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Abstract A number of review or survey articles have previously appeared on human action
recognition where either vision sensors or inertial sensors are used individually. Considering
that each sensor modality has its own limitations, in a number of previously published papers,
it has been shown that the fusion of vision and inertial sensor data improves the
accuracy of recognition. This survey article provides an overview of the recent
investigations where both vision and inertial sensors are used together and simulta-
neously to perform human action recognition more effectively. The thrust of this
survey is on the utilization of depth cameras and inertial sensors as these two types
of sensors are cost-effective, commercially available, and more significantly they both
provide 3D human action data. An overview of the components necessary to achieve
fusion of data from depth and inertial sensors is provided. In addition, a review of the
publicly available datasets that include depth and inertial data which are simultaneous-
ly captured via depth and inertial sensors is presented.
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1 Introduction

Human action recognition involves automatically detecting and analyzing human actions from
the information acquired from sensors such as RGB cameras, depth cameras, range sensors,
wearable inertial sensors, or other modality type sensors. Research on human action recogni-
tion has made significant progress in the last decade and is receiving growing attention in a
wide variety of disciplines. Human action recognition has found its way into a wide range of
applications including surveillance, video analytics, assistive living, robotics, telemedicine,
and human computer interaction [16, 17, 60]. In a typical application, automated recognition
of a number of actions is sought. In terms of sensor types that are used for human action
recognition, there are two main approaches: vision-based action recognition and inertial-based
action recognition.

In vision-based action recognition, many works have utilized conventional RGB cameras.
The approaches developed based on video sequences can be classified into template-based
approaches, where emphasis is placed on low- and mid-level features, and model-based
approaches where emphasis is placed on high-level features [45]. A number of feature
extraction methods, notably spatio-temporal interest point (STIP) detector [38], spatio-
temporal descriptor based on 3D gradients [35], motion-energy images (MEI) and motion-
history images (MHI) [7], have achieved successful outcomes for human action recognition
using RGB video data. The popularity of human action recognition based on RGB cameras has
led to several survey articles that have appeared in [1, 50, 51, 66]. These articles discuss
various features and classifiers that have been used for human action recognition. As noted in
[2], there are limitations associated with the utilization of RGB cameras. In practice, one
requires to have a considerable amount of hardware resources in order to run computationally
intensive image processing and computer vision algorithms and also one needs to deal with a
lack of 3D action data in conventional images.

Recent emergence of cost-effective depth sensors has led to their widespread utilization for
human action recognition considering that they provide 3D action data. There are basically
three existing approaches towards obtaining 3D action data. The first approach uses relatively
expensive marker-based motion capture systems such as MoCap.1 Motion capture systems
usually utilize optical sensing of markers placed in specific locations of a human body, and use
triangulation from multiple cameras to estimate the 3D position data or the body skeleton. The
second approach involves the use of stereo cameras. 3D data including depth are obtained via
stereo matching and depth computation [4]. Stereo 3D reconstruction algorithms are compu-
tationally expensive and exhibit sensitivity to lighting changes and background clutter [2]. The
third approach is based on range or depth sensors. More recently, depth sensors (in particular,
Microsoft Kinect and Asus Xtion Pro) have provided cost-effective real-time 3D data for
performing human action recognition. Compared to conventional RGB images captured by
video cameras, depth images generated by depth cameras are shown to be insensitive to
lighting changes and have led to gaining high performance in human action recognition. The
human skeleton information can also be obtained from depth images [56].

Although vision-based human action recognition continues to advance, the recognition
performance is subject to various challenges such as occlusion, camera position, subject
variations in performing actions, background clutter, etc. In addition, vision-based approaches
are applicable to a limited field of view or a constrained space defined by the camera position

1 http://mocap.cs.cmu.edu/
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and settings. To address such challenges, many researchers have utilized wearable inertial
sensors incorporating accelerometers and gyroscopes, e.g., [34, 72]. This sensor technology
has enabled coping with much wider field of views as well as changing lighting conditions.
The continuous advancements in lowering the energy consumption and increasing the com-
putational power of inertial sensors have enabled long-term recordings, computing, and
continuous interaction. Furthermore, similar to depth sensors, wearable inertial sensors provide
3D action data consisting of 3-axis accelerations from their accelerometers and 3-axis angular
velocities from their gyroscopes. However, wearable inertial sensors have their own limitations
as well. For example, sensor drift may occur during long operation times and measurements
are sensitive to sensor location on the body. In addition, for human action recognition, they
require to be worn by subjects performing the actions, which creates the disadvantage of
intrusiveness or inconvenience for subjects. A summary of the pros and cons associated with
different modality sensors (i.e., RGB video cameras, depth cameras, and inertial sensors) for
human action recognition is provided in Table 1.

