttered and diverse, (2) the

object classes are also diverse, and (3) the same category sizes of instances from the same object are different. In addition,

this dataset contains a large range of image scales. Following the same experimental setting in [19] , 70 training samples are

randomly selected from each class and the remaining ones for testing. 

4. Experimental analysis 

For the UC-Merced land-cover scene dataset, the suggested parameters in [52] are used to generate the descriptor code-

book. The dense SIFT descriptors are extracted for each 16 × 16 patch on a grid of step size of 6 pixels. The codebook size

is set to be 500. There are 1680 images for training (80 per class). Therefore, a total of 2,824,080 patches is generated. For

k -means clustering, 30,0 0 0 patches are randomly selected to generate 500 visual words. The codebook is mainly to encode

the patches of an image to generate a feature. Then, the features of the training images form the training dictionary. The

SPM layer is set to have three different levels of resolution in the proposed LGF, and the nearest 50 atoms in the code-

book are used for LLC. As for global features extraction, [4] suggested to set the number of scale to 6, the radius to 3, and

the number of neighbor to 10 for MS-CLBP. To generate the Gabor feature images, four directions are used. Then, MS-CLBP

operator is applied to these four Gabor feature images. 

The proposed LGF strategy is compared with the state-of-the-art LLC + SVM and MS-CLBP + ELM 

2 as well as LLC + KCRC

and MS-CLBP + KCRC to verify the effectiveness of the proposed fusion approach. For MS-CLBP, the parameters utilized to

generate the global features for the training and testing samples are described in [4] . In the experimental setup, all the

training and testing features are normalized to [0,1], KCRC is employed with a RBF kernel (optimal parameter σ = 0.5)
2 ELM: extreme learning machines; the code is available at http://www3.ntu.edu.sg/home/egbhuang/elm _ codes.html . 

http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html
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Fig. 7. Example images from the sports event categories dataset. 

Fig. 8. Classification performance for the UC Merced land-use dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for classification, and the regularization parameter λ is empirically set to 10 −4 . The weighting parameter μ (in Eq. (12) )

balancing the global and local feature reconstruction errors varies from 0 to 1 with a step size of 0.1. When μ = 0 , LGF is

equal to MS-CLBP + KCRC; and when μ = 1 , it reduces to LLC + KCRC. 

First of all, we illustrate the classification performance of MS-CLBP + KCRC, LLC + KCRC, and the proposed LGF corre-

sponding to 10 different trials with randomly selected training samples as shown in Fig. 8 . It is apparent that the proposed

LGF consistently outperforms MS-CLBP + KCRC and LLC + KCRC. In addition, we observe that MS-CLBP + KCRC is superior

to LLC + KCRC because this dataset mostly consists of land-use scene images at a large scale and global features are more

effective than local features. Cross-validation strategy is employed for tuning the optimal parameter (e.g., μ) using available

training data. In Fig. 9 , when μ is 0.8, the proposed LGF achieves the highest accuracy, which indicates that the resid-

ual residuals from using local features are assigned with a larger weight, leading to better discrimination. This experiment

validates the effectiveness of the fusion strategy. 

Then, a statistical analysis is conducted by counting the correctly-classified images out of 420 testing images. As listed

in Table 1 , � indicates a correctly-classified sample and × indicates a mis-classified sample. The number at each column

means the total number of images satisfying three conditions. It exhibits that in this dataset when the LLC + KCRC and

MS-CLBP + KCRC results are in ambiguity, the LGF can produce correct results for 65 (columns two and three, 16 + 50)

images out of 72 images (columns two and three, columns six and seven, 16 + 50 + 7 + 0) and misclassify 7 (columns six

and seven, 7 + 0). When the LLC + KCRC and MS-CLBP + KCRC results are accurate, the proposed LGF will not degrade the

results (see the fifth column). 
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Fig. 9. Different μ in LGF for UC Merced land-use dataset. 

Table 1 

Counting the numbers of the classification accuracy of LLC + KCRC, MS- 

CLBP + KCRC, and the proposed LGF using the UC Merced land-use 

dataset. 

