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Action recognition from depth sequences using weighted
fusion of 2D and 3D auto-correlation of gradients features
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Abstract This paper presents a new framework for human action recognition from depth
sequences. An effective depth feature representation is developed based on the fusion of 2D
and 3D auto-correlation of gradients features. Specifically, depth motion maps (DMMs) are
first employed to transform a depth sequence into three images capturing shape and motion
cues. A feature extraction method utilizing spatial and orientational auto-correlations of image
local gradients is introduced to extract features from DMMs. Space-time auto-correlation of
gradients features are also extracted from depth sequences as complementary features to cope
with the temporal information loss in the DMMs generation. Each set of features is used as
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input to two extreme learning machine classifiers to generate probability outputs. A weighted
fusion strategy is proposed to assign different weights to the classifier probability outputs
associated with different features, thereby providing more flexibility in the final decision
making. The proposed method is evaluated on two depth action datasets (MSR Action 3D
and MSR Gesture 3D) and obtains the state-of-the-art recognition performance (94.87 % for
the MSR Action 3D and 98.50 % for the MSR Gesture 3D).

Keywords Action recognition - Depth data - Depth motion maps - Gradient local auto-
correlations - Space-time auto-correlation of gradients - Extreme learning machine - Weighted
fusion

1 Introduction

Human action recognition is an active research area benefitting many applications. Example
applications include surveillance systems, video analytics, physical rehabilitation, robotics,
and human computer interaction [3,5,6,14,15,23,37]. Research on human action recognition
has made significant progress in the last decade. Earlier attempts at action recognition have
mainly focused on learning and recognizing activities from conventional RGB cameras. As
noted in [1], there are limitations associated with the utilization of RGB cameras for action
recognition. In practice, one requires to have a considerable amount of hardware resources in
order to run computationally intensive image processing and computer vision algorithms and
also one needs to deal with a lack of 3D action data in conventional images.

Recent emergence of cost-effective depth sensors (in particular, Microsoft Kinect and Asus
Xtion Pro) has led to their widespread utilization for human action recognition. Compared to
conventional RGB images captured by video cameras, depth images generated by depth
cameras are shown to be insensitive to lighting changes and provide body shape and structure
information for action recognition. In addition, depth images can significantly simplify tasks
such as background subtraction and segmentation. The human skeleton information can also
be obtained from depth images [30].

Prior works Research on human action recognition from depth images has explored various
representations include a bag of 3D points [33], projected depth maps [4,7,36], spatio-temporal
depth cuboid [24], occupancy patterns [32], surface normals [26,35], and skeleton joints
[12,29,34]. Here we review some developed major feature representation techniques for
human action recognition based on depth sequences.

In [33], a bag of 3D points was sampled from depth images to describe the 3D shapes of
salient postures and an action graph model was employed to model the dynamics of the
actions. In [17], a local occupancy patterns (LOP) feature computes the local occupancy
information based on the 3D point cloud around a particular joint was proposed for action
recognition from depth sequences. The temporal dynamics of the occupancy patterns can
roughly discriminate different types of interactions. To transform the action recognition
problem in 3D to 2D, depth images in a depth video sequences were projected onto three
orthogonal planes and differences between projected depth maps were accumulated to form
three 2D depth motion maps (DMMs) [36]. Histogram of oriented gradients (HOG) [11]
features were then extracted from DMMs as global representations of a depth video. In [7], the
procedure of generating DMMs was modified to reduce the computational complexity in order
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to achieve real-time action recognition. Later in [4], local binary pattern [25,38,39] operator
was applied to the overlapped blocks in DMMs to enhance the discriminative power for action
recognition. A filtering method to extract spatio-temporal interest points (STIPs) from depth
videos (called DSTIP) was introduced in [24] to localize activity related interest points by
effectively suppressing the noise in the depth videos. Depth cuboid similarity feature (DCSF)
built around the DSTIPs was proposed to describe the local 3D depth cuboid. In [26],
histogram of the surface normal orientation in the 4D space of time, depth, and spatial
coordinates (HON4D) was developed to capture the complex joint shape-motion cues at
pixel-level of depth images. Due to the effectiveness of the surface normals characterizing
the local motion and shape information simultaneously, the polynormal feature descriptor was
introduced in [35] by clustering hypersurface normals in a depth sequence. An adaptive spatio-
temporal pyramid was also proposed to globally capture the spatial and temporal orders of the
polynormals.