A typical human action recognition system normally uses a single modality sensor, that is
either a vision sensor or an inertial sensor alone. Under realistic operating conditions, it is
known that no single sensor modality can cope with various situations that may occur in
practice. One way to improve the performance of human action recognition systems is to
combine data from these two differing modality sensors considering that depth images from a
depth sensor and inertial signals from a wearable sensor provide complementary information.
For example, depth images capture global (or full body) movement attributes while inertial
signals capture local movement attributes. In [13, 14, 43], it was shown that fusing information
from depth and inertial sensors leads to more robust recognition. Here, the emphasis has been
placed on these two types of sensors due to the fact that commercially available depth cameras
and wearable inertial sensors are both low-cost, widely available and more importantly they
both provide 3D action data.

Table 1 A summary of pros and cons of different modality sensors for human action recognition

RGB video cameras Depth cameras Inertial sensors

Pros • Cost effective and widely
available

• Easy to operate
• Provide rich texture

information of the scene

• Cost effective and widely available
• Insensitive to lighting conditions and

illumination changes and can work
in total darkness

• Provide 3D structure information of
the scene

• Easy to operate
•Not sensitive to color and texture change

• Cost effective and
widely available

• High sampling rate
• Can work in total darkness
• Can work in unconfined

environment

Cons • Require the subject to be in
the field of view

• Sensitive to lighting
conditions, illumination
changes, and background
clutter

• Sensitive to camera
calibration

• Algorithms can be
computationally expensive

• Require the subject to be in the field
of view

• Different noise present in the images
• Depth information sensitive to materials

with different refection properties
(e.g., transparent materials, light
absorbing materials, etc.)

• No color information

• Sensitive to sensor
location on the body

• Sensor drift
• Power consumption for

sensor onboard
battery

• Require multiple
sensors for capturing
full body movements

• Intrusiveness of
wearing single or
multiple sensors
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Although there exist several survey papers for human action recognition using depth
sensors alone (e.g., [2, 19, 31, 76]) or inertial sensors alone (e.g., [5, 11, 30, 40]), there exists
no survey article on the simultaneous utilization of these two differing modality sensors for
human action recognition. After stating papers where an individual sensor modality is used for
human action recognition, this paper reviews the approaches where both of these two sensor
modalities are used simultaneously. In addition, a list of publicly available action/gesture
recognition datasets that include both depth and inertial sensor data is provided. These datasets
help researchers to evaluate recognition algorithms when fusing depth and inertial data. This
survey paper is intended to inform researchers in the computer vision, pervasive computing,
and multimodal fusion communities of the state-of-the-art works in fusing depth and inertial
data for performing human action recognition. It is also worth mentioning that the fusion of
depth and inertial sensing has been previously considered for other applications including
skeleton estimation and tracking [22], human body tracking [32], and limb motion tracking
[61]. However, the thrust of this survey is exclusively on the human action recognition
application.

The remainder of the paper is organized as follows. In Sections 2 and 3, a brief overview of
the human action recognition application based on depth sensor alone and inertial sensor alone
is mentioned, respectively. In Section 4, the components of the fusion approaches for human
action recognition involving a combination of depth and inertial sensors is covered. In
Section 5, a list of human action/gesture recognition datasets that contain simultaneous data
from depth and inertial sensors is mentioned. Finally, the paper is concluded in Section 6.

2 Human action recognition based on depth sensor alone

Recent advances in 3D depth cameras using structured light or time-of-flight strategies have
led to a major breakthrough towards the problem of human action recognition. The release of
affordable Microsoft’s Kinect sensors has provided a commercially viable hardware platform
to capture 3D data in real-time. The Kinect sensor comprises a color camera, an infrared (IR)
emitter, an IR depth sensor, a tilt motor, a microphone array, and an LED light. The IR
projector casts an IR speckle dot pattern into the 3-D scene while the IR camera captures the
reflected IR speckles. Kinect is essentially a structured light depth sensor. A picture of the
Kinect sensor or depth camera is shown in Fig. 1. This sensor can capture 16-bit depth images
with a resolution of 320×240 pixels. It also offers color images at 640×480 pixels with 8-bit
resolution per channel. A color image and the corresponding depth image of a scene generated
from the Kinect sensor are depicted in Fig. 2. In a depth image, the value of each pixel
indicates the distance between a 3D scene point and the sensor. The frame rate is approxi-
mately 30 frames per second. In addition, the Kinect software development kit (SDK) [33] is a
publicly available software package which is widely used to track 20 body skeleton joints and
their 3D spatial positions (see Fig. 3).

Fig. 1 Microsoft Kinect RGB-
Depth sensor
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Various methods have been proposed for human action recognition from depth images in
recent years. The developed major feature representation techniques for human action recog-
nition based on depth sequences include a bag of 3D points [42], projected depth maps [15, 18,
75], space-time occupancy patterns [63, 64], spatio-temporal depth cuboid [69], surface
normals [48, 74], and skeleton joints [25, 62, 73]. A summary of the existing survey papers
on human action recognition using depth sensors is listed in Table 2. These papers include
more details of different feature representation techniques based on depth images (or 3D
skeletons).