LLC + KCRC × � × � � � × ×
MS-CLBP + KCRC × × � � � × � ×
LGF (proposed) � � � � × × × ×

0 16 50 355 0 7 0 12 

Table 2 

Classification accuracy (%) per class for classifiers using UC Merced land-used dataset. 

Class Classification algorithms 

LLC + SVM MS-CLBP + ELM LLC + KCRC MS-CLBP + KCRC LGF (proposed) 

Agricultural 100 80.00 100 100 100 

Airplane 75.00 90.00 80.00 100 100 

Baseball-diamond 70.00 85.00 90.00 80.00 100 

Beach 100 100 100 100 100 

Buildings 65.00 85.00 65.00 85.00 85.00 

Chaparral 100 100 100 100 100 

Dense-residential 70.00 85.00 75.00 95.00 100 

Forest 100 100 100 100 100 

Freeway 95.00 75.00 95.00 90.00 100 

Golf course 75.00 100 75.00 100 100 

Harbor 100 100 100 100 100 

Intersection 95.00 95.00 95.00 100 100 

Medium-residential 55.00 95.00 75.00 90.00 95.00 

Mobile home park 95.00 100 65.00 90.00 95.00 

Overpass 80.00 90.00 80.00 70.00 75.00 

Parking lot 100 95.00 100 100 100 

River 80.00 85.00 75.00 85.00 100 

Runway 95.00 95.00 100 100 100 

Sparse-residential 65.00 65.00 85.00 95.00 100 

Storage tanks 60.00 75.00 55.00 60.00 65.00 

Tennis court 70.00 80.00 80.00 85.00 90.00 

OA (%) 82.86 89.29 85.24 91.67 95.48 

F-measure 0.8293 0.8951 0.8557 0.9189 0.9566 

 

 

 

 

 

In the first experiment, the accuracy per class from the aforementioned methods and F-measure (calculated by precision

and recall [12,29] ) is provided in Table 2 . Obviously, the proposed LGF achieves better performance than the other methods.

It gains almost 13% improvement over the state-of-the-art LLC + SVM method. The KCRC method also outperforms the

widely-used SVM classifier. The LGF gains about 4% higher overall accuracy than the global feature representation method,

i.e., MS-CLBP + KCRC, and 10% higher than the local feature representation method, i.e., LLC + KCRC. Table 3 displays the
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Table 3 

Confusion matrix for the proposed LGF using UC Merced land-use dataset. 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Recall(%) 

Agricultural (1) 20 – – – – – – – – – – – – – – – – – – – – 100 

Airplane (2) – 20 – – – – – – – – – – – – – – – – – – – 100 

Baseball-diamond (3) – – 20 – – – – – – – – – – – – – – – – – – 100 

Beach (4) – – – 20 – – – – – – – – – – – – – – – – – 100 

Buildings (5) – – – – 17 – 2 – – – – 1 – – – – – – – – – 85.00 

Chaparral (6) – – – – – 20 – – – – – – – – – – – – – – – 100 

Dense-residential (7) – – – – – – 20 – – – – – – – – – – – – – – 100 

Forest (8) – – – – – – – 20 – – – – – – – – – – – – – 100 

Freeway (9) – – – – – – – – 20 – – – – – – – – – – – – 100 

Golf course (10) – – – – – – – – – 20 – – – – – – – – – – – 100 

Harbor (11) – – – – – – – – – – 20 – – – – – – – – – – 100 

Intersection (12) – – – – – – – – – – – 20 – – – – – – – – – 100 

Medium-residential (13) – – – – – – – – – – – – 19 1 – – – – – – – 95.00 

Mobile home park (14) – – – – – – – – – – – – 1 19 – – – – – – – 95.00 

Overpass (15) – – – – – – 1 – 1 – – 3 – – 15 – – – – – – 75.00 

Parking lot (16) – – – – – – – – – – – – – – – 20 – – – – – 100 

River (17) – – – – – – – – – – – – – – – – 20 – – – – 100 

Runway (18) – – – – – – – – – – – – – – – – – 20 – – – 100 

Sparse-residential (19) – – – – – – – – – – – – – – – – – – 20 – – 100 

Storage tanks (20) – 2 – – 3 – – – – – – – – – – – – – – 13 1 65.00 

Tennis court (21) – 1 – – – – – – – – – – 1 – – – – – – – 18 90.00 

Precision (%) 100 86.96 100 100 85.00 100 86.96 100 95.24 100 100 83.33 90.48 95.00 100 100 95.24 100 100 100 94.74 

