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Abstract— This paper presents a fusion approach for improv- called random occupancy pattern features were extrached fr
ing human action recognition based on two differing modaliy  depth images using a weighted sampling scheme and used for
sensors consisting of a depth camera and an inertial body action recognition. In [9], a 4D histogram over depth, time
sensor. Computationally efficient action features are extcted . . ’ S
from depth images provided by the depth camera and from and spatial coordlnate_s was used_to encode the dlstrlbut|0r_1
accelerometer Signa|s provided by the inertial body sensofl hese the Surface normal orientation Wh|Ch was then Used f0r Aactio
features consist of depth motion maps and statistical sigha recognition. In [10], a filtering method extracted the spati

attributes. For action recognition, both feature-level fusion and  temporal interest points, followed by a depth cuboid sintija
decision-level fusion are examined by using a collaboraté/repre- feature for action recognition.

sentation classifier. In the feature-level fusion, feature generated . . . ..
from the two differing modality sensors are merged before Several action recognition systems involve wearable iglert

classification while in the decision-level fusion, the Dengter- Sensors. For example, in [5] wearable inertial sensors were
Shafer theory is used to combine the classification outcomesemployed to recognize daily activities and sports in unsu-
from two classifiers, each corresponding to one sensor. The pervised settings by using artificial neural networks withi
introduced fusion framework is evaluated using the Berkelg tree structure. In [11], a sparse representation classifier

Multimodal Human Action Database. The results indicate tha . trod d for h dail tivit deli d i
due to the complementary aspect of the data from these sensor Infroduced for human daily activity modeling and recogmt

the introduced fusion approaches lead to from 2% to 23% USing a single wearable inertial sensor. In [12], a hieriaeth
recognition rate improvements depending on the action ovethe recognition scheme was proposed to extract features based o

situations when each sensor is used individually. linear discriminant analysis from a single tri-axial aszem-
Index Terms—Human action recognition, fusion of depth eter. Artificial neural networks were then used for human
camera and inertial sensor, depth motion map, wearable indgial ~ activity classification. In [13], a wireless body area natkvo
sensor. composed of multiple wearable inertial sensors monitoied p
sition and activity of upper and lower extremities for cortgyu
assisted physical rehabilitation. In [14], a fall detentgystem
was presented based on wearable inertial sensors.
H UMAN action recognition is used in human computer pepth sensors and wearable inertial sensors have been used
interaction (HCI) applications, including gaming, sportfdividually for human action recognition. However, siral
annotation, content-based video retrieval, health manito neous utilization of both depth and wearable inertial seiso
visual surveillance, and robotics. For example, game dessofgr human action recognition are less common [15]—[18]. In
such as Nintendo Wii or Microsoft Kinect rely on the recogf15], an inertial sensor and a Kinect were used to monitor a
nition of gestures or full body movements for gaming i”tera‘berson’s intake gesture. The position and angular displace
tions. Human action recognition is also part of fitness t@N of arm gestures captured by the Kinect and the acceleration
and rehabilitation, e.g. [1], [2]. Some human action redd®m  of arm gestures captured by the inertial sensor were ardilyze
approaches are based on a depth camera or wearable ineglighrately. No information was published about how the data
sensors, e.g. [3]-[5]. from the two sensors were fused together to achieve more
Since the release of Microsoft Kinect depth cameras, rgccurate monitoring. Moreover, the application involvetke
search has been conducted regarding human action reegnigjestures not human action recognition. In [16], a Kinectidep
using them. Depth images generated by a structured lighthdegensor and a sensor consisting of an accelerometer and a
sensor, in particular the Kinect depth camera, are inéeesitgyroscope were used together to detect falls using a fuzzy
to changes in lighting conditions and provide 3D informatiojnference approach. More specifically, the acceleratiota da
towards dIStInnghlng actions that are difficult to chéesaze from the acce|erometer, the angu'ar Ve|0city data from the
using intensity images. For example, an action graph wggroscope, and the center of gravity data of a moving person
employed in [6] to model the dynamics of actions and fom the Kinect were used as inputs into a fuzzy inference
collection of 3D points from depth images were used to chafpdule to generate alarms when falls occurred. However, in
acterize postures. In [7], a depth motion map-based hiatogrihe paper, only one action (falling) was considered and no
of oriented gradients was utilized to compactly represenyb gjstinction between different actions was considered 1|
shape and movement information followed by a linear Suppg{tinect depth sensor and five three-axis accelerometers wer
Vector Machine (SVM) to recognize human actions. In [8], s@sed for indoor activity recognition. The accelerationadat
_ , . from the accelerometers and the position data from the Kinec
The authors are with Department of Electrical Engineerindni- . .
versity of Texas at Dallas, Richardson, TX 75080 USA (e-mailV€l€ merged as the input to an ensemble of binary neural
chenchen870713@gmail.com, rjafari@utdallas.edu, k@higdallas.edu). network classifiers. However, only feature-level fusionswa