Skeleton information which can be considered as high level features extracted from depth
images has also been explored for action recognition. In [34], a skeleton feature descriptor
named EigenJoints was developed based on differences of skeleton joints. The EigenJoints
feature can effectively combine action information including static posture, motion property,
and overall dynamics. In [12], a local skeleton descriptor that encodes the relative position of
joint quadruples was presented. The similarity normalization transform in the coding strategy
makes the descriptor scale, viewpoint and body-orientation invariant. In [29], a new skeletal
representation that explicitly models the 3D geometric relationships between various body
parts using rotations and translations in 3D space was proposed. The relative geometry
between a pair of body parts was mathematically presented as a point in a special Euclidean
group. Therefore, the entire human skeleton was modeled as a point in a Lie group. The action
recognition was then performed by classifying these curves.

Motivation and contributions In our previous work [2], we introduced the gradient local
auto-correlations (GLAC) [18] descriptor and applied GLAC to the three DMMs of a depth
sequence to generate the feature (i.e., DMMs-based GLAC feature) for action recognition. The
GLAC descriptor utilizes spatial and orientational auto-collections (i.e., second order statistics)
oflocal gradients to capture richer information from images than the histogram-based methods
(e.g., HOG) which use first order statistics (i.e., histograms). Although DMMs obtained using
all depth frames in a depth sequence can describe the shape and motion cues of a depth action
sequence, they may not be able to capture the detailed (or local) temporal motion in a subset of
depth images. Old motion history may get overwritten when a more recent action occurs at the
same point. Therefore, in the paper we further incorporate another feature extraction method
which exploits the local relationships (co-occurrence) among space-time gradients in the space
and time domain. The resulting space-time motion features are named space-time auto-
correlation of gradients (STACOG) [19]. The STACOG feature is an extension of GLAC in
3D space (i.e., space and time) and was designed for RGB video sequences in [19]. A weighted
fusion framework based on extreme learning machine (ELM) [16] is proposed to effectively
combine the GLAC features from DMMs and STACOG features for action recognition. We
extensively evaluate our method on standard depth sequence datasets, MSR Action 3D [33]
and MSR Gesture 3D [21], and achieve superior performance over state-of-the-art methods.
The remainder of the paper is organized as follows. Section 2 presents the feature extraction
methods including DMMs-based GLAC and STACOG. Section 3 describes the proposed
weighted fusion scheme based on ELM. Section 4 reports action recognition results on two
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benchmark datasets, comparing to a variety of other state-of-the-art methods. Finally, Section 5
concludes the paper.

2 Feature extraction
2.1 Depth motion maps-based gradient local auto-correlations

GLAC [18] descriptor is an effective tool for extracting shift-invariant image features. Let 7 be
an image region and r=(x,y)’ be a position vector in /. The magnitude and the orientation

angle of the image gradient at each pixel can be represented by z = \/%1(2 +%2 and

0 = arctan (z , g; ) , respectively. The orientation § is then coded into D orientation bins by
voting weights to the nearest bins to form a gradient orientation vector fe R”. With the
gradient orientation vector f and the gradient magnitude z, the N™ order auto-correlation

function of local gradients can be expressed as follows:

R(do,...,dyay,...,ay) = Lw[z(r),z(r—o— ay),...z(r+ay)]fy, (1) /4 (r+a))f, (r+ay)dr
(1)

where a, are displacement vectors from the reference point r, £ is the " element of £ and w(-)
indicates a weighting function. N& {0, 1}, a;,, € {£Ar, 0}, and w(-)=min(-) were considered as
suggested in [18], where Ar represents the displacement interval in both horizontal and
vertical directions. For Ne {0, 1}, the formulation of GLAC is given by

Fo : Ry—o(do) = Y _ z(x)f 4, (r) 2)

re/

Fy : Ry—i(do,dy,a;) Z min[z(r), z(r +ay)]f,, (1) f 4, (r +ap) (3)

re/

The spatial auto-correlation patterns of (r, r+a;) are shown in Fig. 1.