Fig. 10. Classification performance in the 19-class satellite scene experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

confusion matrix 3 for the proposed LGF, which shows the classification performance (i.e., precision and recall) for individual

categories. The major confusion occurs between class 15 (i.e., overpass ) and class 12 (i.e., intersection ), or class 20 (i.e., storage

tanks ) and class 5 (i.e., buildings ). 

For the second dataset, the dense SIFT descriptors are extracted for each 32 × 32 patch on a grid of step size 12 since

the image size is twice larger than that of the UC-Merced dataset. 500 visual words are generated as a codebook and all

the training images as the dictionary. For training, 570 images (30 per class) are chosen, resulting in 130 0 0 0 0 patches, from

which 30 0 0 0 are randomly selected to obtain the codebook. The SPM layer is set to have three different levels of resolution,

and 50 nearest atoms in the codebook are used for LLC. As for the MS-CLBP parameters, the number of scale is 6, the

radius is 4, and the number of neighbor is 12. Four different directions are employed for generating Gabor feature images,

σ is set to 0.9 in KCRC for local feature representation, and 3 for global feature representation after tuning the parameters.

The regularization parameter λ is 10 −4 . Fig. 10 illustrates the results with 10 different trials with random training samples,

where the proposed LGF gains the highest accuracy. The global feature can present better than the local feature in this

remote sensing dataset because of the large scale of remote sensing images. In this dataset, when μ is 0.6, the LGF can

obtain the highest fusion accuracy as shown in Fig. 11 . To further evaluate the effectiveness of LGF, the number of correctly
3 The diagonal elements in the matrix indicate the correctly classified number of samples for the classes. The sum of each row indicates the total number 

of samples for the corresponding class. 
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Fig. 11. Different μ in LGF for the 19-class satellite scene dataset. 

Table 4 

Counting the numbers of the classification accuracy of LLC + KCRC, 

MS-CLBP + KCRC, and the proposed LGF using the 19 class land-use 

dataset. 

LLC + KCRC × � × � � � × ×
MS-CLBP + KCRC × × � � � × � ×
LGF (proposed) � � � � × × × ×

3 12 31 316 0 1 3 14 

Table 5 

Classification accuracy (%) per class for classifiers using 19 class land-use dataset. 

Class Classification algorithms 

LLC + SVM MSCLBP + ELM LLC + KCRC MS-CLBP + KCRC LGF (proposed) 

Airport 90.00 80.00 50.00 80.00 85.00 

Beach 80.00 90.00 85.00 90.00 100 

Bridge 65.00 70.00 75.00 70.00 75.00 

Commercial 100 95.00 80.00 90.00 95.00 

Desert 80.00 100 95.00 95.00 95.00 

Farmland 75.00 100 80.00 90.00 95.00 

Forest 95.00 100 100 95.00 100 

Industrial 45.00 80.00 95.00 95.00 100 

Meadow 95.00 100 60.00 75.00 85.00 

Mountain 95.00 100 95.00 100 100 

Park 100 100 100 100 100 

Parking 100 90.00 100 95.00 100 

Pond 100 95.00 100 95.00 100 

Port 70.00 95.00 100 100 100 

Residential 75.00 95.00 75.00 95.00 95.00 

River 75.00 100 90.00 90.00 100 

Viaduct 80.00 90.00 80.00 100 100 

Football field 100 90.00 85.00 95.00 85.00 

Railway station 90.00 80.00 100 100 100 

OA (%) 84.73 92.10 86.58 92.11 95.26 

F-measure 0.8418 0.9227 0.8671 0.9246 0.9591 

 

 

 

 

 

 

 

classified images (out of 380 testing images) is counted. As listed in Table 4 , when both of the LLC + KCRC and MS-CLBP +
KCRC produce wrong labels, the LGF can correct 3 images from 17 as shown in the first column. Table 5 lists the accuracy

of each class for different methods, where the proposed LGF achieves the highest accuracy and outperforms the second best

result from the MS-CLBP + ELM by 3%. Table 6 further shows the confusion matrix for the proposed LGF. 