3 Human action recognition based on inertial sensor alone

Over the past decade, low-power, low-cost, and miniaturized inertial sensors have provided yet
another breakthrough towards the problem of human action recognition. Wearable inertial
sensors are usually placed directly or indirectly on the human body. They have been embedded
into clothes, shoes, wristwatches, mobile devices, etc. These sensors generate accelerometer
and rotation signals corresponding to an action performed by a human. As an example, a

Fig. 2 a An example color image (640 × 480) from the MSR Daily Activity 3D dataset [65], b corresponding
depth image (320 × 240)

Fig. 3 a 20 skeleton joints tractable by the Kinect SDK, b an example skeleton frame in 3D
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wearable inertial sensor in [12] that has been used for action recognition is shown in Fig. 4.
This wearable sensor is a small size (1^×1.5^) wireless inertial sensor built in the Embedded
Signal Processing (ESP) Laboratory at Texas A&M University [6]. This sensor captures 3-axis
acceleration, 3-axis angular velocity and 3-axis magnetic strength, which are transmitted
wirelessly via a Bluetooth link to a laptop/PC. The sampling rate of the sensor is 50 Hz and
its measuring range is ±8 g for acceleration and ±1000 degrees/second for rotation. Figure 5
shows the inertial sensor signals (3-axis accelerations and 3-axis angular velocities) generated
by this sensor for the action right hand high throw.

As far as human action recognition based on inertial sensors is concerned, a number of
solutions have appeared in the literature. For example, in [24], wearable inertial sensors were
employed to recognize daily activities by using artificial neural networks within a tree

Table 2 Review or survey articles on human action recognition using depth sensors

References Year Title Description

Chen et al. [19] 2013 A survey of human motion
analysis using depth
imagery

A review addressing articulated 3D body
modelling for human pose estimation
and human action recognition from
depth images.

Han et al. [31] 2013 Enhanced computer vision
with microsoft kinect
sensor: A review

An overview of recent Kinect-based computer
vision algorithms and applications including
object tracking and recognition, human
activity analysis, hand gesture analysis,
and indoor 3D mapping.

Ye et al. [76] 2013 A survey on human motion
analysis from depth data

An overview of recent approaches that perform
human motion analysis which includes depth-
based activity recognition, hand gesture
recognition, facial feature detection, and
head pose estimation.

Aggarwal et al. [2] 2014 Human activity recognition
from 3d data: A review

Discussing the state-of-the-art methodologies
on human-activity recognition using 3D
data. Reviewing different features extracted
from depth data in different scenarios
for action recognition.

Fig. 4 Wearable inertial sensor
developed in [6]
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structure. In [3], five inertial sensor units each comprising a triaxial gyroscope, a triaxial
accelerometer, and a triaxial magnetometer were employed for classifying human activities
and different classification techniques consisting of Bayesian decision, least-squares, and
dynamic time warping, were implemented and compared. In [41], a fall detection system
was presented based on wearable inertial sensors. In [16], a wearable inertial sensor was
employed to recognize the hand-twist and hand-open actions for an intelligent medication
adherence monitoring system.

A tutorial was presented in [8] covering a comprehensive discussion of designing and
evaluating activity recognition systems using body-worn inertial sensors. A summary of the
survey papers that have appeared on human action recognition based on inertial sensors is

Fig. 5 Inertial sensor signals (3-axis accelerations and 3-axis angular velocities) for the action right hand high
throw

Table 3 Review or survey articles on human action recognition using inertial sensors

References Year Title Description

Chen et al.
[11]

2012 Sensor-based activity recognition An in-depth overview on the latest development of
sensor-based activity recognition. Major
data-driven and knowledge-driven approaches
for activity recognition discussed and compared.

Lara et al.
[40]

2013 A survey on human activity
recognition using wearable
sensors

A survey of the state of the art in human activity
recognition based on wearable sensors, focusing
on the main design issues for recognizing
activities and the principal techniques applied
in human activity recognition systems.

Avci et al.
[5]

2010 Activity recognition using inertial
sensing for healthcare, wellbeing
and sports applications: A survey

Survey covering the current research directions
of activity recognition using inertial sensors,
with potential application in healthcare,
wellbeing and sports. The five main steps
involved in the activity recognition process
discussed.

Guan et al.
[30]

2011 Review of sensor-based activity
recognition systems

Survey of wearable sensor based activity
recognition systems. In addition, conventional
video sensor (or camera) based activity
recognition reviewed. For each type of activity
recognition, main techniques, characteristics,
strengths and limitations discussed and
summarized.

Multimed Tools Appl



listed in Table 3. These papers cover more details of the approaches and challenges associated
with using inertial sensors for human action recognition.

4 Human action recognition using depth sensor and inertial sensor fusion

As stated above, depth sensors and wearable inertial sensors each have been used individually
for the application of human action recognition. It has been established that there are
recognition rate limitations when using a single modality sensor due to the fact that no single
modality sensor can cope with various realistic situations that occur in real-world settings.
Therefore, it is reasonable to expect that the utilization of both modalities simultaneously
would improve the recognition performance due to the fact that each modality can complement
the shortcomings of the other modality. In this section, the existing works on human action/
gesture recognition by using depth and inertial sensors together are mentioned as well as the
components required for the simultaneous utilization of these two differing modality sensors.