The dimensionality of the above GLAC features (FyandF,) is D+4D”. Although the
dimensionality of the GLAC features is high, the computational cost is low due to the
sparseness of f. It is worth noting that the computational cost is invariant to the number of
bins, D, since the sparseness of f'doesn’t depend on D.

Fig. 1 Configuration patterns of
(r,r+ap)

e
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Since GLAC is used to extract features from 2D images, we first utilize the method
discussed in [7] to generate three DMMs due to its computational efficiency. Each 3D depth
image in a depth video sequence is first projected onto three orthogonal Cartesian planes to
generate three 2D projected maps corresponding to front, side, and top views, denoted by
mapy, map,, and map,, respectively. Under each projection view, the absolute difference
between two consecutive projected maps is accumulated through an entire depth video
sequence forming a DMM. For a depth video sequence with N' frames, the DMMs are
obtained as follows:

’

N
DMM 7y = )map’{ﬁs,trmap’{}?s,f} (4)

=2

where i represents frame index. A bounding box is considered to extract the foreground in each
DMM. The procedure of generating DMMs is illustrated in Fig. 2.

After DMMs generation, the method described in [4] is adopted to extract GLAC features
from DMMs. Specifically, DMMs are first divided into several overlapped blocks and the
GLAC descriptor is applied to each block to compute the GLAC features (i.e., Fy and F;). The
GLAC features of all the blocks from three DMMs are concatenated to form a single
composite feature vector F.

2.2 Space-time auto-correlation of gradients

As stated earlier, STACOG was proposed in [19] to extract local relationships among the
space-time gradients from RGB video sequences. Here, this approach is applied to depth video
sequences in order to capture the geometric characteristics of a motion shape.

Let '(x, y, f) denote a depth image volume. The 3D space-time gradient vector (see Fig. 3a)
can be obtained from the derivatives (L;, 1;,.,1;) at each space-time point in a depth video

sequence. The magnitudes of the gradient vectors are given by m = \/1;2 + 13,2 + I;Z. The

spatial orientation in a depth image and the temporal elevation along the time axis can be
represented by ¢’ =arctan(/,, I;,) and ¢ =arcsin(//m), respectively. The space-time orientation of
the gradient represented by ' and ¢ is then placed into B orientation bins on a unit sphere by
voting weights to the nearest bins to form a B -dimensional vector v (see Fig. 3b).

Depth image projection Depth motion maps (DMMs) generation
.

map o

maps

, /. o
-
aps: x-y projection map; ) . i mapi—l
aps: V-z projection > ) / .1 - y / 5.1
L8 g d ] ) W 'S J 995%5
map; : X-Z projection i=2

Fig. 2 Three DMMs (DMMj, DMM;and DMM,) generated from a depth video sequence for the action
high throw
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(b)

\
 pole
S

Fig. 3 a Space-time gradient b Orientation bins along latitude and longitude on a hemisphere (opposite
directions along the longitude not used)

The N™ order auto-correlation function for the space-time gradients can be expressed as
follows:

Ry (a’l, s a;v) :Jg{m(r'), ...,m(r’ + a;vﬂ v(r’) ®"'®V(I‘/ + a;\,>drr (5)
where [a, ..., ay] are displacement vectors from the reference point r'=(x, y, #), g indicates a
weighting function, and ® denotes tensor product. In the experiments reported later,
Ne{0,1},d), € {£AY, 0},a),€ {+Ar,0} and g(-)=min(-) were considered as suggested in
[19], where Ar' and A represent the displacement interval along the spatial and temporal axis,
respectively. For Ne {0, 1}, the STACOG features can be written as follows:

F;) = Zm(r’)v(r/> (6)

F, (a/l) = %:min {m(f),m(r’ + all)}v(r’)v(r/ + a/])T (7)

Since there are 13 different configuration patterns of (r', ' +a)) as illustrated in Fig. 4, the
dimensionality of the above STACOG features (F, and F;) becomes B+ 13B°. It is worth
noting that Ar'/At' is closely connected to the velocity of motion. The frame-based STACOG
features in Egs. (6) and (7) are extracted by summing up over the full space-time region within
an entire depth sequence. We denote the STACOG feature vector for a depth sequence by Fg.
A detailed description of the STACOG features is provided in [19].

Fig. 4 Configuration patterns of (r, ' +a))
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3 Decision-level fusion based on ELM

In this section, we present a weighted decision-level fusion scheme based on ELM to
effectively combine the 2D (DMMs-based GLAC) and 3D (STACOG) auto-correlation of
gradients features for action recognition.

3.1 Extreme learning machine

ELM [16] is an efficient learning algorithm for single hidden layer feed-forward neural
networks (SLFNs) and has been applied in various applications (e.g., [8,9,22]). Let
Y=[V1soes Vi ...,yC]Te RS be the class to which a sample belongs, where
e {l,—1} (1<k<C) and C is the number of classes. Given n training samples {x,,y,;}i-1,
where x;€ RY and y; € R, a single hidden layer neural network having L hidden nodes can be
expressed as

L
Zﬁjh(Wj'Xi‘i‘ej)iyi, llzl,...,ll7 (8)
=1

where /(-) is a nonlinear activation function, 3;€ R€ denotes the weight vector connecting the
/™ hidden node to the output nodes, wjeRM denotes the weight vector connecting the ;™
hidden node to the input nodes, and ¢; is the bias of the /™ hidden node. Eq. (8) can be written
compactly as:

HB =Y 9)

where B=[BT;..;BeR ", Y=[yl;...;y7]eR"* €, and H is the hidden layer output
matrix. A least-squares solution [:’z to Eq. (9) is

p=HY (10)

where H' is the Moore-Penrose inverse of H. The output function of the ELM classifier is

-1
£,(x;) = h(x;)B = h(x;)H’ G + HHT) Y (11)

where 1/p is a regularization term.
In ELM, a feature mapping h(x;) is usually known to users. If a feature mapping is
unknown to users, a kernel matrix for ELM can be defined as follows:

QELM = HHT : QELM,;/ = h(Xi)'h(Xj) = K(X,‘,Xj) (12)

Thus, the output function of kernel-based ELM (KELM) can be written as

(%) = ZEX?XI; <+QELM)_1Y (13)
-

The label of a test sample x; is determined by the index of the output node with the largest
value, i.e.,
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yi = argmax f, (x1); (14)

where f;(x;); denotes the K output of f(x)=[fz(x)1./2(x1)2, - - fL(xl)C]T. In our experiments,
we use KELM with a radial basis function (RBF) kernel.

3.2 Weighted fusion of 2D and 3D auto-correlation of gradients features

Two sets of features are generated from a depth sequence including the DMMs-based GLAC
features (F) and the STACOG features (Fs). In this paper, we use decision-level fusion [4] to
merge results from a classifier ensemble of two sets of features. Specifically, F and Fg are
used individually as input to two ELM classifiers. The probability outputs of each individual
classifier are merged to generate the final outcome. The posterior probabilities are estimated
using the decision function of ELM (i.e., f; in Eq. (11)) since it estimates the accuracy of the
output label. f; is normalized to [0, 1] and Platt’s empirical analysis [13] using a Sigmoid
function is utilized to approximate the posterior probabilities,