To evaluate the proposed method on the nature scene image datasets in the third experiment, all the images size are

resized to 30 0 × 30 0 (some of them may be smaller) to reduce computational complexity. The dense SIFT descriptors are

similarly extracted. The size of codebook is set to 1024 because a large visual word codebook is necessary for this dataset

consisting of both indoor and outdoor images. For training, 1500 images (100 per class) are used, generating 2,880,0 0 0
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Table 6 

Confusion matrix for the proposed LGF using 19 class land-use dataset. 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Recall (%) 

Airport (1) 17 – – 1 – – 1 – – – – – – – – – – – 1 85.00 

Beach (2) – 20 – – – – – – – – – – – – – – – – – 100 

Bridge (3) – – 15 – – – – – – 1 – – – 1 1 – – 2 – 75.00 

Commercial (4) – – – 19 – – – – – – – – – – – – 1 – – 95.00 

Desert (5) – – – – 19 – – – – – – – – – 1 – – – – 95.00 

Farmland (6) – – – – – 19 – – – – – – – – – 1 – – – 95.00 

Forest (7) – – – – – – 20 – – – – – – – – – – – – 100 

Industrial (8) – – – – – – – 20 – – – – – – – – – – – 100 

Meadow (9) – – – – – – – – 17 – – – – – – – 2 – 1 85.00 

Mountain (10) – – – – – – – – – 20 – – – – – – – – – 100 

Park (11) – – – – – – – – – – 20 – – – – – – – – 100 

Parking (12) – – – – – – – – – – – 20 – – – – – – – 100 

Pond (13) – – – – – – – – – – – – 20 – – – – – – 100 

Port (14) – – – – – – – – – – – – – 20 – – – – – 100 

Residential (15) – – – – – – – – – – – – – – 20 – – – – 100 

River (16) – – – – – – – – 1 – – – – – – 19 – – – 95.00 

Viaduct (17) – – – – – – – – – – – – – – – – 20 – – 100 

Football field (18) – – – – – – – 1 – – – – – – – – – 19 – 95.00 

Railway station (19) – – – – – – – – – – – – – – – – – – 20 100 

Precision (%) 100 100 100 95.00 100 100 95.24 95.24 94.44 95.24 100 100 100 95.24 90.91 95.00 86.96 90.48 90.91 

Fig. 12. Classification performance in the 15-scene indoor and outdoor data experiment. 

Table 7 

Counting the numbers of the classification accuracy of LLC + KCRC, MS-CLBP 

+ KCRC, and the proposed LGF using the 15-scene categories. 

LLC + KCRC × � × � � � × ×
MS-CLBP + KCRC × × � � � × � ×
LGF (proposed) � � � � × × × ×

27 328 203 2003 0 93 69 262 

 

 

 

 

 

 

 

 

 

 

 

patches, from which 30,0 0 0 patches are randomly selected to construct the codebook by k -means clustering. The SPM layer

is set to have three different levels of resolution, and the nearest 50 atoms in the codebook are calculated for LLC. For

the global feature parameter, the scale is set to 6 for MS-CLBP, the radius is 3, and the neighboring point is 10 for the

CLBP operator. Four different directions are used for generating Gabor feature images. In the proposed LGF, the RBF kernel

parameter of the KCRC is σ = 1 for local features and σ = 0 . 5 for global features according to our empirical study, and

the regularized parameter λ is 10 −4 . Experimental results with 10 different trials with random training samples are shown

in Fig. 12 , where it is apparent that the LGF outperforms the MS-CLBP + KCRC and LLC + KCRC. From the results, the

performance of LLC + KCRC is better than MS-CLBP + KCRC, which is mainly due to the fact that these nature scene images

present local details. It is reasonable that the local feature based methods perform better than the global feature based

methods. Fig. 13 illustrates that when μ is 0.8, the proposed method achieves the highest accuracy. Table 7 demonstrates

that when both the results from the LLC + KCRC and MS-CLBP + KCRC are wrong, the LGF can correct 27 images out of
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Fig. 13. Different μ in LGF for 15-scene categories. 