4.1 Data synchronization and preprocessing

Data fusion based on samples from differing modality sensors requires accurate time synchro-
nization. In [43], a synchronization approach was developed by correlating the closest inertial
sample to the depth frame according to the system time stamps. In [47], the temporal
synchronization between the different modality sensors of video cameras, Kinect, MoCap,
accelerometer was provided via the UNIX operating system time stamps which were included
in the recordings of each modality. In these synchronizations, possible propagation delays [70]
and variable intervals needed to generate samples were not taken into consideration. A more
accurate time synchronization method was proposed in [20] by estimating the total delay
occurring in the link between the camera and the PC. This method was later used in [26] for
the depth and inertial sensors data synchronization for the fall detection application.

In addition to data synchronization, a signal filtering preprocessing component is often
used. For example, a moving average window was used in [43] to reduce jitters in the raw
sensor signals including skeleton joint positions from a Kinect depth camera and acceleration/
angular velocity signals from an inertial sensor.

4.2 Action segmentation (detection of action start and end)

Most of the papers that have appeared in the literature on human action recognition have
studied action signals (e.g., RGB videos, depth videos, inertial sensor signals) that have been
segmented manually or by visual inspection providing the start and end of actions. However,
to have an actual real-time working action recognition system, it is necessary to identify the
start and end of actions. Action segmentation is a challenging task when actions are done in
practice or in random time. A number of action segmentation methods have been developed
when using vision sensors (e.g., [55, 66]) or inertial sensors (e.g., [57, 71]). When using depth
and inertial sensors together within a fusion framework, depth and inertial sensor data can be
utilized collaboratively to achieve improved action segmentation. Two examples of such
action segmentation are presented next. In [14], the variances of the skeleton joint positions
as well as the accelerations within a moving window were used to determine the start and the
end of an action in real-time, with the requirement that each action began with a static posture
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and ended with a static posture lasting for at least 1 s in an action sequence. In [77], a Gaussian
model for the rest positions and a Gaussian model for non-rest positions were created using a
training gesture dataset. Then, during recognition or testing of hand gestures, an observation (a
combination of hand positions from a depth camera and inertial signals from an inertial sensor)
was classified into a rest or a non-rest position based on the two Gaussian models. A sequence
of continuous observations from non-rest positions longer than 0.25 s was then considered to
denote a complete gesture.

4.3 Feature extraction

Different features extracted from depth and inertial data have been considered in the literature
ranging from raw signals (e.g., raw accelerations) to high-level descriptors. In [77], a gesture
spotting and recognition framework was used to fuse the data from a Kinect sensor and an
inertial sensor. For hand feature extraction, linear acceleration signals of three directions (x, y,
z), angular velocity signals of three directions (x, y, z) and Euler orientation signals of three
directions (yaw, pitch, roll) from an inertial sensor on the hand were combined to form a 9-
dimensinal feature vector for every time frame. The position of the gesturing hand in the 3D
space (x, y, z) relative to the shoulder center joint was used to form a 3-dimensional feature
vector for each frame from a Kinect sensor. The two sets of features were then concatenated.
This approach can be viewed as using the raw data from the sensors (e.g., accelerations from
the accelerometer and joint positions estimated using the Kinect SDK) without further
processing. Similarly, in [43] and [44], the raw data from both a Kinect depth camera and
an inertial body sensor (position data of the hand joint from a Kinect depth camera as well as
acceleration data and angular velocity data from an inertial sensor) was utilized for hand
gesture recognition. The advantage of using raw data is that there is no computational burden
associated with feature extraction. However, raw signal data may not exhibit enough discrim-
inatory power to achieve high accuracy for action recognition.

In [13], features extracted from depth sequences, named depth motion maps (DMMs) [18], were
considered. Each depth frame in a depth video sequence was first projected onto three orthogonal
Cartesian planes to form three projected maps. For each projection view, the absolute difference
between two consecutive projected maps was accumulated through an entire depth video sequence
forming a depth motion map. In this manner, three DMMs corresponding to three projection views
(front view, side view and top view) were generated for a depth video sequence as the feature
representation. For the inertial sensor, each acceleration and gyroscope signal sequence was
partitioned into N temporal windows. Considering that statistical measures of mean, variance,
standard deviation, and root mean square are computationally efficient and useful for capturing
structural patterns in motion data, these four measures were computed along each direction in each
temporal window. All the features from the temporal windows were concatenated to form a single
combined feature vector. In [47], each depth video was first divided into 8 disjoint Depth-Layered
Multi-Channel (DLMC) videos [46] by dividing the depth range into 8 equal depth layers and by
keeping the pixels within the depth range of the corresponding depth layer. Then, so called
Histogram of Gradients (HOG) and Histogram of Flow (HOF) features [39] were extracted from
each DLMC video. This was followed by employing the Bag-of-Features (BoF) representation [53]
to code DLMC videos into histograms to serve as the feature representation of depth sequences. As
for inertial sensor data,Ns=30 temporal windows from each accelerometer sequencewere extracted
and the variance of the acceleration along each direction in each temporal windowwas computed for
each of the 6 accelerometers. By concatenating variance values from all the accelerometers, a local
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temporal feature descriptor per temporal windowwas obtained. As a result, an action sequence was
represented by a set of Ns feature descriptors. To further build a compact representation of these
feature descriptors, the features were quantized into 20 codewords for classification purposes.