1
1+ exp(4f,(x), + B)

pilx) (15)
where f;(x), is the &™ output of the decision function f;(x). In our experiments, we set 4=—1
and B=0. Logarithmic opinion pool (LOGP) [22] is employed to estimate a global member-
ship function:

0
logP(y[x) = ) agp, (/) (16)
gq=1

where Q is the number of classifiers and {aq}gzl indicate classifier weights. In our proposed
method, Q is set to 2 since there are two ELM classifiers for two sets of features (Fs and Fy).
Therefore, Eq. (16) becomes

logP(yi[x) = a1py (v | Fg) + aap, (v | Fs) (17)

For the classifier weights, the uniformly distributed weights (i.e., o, =1/Q) are usually
utilized (e.g., [4,22]). However, it may not be reasonable to assign equal weights to different
features because they have different importance in decision making. A larger weight means the
corresponding feature is more important in decision making. Therefore, we propose to use
different classifier weights to provide more freedom to different features, thereby improving
the flexibility of the fusion approach. In the weighted fusion strategy, we impose the weights
with non-negativity and sum-to-one constraints. The fused probability output can be further
written as

logP(yi|x) = ppi (x| Fe) + (1=14)p2 (v Fs) (18)

where (1> 0) is the weight assigned to the classifier using F as the feature input. The final
class label y* is determined according to

y" = argmax P(y; |x) (19)
.C
Figure 5 summarizes the overall framework of the proposed action recognition method.
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DMMs-based GLAC ‘! u -
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sequence Feature extraction Weighted fusion of probability outputs

Fig. 5 The framework of the proposed action recognition method

4 Experiments

In this section, the performance of the proposed action recognition algorithm on two bench-
mark depth action datasets (MSR Action 3D [33] and MSR Gesture 3D [21]) is investigated.
The action recognition results are compared with other state-of-the-art methods.

4.1 Experimental data and setup

The MSR Action 3D dataset [33] includes 20 actions performed by 10 subjects. The 20 actions
are: high wave, horizontal wave, hammer, hand catch, forward punch, high throw, draw x,
draw tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick,
Jjogging, tennis swing, tennis serve, golf swing, and pickup throw. Each subject performed each
action 2 or 3 times. This dataset includes 557 action sequences with a resolution of
320 x 240 pixels. It is a challenging dataset due to similarity of actions, e.g., draw x and draw
tick. Some example depth images from the dataset are shown in Fig. 6. The same experimental
setup in [33] is used. A total of 20 actions are employed and one half of the subjects (1, 3, 5, 7,
9) are used for training and the remaining subjects are used for testing.

The second dataset used for evaluation is the MSR Gesture 3D dataset [21]. It is a hand
gesture dataset of depth sequences captured by a depth camera. This dataset contains a subset
of gestures defined by American Sign Language (ASL). There are 12 gestures in the dataset:
bathroom, blue, finish, green, hungry, milk, past, pig, store, where, j, and z. The dataset
contains 333 depth sequences, and is considered challenging because of self-occlusions. Some

T

(a) High wave

A A A A

(b) Tennis serve

Fig. 6 Examples of depth sequences from the MSR Action 3D dataset
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example depth images from this dataset are presented in Fig. 7. For this dataset, the leave-one-
subject-out cross-validation test [32] is performed.

4.2 Parameters setting

For our proposed action recognition framework, appropriate values for several parameters
need to be set first. To compute the DMMs for the depth sequences, the same parameters
(sizes of DMMs and blocks) reported in [4] are used for the two datasets. The same
parameter setting for the GLAC descriptor is adopt according to [2], that is
(D, Ar)=(10, 8) for the MSR Action 3D dataset and (D, Ar)=(12, 1) for the MSR Gesture
3D dataset.

For the STACOG feature descriptor, 4 orientation bins in x-y plane (2D space) and 6
orientation bin-layers (one layer is located at the pole, see Fig. 3b) are chosen as noted in
[19], making the total number of bins to be 21 (i.e., B=21). In the experiments, A¢' (the
displacement interval along the temporal axis) is set to 1 as suggested in [19] to cope with
fast motion. Different Ar' (spatial interval) values are examined using the 3-fold cross
validation strategy based on available training samples. Figure 8 illustrates the recognition
accuracy versus Ar' for the MSR Action 3D dataset. Hence, Ar'=3 for the STACOG
features extraction is used.