Table 8 

Classification accuracy (%) per class for classifiers using 15-scene categories. 

Class Classification algorithms 

LLC + SVM MSCLBP + ELM LLC + KCRC MS-CLBP + KCRC LGF (proposed) 

CAL-suburb 99.28 99.28 98.58 96.45 100 

MIT-coast 90.77 77.31 87.31 79.62 88.85 

MIT-forest 92.98 85.53 96.49 89.91 95.61 

MIT-highway 86.25 80.00 88.13 85.00 91.25 

MIT-insidecity 82.21 68.75 81.25 66.35 83.65 

MIT-mountain 90.15 79.20 86.86 81.75 90.15 

MIT-opencountry 68.06 66.77 72.58 69.68 74.52 

MIT-street 90.10 76.04 91.15 85.42 91.67 

MIT-tallbuilding 90.63 81.25 89.84 70.70 92.97 

PARoffice 95.65 95.65 95.65 95.65 99.13 

Bedroom 68.97 52.59 68.97 56.03 68.97 

Industrial 51.66 58.77 46.92 69.67 72.99 

Kitchen 72.73 59.09 72.73 67.27 82.73 

Livingroom 69.31 4 4.4 4 69.31 60.85 71.96 

Store 73.49 72.56 74.42 73.02 85.58 

OA (%) 81.34 73.20 81.21 76.21 85.80 

F-measure 0.8117 0.7230 0.8129 0.7579 0.8572 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

288. When one result from the LLC + KCRC and MS-CLBP + KCRC is wrong, the LGF can produce 531 correct labels and only

remaining 162 images are misclassified. Eventually, 2561 out of 2985 images are assigned with correct labels. The accuracy

of each class is listed in Table 8 , where the proposed LGF method yields 4% higher accuracy than the second best result.

Table 9 further displays the confusion matrix for the proposed LGF. 

The last experiment is carried out on the sports event categories dataset with high resolution, and all the images are

resized to 30 0 × 30 0 for saving computational efficiency. The dense SIFT descriptors are extracted and the codebook is set

to 1024. For training purpose, 560 images (70 per class) are used, and 30,0 0 0 patches are randomly selected to generate the

codebook. The SPM layer is set to have three different levels of resolution, and the nearest 50 atoms in the codebook are

calculated for LLC. For the global feature parameters, the same parameters are used for the other datasets, i.e., scale = 6,

radius = 3, and the number of neighbor point = 10 for CLBP. Four different direction Gabor feature images are also employed

by CLBP. For the proposed approach, the RBF kernel parameter of the KCRC is σ = 1 , and the regularized parameter λ is

10 −4 . Experimental results with 10 trails with random training samples are illustrated in Fig. 14 , where the LGF gains a

large margin of improvements over the other algorithms. In this dataset, the LLC + KCRC and MS-CLBP + KCRC produce

similar accuracies. This is mainly because almost all the images are with a large scale background and some detailed human

actions or objects. As a consequence, both the local and global features can well represent the image features. Fig. 15 shows

that when μ is 0.7, the LGF yields the highest fusion accuracy. According to Table 10 , when both the LLC + KCRC and

MSCLBP + KCRC assign incorrect labels, the LGF can correct 5 out of 78 images as indicated in the first column. 136 images

are assigned with correct labels and 44 are left with incorrect labels when only one of the LLC + KCRC and MS-CLBP +
KCRC gives the right label. Table 11 provides the accuracy of each class from different methods, where the LGR generally

gains 4% improvement in accuracy. Table 12 further displays the confusion matrix for the proposed LGF. 
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Table 9 

Confusion matrix for the proposed LGF using 15-scene categories. 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Recall (%) 