Table 4 lists a summary of the features that have been extracted simultaneously from a
depth sensor and an inertial sensor for human action recognition. An important issue to keep in
mind here is that these features have been designed to be computationally efficient allowing
the developed action recognition systems to operate in real-time.

4.4 Classification and fusion approach

After feature extraction, classification and a fusion approach are needed for action recognition.
Classical classifiers such as support vector machine (SVM) [9, 29] and hidden Markov model
(HMM) [23] are often employed for action recognition, e.g., [43, 47]. Fusion of information from
two sensors can be done in different ways. In general, three fusion approaches are applicable: (1)
data-level fusion, (2) feature-level fusion, and (3) decision-level fusion. Data-level fusion occurs at
the data level where incoming raw data from different sensors are combined. Feature-level fusion
involves carrying out fusion of features after features are extracted from raw data. Decision-level
fusion involves fusing the decisionsmade by individual classifiers or decisionmakers. Next, several
representative classification and fusion approaches previously used for depth and inertial sensor
fusion are mentioned.

In [13], both feature-level fusion and decision-level fusion were examined by using a collabo-
rative representation classifier [78]. In the feature-level fusion approach, the features generated from
the two differing modality sensors were merged before classification while in the decision-level
fusion approach, the Dempster-Shafer theory [54] was used to combine the classification outcomes
from two classifiers, each corresponding to one sensor. In [43], the depth and inertial sensor data
were concatenated. An HMM classifier was employed for gesture recognition on the fused data. To
further improve the gesture recognition performance, the data from the depth sensor and the inertial
sensor were fed into multiple HMM classifiers [44]. Then, the probability outputs from the multiple
HMM classifiers were combined to generate the final outcome. In [52] and [49], each gesture was
considered to consist of three phases: pre-stroke, nucleus, and post-stroke. Each phase was modeled
as an HMM. The gesture spotting and recognition was then performed based on concatenated
HMMs trained for the three gesture phases.

Table 5 lists a summary of the classification and fusion approaches used for action/gesture
recognition based on depth and inertial sensor fusion that have appeared in the literature.

As a general observation, it is seen that the simultaneous utilization of these two differing
modality sensors allows one to achieve higher human action recognition performance compared to
the situations when each sensor is used individually or on its own. For example, in [43], the gesture
recognition accuracies of using a Kinect depth sensor alone and an inertial sensor alone were
reported to be 84 and 88%, respectively. However, when using the depth and inertial sensor fusion,
the recognition accuracywas increased to 93%. In [13], the fusion approachwas evaluated based on
the Berkeley multimodal human action database [47] and the results indicated that due to the
complementary aspect of the data from the depth and inertial sensors, the fusion approach led to 2 to
23 % improvements in recognition accuracy depending on the type of action performed over the
situations when each sensor was used individually. A 99 % correct walking pattern recognition rate
was reported in [67] by combining an inertial sensor and a Kinect depth sensor as compared to the
recognition rates of 89 and 65 % when using the inertial sensor alone and the depth sensor alone,
respectively. For human fall detection in [36], a recognition accuracy of 98%was achieved by using
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Table 4 A summary of features extracted simultaneously from a depth sensor and an inertial sensor for action/
gesture recognition involving depth and inertial sensor fusion

References Features Task

Depth sensor Inertial sensor

[10, 43,
44, 77]

Raw data: skeleton joint
positions

Raw data: accelerations, angular
velocities, etc.

Gesture recognition

[12–14] Depth motion maps [18] Statistical features (e.g., mean,
variance, etc.) computed
from temporal segments of
inertial sensor signals
(e.g., accelerations and
angular velocities)

Action recognition

[47] Each depth video was into multiple
Depth-Layered Multi-Channel
(DLMC) videos [46]. HOG and
HOF features were extracted
from each DLMC video and
coded into histograms using
Bag-of-Features (BoF)
model [53]

Variance of the acceleration
in each direction in each
temporal window was
computed as feature
descriptors. The feature
descriptors were then
quantized into a number
of codewords.

Action recognition

[21] Raw data: skeleton joint positions Raw data: accelerations Action recognition

[67] Subject velocity, body azimuth
angle, body inclination angle,
leg separation distance, and
leg separation angle calculated
using 3D point cloud

Raw data: accelerations Gait (different
walking patterns)
classification

[58] Statistical features (mean, energy,
standard deviation, entropy)
for the visual displacement
components extracted from
a fixed temporal window of
video frames

Statistical features (e.g.,
mean, variance, etc.)
computed from temporal
windows of acceleration
signals.