The classifier weight (i.e., ¢ in Eq. (18)), which balances the probability contributions
of using DMMs-based STACOG features (Fs) and using the STACOG features (Fy),
varies from 0 to 1 with a step size of 0.1. When p=0, it is equal to use Fg only for
action recognition, and p =1, it is equal to use Fs only. To estimate the optimal weight
parameter p, the 3-fold cross validation strategy based on the training samples is
employed. Figure 9 illustrates the recognition accuracy with various values of p on
the MSR Action 3D dataset. As can be seen from this figure, the best action recognition
performance corresponds to p=0.6. It indicates the probability output of the classifier
using Fs is given more importance than that of the classifier using Fg for the final
decision making. This is because a recognition accuracy of 90 % is achieved by using
Fs only (1u=0), which is about 12 % higher than when using Fg only (1+=0). Therefore,
it is reasonable to assign larger weight to F since it exhibits more discriminative power
than Fyg.

(a) ASLZ

(b) AsLy

Fig. 7 Examples of depth sequences from the MSR Gesture 3D dataset
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[ —e—sTACOG |
791 .

78 1

Accuracy (%)

Ar!

Fig. 8 Action recognition accuracy (%) using the STACOG features versus Az’ for the MSR Action 3D dataset
with the 3-fold cross validation test on the training samples

4.3 Results

To prove the effectiveness of the proposed action recognition algorithm, we compare its action
recognition performance on the MSR Action 3D and MSR Gesture 3D datasets with the state-
of-the-art performance reported in the literatures, under the same experimental setup described
in Section 4.1 for those two datasets. The outcomes of the comparison are listed in Tables 1
and 2 for the MSR Action 3D dataset and the MSR Gesture 3D dataset, respectively. The

100 T T r .

—&— Fusion

95

90

85

Accuracy (%)

80

75 ' : ' :
0 0.2 0.4 0.6 0.8 1

1

Fig. 9 Action recognition accuracy (%) versus . for the MSR Action 3D dataset with the 3-fold cross validation
test on the training samples
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Table 1 Comparison of recogni-
tion accuracy on the MSRAction3D
dataset

Method Accuracy
Bag of 3D points [33] 74.70 %
EigenJoints [34] 82.30 %
STOP [31] 84.80 %
Random Occupancy Pattern [32] 86.50 %
Actionlet Ensemble [17] 88.20 %
DMM-HOG [36] 88.73 %
Histograms of Depth Gradients [28] 88.80 %
HONA4D [26] 88.89 %
DSTIP [24] 89.30 %
Skeletons in a Lie group [29] 92.46 %
DMM-LBP [4] 93.00 %
SNV [35] 93.09 %
Hierarchical 3D Kernel Descriptors [20] 92.73 %
HOG3D + locality-constrained linear coding (LLC) [27] 90.90 %
DMM-GLAC 89.38 %
STACOG 75.82 %
Proposed 94.87 %

performances of using the DMMs-based GLAC features only (denoted by DMM-GLAC) and
the STACOG features only (denoted by STACOG) are also reported. It is easy to see that our
proposed method obtains the state-of-the-art accuracies of 94.87 % for the MSR Action 3D
dataset and 98.5 % for the MSR Gesture 3D dataset. Especially for the MSR Gesture 3D
dataset, our method outperforms the comparison methods considerably, leading to almost 3 %
improvement over the second best result (95.66 % in [20]).