CALsuburb (1) 141 – – – – – – – – – – – – – – 100 

MIT-coast (2) – 231 1 7 – 6 15 – – – – – – – – 88.85 

MIT-forest (3) – – 218 – – 8 2 – – – – – – – – 95.61 

MIT-highway (4) – 2 – 146 2 3 3 1 – – – 1 1 – 1 91.25 

MIT-insidecity (5) 2 – – 2 174 – – 13 12 – – 1 2 1 1 83.65 

MIT-mountain (6) – 6 7 – 1 247 11 – 1 – – – – – 1 90.15 

MIT-opencountry (7) – 39 13 8 – 17 231 1 – – – 1 – – – 74.52 

MIT-street (8) – – – 3 5 2 – 176 4 – – 1 – 1 – 91.67 

MIT-tallbuilding (9) – 1 3 – 6 1 – 1 238 – – 2 – 2 2 92.97 

PARoffice (10) – – – – – – – – – 114 – – 1 – – 99.13 

Bedroom (11) 2 1 – – – 1 – 1 – 7 80 – 4 19 1 68.97 

Industrial (12) 2 1 1 – 7 1 3 1 8 1 1 154 3 4 24 72.99 

Kitchen (13) – – – – 2 1 – – – 1 3 – 91 8 4 82.73 

Livingroom (14) – – – – 3 1 – 3 – 5 26 1 9 136 5 71.96 

Store (15) – – 4 – 6 2 – – 3 2 2 2 6 4 184 85.58 

Precision (%) 95.92 82.21 88.26 87.95 84.47 85.17 87.17 89.34 89.47 87.69 71.43 94.48 77.78 77.71 82.51 

Fig. 14. Classification performance in the sports event experiment. 

Fig. 15. Different μ in LGF for sports event categories. 
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Table 10 

Counting the numbers of the classification accuracy of LLC + KCRC, MS- 

CLBP + KCRC, and the proposed LGF using the sports event categories. 

LLC + KCRC × � × � � � × ×
MS-CLBP + KCRC × × � � � × � ×
LGF (proposed) � � � � × × × ×

5 58 71 768 0 26 18 73 

Table 11 

Classification accuracy (%) per class for classifiers using sports event categories. 

Class Classification algorithms 

LLC + SVM MSCLBP + ELM LLC + KCRC MS-CLBP + KCRC LGF (proposed) 

RockClimbing 91.13 99.28 96.77 93.55 95.97 

Badminton 90.00 77.31 95.38 94.62 96.92 

Bocce 55.22 85.53 56.72 68.66 68.66 

Croquet 75.30 80.00 69.28 82.53 84.34 

Polo 85.71 68.75 84.82 75.89 83.93 

Rowing 87.22 79.20 87.22 80.56 88.89 

Sailing 91.67 66.77 91.67 90.00 95.83 

Snowboarding 80.00 76.04 77.50 80.83 85.00 

OA (%) 83.51 73.20 83.61 84.10 88.52 

F-measure 0.8189 0.7129 0.8215 0.8299 0.8713 

Table 12 

Confusion matrix for the proposed LGF using sports event categories. 

Class 1 2 3 4 5 6 7 8 Recall (%) 

RockClimbing (1) 119 – – – 1 – – 4 95.97 

Badminton (2) – 126 2 2 – – – – 96.92 

Bocce (3) 4 3 46 6 2 1 2 3 68.66 

Croquet (4) 5 – 16 140 3 – 1 1 84.34 

Polo (5) 2 2 2 2 94 2 2 6 83.93 

Rowing (6) 2 – 4 1 3 160 5 5 88.89 

Sailing (7) – – – 3 – 1 115 1 95.83 

Snowboarding (8) 6 3 1 1 3 2 2 102 85.00 

Precision (%) 86.23 94.03 64.79 90.32 88.68 96.39 90.55 83.61 

Table 13 

Comparison of classification accuracy on the 21-class land-use dataset. 