Food preparation
activities
recognition

[68] Skeleton joint positions were first
transformed to be invariant
to user’s position, orientation,
and body size. The

final feature vector consists of four
parts: 1. Absolute 3D position
of joint points. 2. Relative
3D position of joint points, de

fined on directly connected joint
pairs. 3. First order difference in
time of part 1 in the feature vector.
4. First order difference in time
of part 2 in the feature vector.

Raw data: accelerations,
angular velocities, etc.

Gesture recognition

[36, 37] 1. A ratio of width to height of the
person’s bounding box in the
depth maps.

2. A proportion expressing the height
of the person’s surrounding box
in the current frame to the physical
height of the person, projected
onto the depth map.

3. The distance of the person’s
centroid to the floor.

Raw data: accelerations
and angular velocities

Fall detection
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a depth sensor and an accelerometer together, which was about 8% higher thanwhen using only the
depth sensor and about 3 % when using only the accelerometer.

5 Public-domain multimodal human action datasets

A number of public-domain human action datasets have been created based on depth sensor
only (e.g., MSR Action3D dataset [42]) and inertial sensor only (e.g., Wearable Action
Recognition Database (WARD) [72]). This section includes a review of the publicly available
multimodal human action datasets that contain simultaneously captured data from depth and
inertial sensors. The reader is referred to the publications listed for the details of the datasets.

5.1 Berkeley multimodal human action database (MHAD)

The Berkeley MHAD dataset2 [47] contains temporally synchronized data from a motion capture
system, 12 RGB cameras, 2 Microsoft Kinect depth cameras, 6 wearable accelerometers, and 4
microphones. The dataset consists of 659 data sequences from 11 human actions performed by 7
male and 5 female subjects of 23–30 years age except for one elderly subject with 5 repetitions of
each action. These 11 actions include: jumping in place, jumping jacks, bending-hands up all the
way down, punching, waving two hands, waving right hand, clapping hands, throwing a ball, sit
down and stand up, sit down, and stand up. The 6 accelerometers were placed at the wrists, ankles
and hips. The two Microsoft Kinect cameras were placed approximately in opposite directions to
prevent interference between the two active projection patterns. EachKinect camera captured a color
imagewith a resolution of 640×480 pixels and a 16-bit depth image, bothwith an acquisition rate of
30 Hz.

5.2 University of Rzeszow fall detection (URFD) dataset

The UR fall detection dataset3 [36] focuses on the human fall detection application. It contains
70 (30 falls and 40 activities of daily living) sequences from 5 subjects. The 30 fall sequences
were recorded with 2 Kinect cameras as well as a 3-axis accelerometer. One of the Kinect

2 http://tele-immersion.citris-uc.org/berkeley_mhad
3 http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html

Table 4 (continued)

References Features Task

Depth sensor Inertial sensor

4. Standard deviation from the
centroid for the abscissa
and the applicate, respectively.

[26] Variation in the skeleton
joint position

1. The acceleration magnitude
of the wrist accelerometer

2. The angle between the X-axis
and the gravity vector of
the wrist accelerometer

Fall detection
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cameras was mounted on the ceiling and the other was placed in front of the subjects. The
accelerometer was worn near the spine on the lower back of a subject. Depth data and RGB
data from the two Kinect cameras were recorded for the fall sequences. This dataset also
consists of data corresponding to the normal activities of walking, sitting down, crouching
down and lying in order to evaluate the performance of the fall detection algorithm. The 40
sequences of the activities provided in this dataset only contain the depth and RGB data from
one Kinect camera.

5.3 University of Texas at Dallas multimodal human action dataset (UTD-MHAD)

The UTD-MHAD dataset4 [12] is a comprehensive multimodal human action dataset that
consists of data from a Kinect sensor and a wearable inertial sensor capturing 3-axis acceler-
ation and 3-axis angular velocity signals [17]. This dataset consists of four temporally
synchronized data modalities, which include RGB videos, depth videos, skeleton positions
from a Kinect camera sensor, and inertial signals (acceleration and angular velocity) from a

4 http://www.utdallas.edu/~kehtar/UTD-MHAD.html

Table 5 A summary of classification and fusion approaches used for action/gesture recognition

References Classification and fusion method Task

[13] 1. Feature-level fusion: features from depth and inertial sensor data were
concatenated. The concatenated features were used as input to a
collaborative representation classifier [78].

2. Decision-level fusion: features extracted from depth sensor data
and inertial sensor data were used individually as input to two
collaborative representation classifiers. Dempster-Shafer theory [54]
was utilized to combine the combine the classification outcomes
from two classifiers.