To further show the recognition performance, the confusion matrices of our method for the
MSRAction3D dataset and the MSR Gesture 3D dataset are shown in Figs. 10 and 11,
respectively. For the MSR Action 3D dataset, the most confusion occurs in recognizing similar

Table 2 Comparison of recogni-
tion accuracy on the
MSRGesture3D dataset

@ Springer

Method Accuracy
Random Occupancy Pattern [32] 88.50 %
DMM-HOG [36] 89.20 %
Histograms of Depth Gradients [28] 93.60 %
HON4D [26] 92.45 %
Action Graph on Silhouett [21] 87.70 %
Edge Enhanced DMM [10] 90.50 %
DMM-LBP [4] 94.60 %
SNV [35] 94.74 %
Hierarchical 3D Kernel Descriptors [20] 95.66 %
HOG3D + Locality-constrained linear coding (LLC) [27]  94.10 %
DMM-GLAC 95.30 %
STACOG 92.60 %
Proposed 98.50 %
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Hammer
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Forward punch
High throw
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Draw tick

Draw circle
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Side boxing
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Tennis swing
Tennis serve
Golf swing
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Fig. 10 Confusion matrix of our method on the MSR Action 3D dataset
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Pig

Past
Hungary
Green
Finish
Blue
Bathroom

Milk

Fig. 11 Confusion matrix of our method on the MSR Gesture 3D dataset

@ Springer



Multimed Tools Appl

actions, for example, hand catch and high wave, draw x and horizontal wave, and hammer and
forward punch. The DMMs-based GLAC features may not be discriminative enough to
distinguish these actions with similar motion due to the similarities of their DMMs. In addition,
since the STACOG descriptor characterizes the space-time motion shape of an action se-
quence, it is also a challenge to accurately distinguish similar actions based on the STACOG
features. For the MSR Gesture 3D dataset, only gestures J, past and store didn’t reach 100 %
accuracy. The misclassifications mostly occurred among store, past and green.

It is also important to observe that, by combining the DMMs-based GLAC features and the
STACOG features, the overall recognition accuracy is improved considerably over the situa-
tions when using the DMMs-based GLAC features alone or the STACOG features alone. For
example, the proposed method has over 5 % higher accuracy than DMM-GLAC and over
19 % higher accuracy than STACOG on the MSR Action 3D dataset. It clearly demonstrate the
advantage of fusion the 2D and 3D auto-correlation of gradients features for improving the
action recognition performance. To further examine the improvement, we compare the class-
specific recognition accuracy (i.e., recognition accuracy per action class) associated with the
proposed method, DMM-GLAC and STACOG for the MSR Action 3D dataset in Fig. 12. As
evident from this figure, the proposed fusion method is able to improve the classification
performance for most of the action classes, e.g., hammer, hand catch, draw tick, and draw
circle.

5 Conclusion

In this paper, we proposed an effective feature representation method by combine two sets of
powerful features based on auto-correlation of gradients. The DMMs-based GLAC features
are used to capture the rich texture information from the DMMs of a depth sequence. The
STACOG descriptor, which is a 3D extension of the GLAC descriptor, characterizes the space-

B DMM-GLAC MSTACOG M Fusion

\.(’ Q R ¢

\Q’ \@Q (\% \\A
@c\)\\o@\\\d‘ a>°\<b°°°3°" x‘°’3“
X o8 QY 9 N - O ®
P E & O F S T @

\ @\((ok @ W /\\‘\o (Q)
& @ S

Fig. 12 Class-specific recognition performances of the proposed method (denoted by Fusion), DMM-GLAC
and STACOG for the MSR Action 3D dataset
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time motion shape of a depth sequence. It also helps bringing more temporal information of a
depth sequence that is lost in the DMMs. A weighted fusion scheme based on ELM was
proposed to provide more flexibility in combining the two sets of features. The proposed
action recognition approach was extensively evaluated on two depth action datasets. The
experimental results demonstrated that the proposed method consistently outperformed the
state-of-the-art action recognition algorithms. However, there are several problems need to be
investigated in the future. The classifier weights developed in this paper were determined
based on the training samples and were fixed for all the testing samples. An adaptive classifier
weights assignment strategy according to the feature characteristic of each testing sample will
be an open question.
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