Algorithms Accuracy (%) 

BOVW [54] 76.8 

SPM [54] 75.3 

BOVW + Spatial co-occurrence kernel [54] 77.7 

Color Gabor [54] 80.5 

Color histogram [54] 81.2 

Structural texture similarity [39] 86.0 

Wavelet BOVW [65] 87.4 

Unsupervised feature learning [7] 81.7 

Saliency-guided feature learning [60] 82.7 

Concentric circle-structured BOVW [66] 86.6 

Multifeature concatenation [43] 89.5 

Pyramid-of-spatial-relations [6] 89.1 

MS-CLBP + ELM [4] 89.29 

LLC + SVM 82.86 

MS-CLBP + KCRC 91.67 

LLC + KCRC 85.24 

Proposed LGF 95.48 

 

 

 

 

 

 

The proposed LGF is also compared with several state-of-the-art algorithms in the literature. As reported in Tables 13 –15 ,

the LGF can improve the accuracy by 4% even based on the original features. In addition, the proposed fusion strategy is

also suitable for combining different features. 

Finally, computing time on the environment of Linux with a Core I7 CPU and 8G memory is listed in Table 17 . It indicates

that local feature extraction has more complexity than global feature extraction because of more float computing in patches

and coding with BoVW, while the global features computing in entire images and only mapping to bins. According to our

experiments, the local feature extracting time needs about 0.7 s for images not large than 300 pixels and almost 2 s per
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Table 14 

Comparison of classification accuracy on the 19-class satellite scene dataset. 

Algorithms Accuracy (%) 

Bag of colors [43] 70.6 

Tree of c-shapes [43] 80.4 

Bag of SIFT [43] 85.5 

Multifeature concatenation [43] 90.8 

LTP-HF [44] 77.6 

SIFT + LTP-HF + color histogram [44] 93.6 

MS-CLBP + KML [4] 92.71 

LLC + SVM 82.75 

MS-CLBP + KCRC 92.11 

LLC + KCRC 86.58 

Proposed LGF 95.26 

Table 15 

Comparison of classification accuracy on the 15-scene categories. 

Algorithms Accuracy (%) 

KSPM [16] 81.40 

KC [47] 76.67 

KSPM [52] 76.73 

LSPM [52] 65.32 

ScSPM [52] 80.28 

MS-CLBP + KML [4] 70.13 

LLC + SVM 81.34 

MS-CLBP + KCRC 76.21 

LLC + KCRC 81.21 

Proposed LGF 85.80 

Table 16 

Comparison of classification accuracy on the sports event categories. 

Algorithms Accuracy (%) 

Full integrative model [19] 73.4 

OB [21] 76.3 

SIFT + SC [52] 82.7 

HMP [2] 85.7 

MS-CLBP + KML [4] 73.20 

LLC + SVM 83.51 

MS-CLBP + KCRC 84.10 

LLC + KCRC 83.61 

Proposed LGF 88.52 

Table 17 

The cost complexity (in seconds) of the proposed method for all the experimental data. 

UC Merced 19-class 15-scene indoor Sport event 

land-use satellite and outdoor categories 

LLC + KCRC 302.4 760.1 2029.8 764.2 

MS-CLBP + KCRC 71.4 304.1 477.6 173.7 

LGF (proposed) 365.6 1054.3 2512.6 948.7 

 

 

 

 

 

 

 

 

image with 600 × 600 pixels. The global features need only 0.2 s for images not large than 300 pixels and 0.8 s for an

image of size 600 × 600. The proposed LGF needs to compute both local and global features, and represent and reconstruct

in classification stage, resulting in higher time complexity. However, it is also noticed that the proposed algorithm is feasible

to operate by parallel computation; in doing so, computing complexity will have little side-effect. 

5. Conclusion 

In this paper, we proposed an effective feature extraction and representation-based fusion strategy for scene classifica-

tion. The proposed method combines local feature representation based on BoVM and SPM and global feature representation

based on MS-CLBP. It can well explore the complementary nature of local and global features, leading to enhanced feature

discriminative power. A weighted sum of reconstruction residuals from using local and global features in collaborative repre-

sentation were then developed for image classification. The proposed approach was thoroughly evaluated on four different
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datasets including remote sensing images, indoor and outdoor nature images, and human sports action images. The ex-

perimental results demonstrated the superiority of the proposed method over several state-of-the-art scene classification

methods. 
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