Action
recognition

[43] Depth and inertial sensor data were concatenated. HMM was
employed for classification on the fused sensor data.
(Data-level fusion)

Gesture
recognition

[44] Data from the depth sensor and the inertial sensor were fed into
multiple HMM classifiers. The probability outputs from the
multiple HMM classifiers were combined to generate the final
outcome. (Decision-level fusion)

Gesture
recognition

[68] A Bayesian co-boosting framework was proposed to combine
features from depth and inertial sensor modalities. HMM was
used as the week classifier in the boosting framework.
(Feature-level fusion)

Gesture
recognition

[47] Multiple kernel learning (MKL) strategy [28] was used for
combining various modalities for action recognition. Different
weights computed by MKL were assigned to different modalities.
SVM was used as the classifier. (Feature-level fusion)

Action
recognition

[10] A coupled hidden Markov model (CHMM) was employed to
discover the correlation and complementary information across
different modalities. (Data-level fusion)

Gesture
recognition

[36, 37] Initial fall detection was based on acceleration data. The acceleration
data was also employed to trigger the processing of the depth images
for fall detection based on K nearest neighbor classifier or SVM
classifier to further reduce the false alarm. (Decision-level fusion)

Fall detection
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wearable inertial sensor for a comprehensive set of 27 human actions encountered in the
literature on human action recognition. The 27 actions include: (1) right arm swipe to the left,
(2) right arm swipe to the right, (3) right hand wave, (4) two hand front clap, (5) right arm
throw, (6) cross arms in the chest, (7) basketball shoot, (8) right hand draw X, (9) right hand
draw circle (clockwise), (10) right hand draw circle (counter clockwise), (11) draw triangle,
(12) bowling (right hand), (13) front boxing, (14) baseball swing from right, (15) tennis right
hand forehand swing, (16) arm curl (two arms), (17) tennis serve, (18) two hand push, (19)
right hand knock on door, (20) right hand catch an object, (21) right hand pick up and throw,
(22) jogging in place, (23) walking in place, (24) sit to stand, (25) stand to sit, (26) forward
lunge (left foot forward), (27) squat (two arms stretch out). These actions were performed by 8
subjects (4 females and 4 males). Each subject repeated each action 4 times. After removing
three corrupted sequences, the dataset included 861 data sequences. The wearable inertial
sensor was placed on the subjects’ right wrists for actions (1) through (21) which were hand
type movements, and on the subjects’ right thigh for actions (22) through (27) which were leg
type movements.

5.4 50 salads dataset

The 50 salads dataset5 [58] is a publicly available dataset of complex activities that
involve manipulative gestures. It captures 25 people preparing 2 mixed salads and
contains over 4 h of annotated accelerometer and RGB-D video data (i.e., acceleration
data, RGB video data and depth data). A Kinect camera was mounted on the wall to
have a top-down view onto the work space. Accelerometers were embedded in the
handles of a knife, a mixing spoon and a peeler. Additional accelerometers were
attached to a small spoon, a glass, an oil bottle, and a pepper dispenser. 27 subjects
prepared a mixed salad two times. Two subjects were excluded from the final dataset
due to data loss. Preparing the mixed salad involved preparing a dressing with salt,
pepper, olive oil and balsamic vinegar, cutting ingredients (cucumber, tomato, feta
cheese and lettuce) into pieces, mixing ingredients, adding the dressing to the salad
and serving the salad onto a plate. The following activities were annotated: add oil,
add vinegar, add salt, add pepper, mix dressing, peel cucumber, cut cucumber, place
cucumber into bowl, cut cheese, place cheese into bowl, cut lettuce, place lettuce into
bowl, cut tomato, place tomato into bowl, mix ingredients, serve salad onto plate, and
add dressing. Each activity was split into three phases which were annotated individ-
ually: pre-, core- and post-phase. Each activity was associated with one of three
stages in the recipe which were also annotated: prepare dressing, cut and mix
ingredients and serve salad. In total, 966 activity instances were annotated. The 50
salads dataset is useful for carrying out research in activity recognition, activity
spotting, sequence analysis, and sensor fusion.

5.5 ChAirGest multimodal dataset

The ChAirGest multimodal dataset6 [52] was designed to encourage researchers to
take advantage of data recorded from multiple sensors to optimize and evaluate

5 http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/
6 https://project.eia-fr.ch/chairgest/Pages/Overview.aspx
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methods for gesture spotting and recognition. The dataset contains 6 h of continuous
multimodal recordings. 10 subjects were asked to mimick gestures seen on a computer
screen. The data were acquired from a Kinect camera and 4 inertial motion units
(IMUs) attached to the right arm and the neck of the subjects. The dataset contains 10
different gestures, started from 3 different resting postures and recorded in two
different lighting conditions by 10 different subjects. The gestures considered include:
swipe left, swipe right, push to screen, take from screen, palm-up rotation, palm-down
rotation, draw a circle I (longitudinally), draw a circle II, wave hello, and shake
hand. The total dataset contains 1200 annotated gestures split in continuous video
sequences. The RGB stream, the depth stream and the 3D position of the upper-body
skeleton joints from the Kinect camera were recorded. Each IMU provided linear
acceleration, angular acceleration, magnetometer, Euler orientation and orientation
quaternion at a frame rate of 50Hz.

5.6 Telecommunication systems team (TST) fall detection database

The TST fall detection database7 [27] is another multimodal database which focuses
on fall detection. The dataset was collected using a Microsoft Kinect v2 sensor and
two IMUs. It is composed of daily living activities and the fall action simulated by 11
subjects. The actions performed by a single subject were separated in two main
groups: daily living activity and fall. Each activity was repeated three times by each
subject. The daily living activities include: sit on a chair, walk and grasp an object
from the floor, walk back and forth, and lie down on the mattress. Four types of fall
were performed including fall from the front and ends up lying, fall backward and
ends up lying, fall to the side and ends up lying, and fall backward and ends up
sitting. The data include two raw acceleration streams provided by the two IMUs
placed on the waist and the right wrist, and the depth frames and skeleton joints
captured by the Kinect sensor. This database contains a total of 264 action sequences.

5.7 Huawei/3DLife dataset

The Huawei/3DLife dataset8 [59] is a multimodal dataset designed for 3D human
reconstruction and action recognition from multiple active and passive sensors. The
dataset consists of RGB and depth video streams from 5 Kinect sensors at different
viewpoints covering the entire body, audio streams captured by the 5 Kinect sensors,
and inertial sensor data captured from 8 IMUs on a subject’s body. The 8 IMUs were
attached to the following locations on the body: left wrist, right wrist, chest, hips, left
ankle, right ankle, left foot and right foot. These devices captured 3D acceleration
(using accelerometers), 3D magnetic flux (using magnetometers) and 3D angular rate
(using gyroscopes). The data were captured in two sessions with different spatial
arrangements of the sensors. 17 subjects participated in the data collection, all
performing at least 5 instances of 22 different types of gestures/movements. Thus,
the dataset consists of approximately 3740 instances. The actions performed are of
three types and include: (i) simple actions that involve mainly the upper human body

7 http://www.tlc.dii.univpm.it/blog/databases4kinect#IDFall
8 http://mmv.eecs.qmul.ac.uk/mmgc2013/
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(hand waving, knocking on the door, clapping, throwing, punching, and push away
with both hands), (ii) training exercises (jumping jacks, lunges, squats, punching and
hen kicking, and weight lifting), (iii) sports related activities (golf drive, golf chip, golf
putt, tennis forehand, tennis backhand, and walking on the treadmill), and (iv) static
gestures (arms folded, T-pose, hand on the hips, T-pose with bent arms, and forward
arms raise).

Table 6 lists a summary of the number of sensors, number of subjects, number of actions,
and number of action sequences for publicly available human action datasets involving
differing modality sensors.

6 Conclusion and future directions

In this survey paper, a review of different approaches for human action recognition
that involve the simultaneous utilization of both depth and inertial sensors has been
presented. After covering the main challenges or limitations associated with using
each sensor modality individually, the existing literature on fusing depth and inertial
sensor data for human action recognition is outlined. In addition, the components in
the existing fusion approaches are reviewed. A review of publicly available human
action datasets where both depth and inertial sensor data are collected simultaneously
has been provided. As a general observation, it is noted that the simultaneous
utilization of these two differing modality sensors allows one to achieve higher human
action recognition performance compared to situations when each sensor is used
individually. Considering that both of these two sensors are cost-effective and able
to provide 3D data, it is anticipated that the research on action recognition based on
depth and inertial sensor fusion will receive growing attention. However, there still
remain challenges when using fusion of depth and inertial information for action
recognition. A few possible research directions to address these challenges are noted
below.

1) Developing view-invariant features for depth images. Under realistic operating conditions,
a subject may perform an action at an arbitrary orientation with respect to the camera.
Noting that inertial sensor signals (accelerations and angular velocities) are view invariant,

Table 6 Publicly available multimodal human action datasets involving different modalities: (M)otion capture,
RGB (V)ideo, (D)epth, (A)udio, and (I)nertial

Dataset Modality # Sub # Act # Seq

M V D A I

Berkeley MHAD [47] 1 12 2 4 6 12 11 660

URFD [36] – 2 2 – 1 5 >5 70

UTD-MHAD [12] – 1 1 – 1 8 27 861

50 salads [58] – 1 1 – 7 25 17 966

ChAirGest [52] – 1 1 – 4 10 10 1200

TST Fall detection database [27] – – 1 – 2 11 8 264

Huawei/3DLife dataset [59] – 5 5 5 8 17 22 3740
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a future research direction would be developing view invariant features for depth images
towards achieving view invariant action recognition.

2) Developing intelligent fusion approaches. Realistic limitations that may occur in
practice such as occlusion in case of depth cameras or loss of signal in case of
inertial sensors can be studied further. In other words, when data from one
modality sensor are not reliable, a future research direction would be developing
techniques for the system to intelligently switch to the sensor that is providing
reliable data.

3) Examining human and object interactions. Many activities involve human object interac-
tions. Such activities normally consist of multiple sub-actions that involve interactions
between a human and objects. A future research direction would be developing fusion
schemes for situations when inertial sensors are attached to the objects that are being
interacted with.
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