I. INTRODUCTION



performed and the input signals to the classifiers were raWsubsetsac = [&1, G2, ..., &¢c] With &;(j € 1,2,...,C)
acceleration and position data without feature extractlan denoting the subset of the coefficients associated with the
[18], a Hidden Markov Model (HMM) classifier was used fottraining samples from thgth class, i.eX;. After coefficients
hand gesture recognition with raw data from both a Kinegiartitioning, a class-specific representatign, is computed
depth camera and an inertial body sensor (position dataeof ts follows:

hand joint from a Kinect depth camera as well as acceleration ¥, = X,é;. ©)
data and angular velocity data from an inertial body sensor)

No feature extraction was conducted and only feature-levithe class label ofy can be identified by comparing the

fusion was used. closeness between andy; via
Depth and wearable inertial sensors are used to achieve
improved human action recognition compared to when the class(y) = argmin 7;(y) (4)
je{1,2,....,C}

sensors are used individually. While each of these sens@'s h
its_ own limitations when oper_ating under realistic cp_ruh'ti, wherer; (y) = |ly — ¥, indicates the residual error. See
utilizing them together provides synergy. In addition, OUA|gorithm 1.
recognition solution is devised to be computationally éffit
SO as to run in real-time on desktop platforms_. . Algorithm 1 The Sparse Representation Classifier (SRC)

In this paper, both feature-level and decision-level fnS'OAIgorithm
are considered. The decision-level fusion is performedhea : — — =
Dempster-Shafer theory. The introduced fusion approach ignPut: Training samplesX = {x;};L; € R**", cladss label
evaluated using a publicly available multimodal humancacti i (used for class partitioning), test samplec R%, A, C
database, the Berkeley Multimodal Human Action Database(Mumber cff classes)
(MHAD) [19]. Performance is compared in situations when C@lculate& via ¢;-minimization of (2)
using each modality sensor individually. Depth and wearabl for all j € {1,2,...,C} do
inertial sensors are low-cost, easy to operate, and can be PartiionX;, a; ~ X
used in darkness. These attributes make their joint utitina Caleulater; (y) = [ly — yjll2 = Iy — X;&;2
practical in many HCI applications. end for _

The rest of the paper is organized as follows. In Section D€cideclass(y) via (4)
I, mathematical techniques used in our fusion approach arePUtPut: class(y)
stated. In Section Ill, the multimodal human action databas
is described. The details of our fusion approach are predent
in Section IV. The results are reported in Section V. The

conclusion is in Section VI. B. Collaborative Representation Classifier
As suggested in [22], it is the collaborative represeniatio
Il. MATHEMATICAL TECHNIQUES i.e. the use of all the training samples as a dictionary, bt n
A. Sparse Representation Classifier the ¢;-norm sparsity constraint, that improves classification

accuracy. Thels-regularization generates comparable results
tion due to success in face recognition [20], [21]. The ide@i but with significantly lower computational complexity [22]

represent a test sample according to a small number of ato-ﬁllke collaboratl_ve reprgsentatlon classnjer (CRC) [22]rgpen
sparsely chosen out of an over-complete dictionary form&€ ¢1 Penalty in (2) with ar¢, penalty, i.e.

by all available training samples. Let us considérdistinct
classes and a matriX = {x;}?, € R¥*" formed byn d-
dimensional training samples arranged column-wise to fo
the over-complete dictionary. For a test sample R<, let us
expressy as a sparse representation in terms of maXias
follows:

Sparse representation (or sparse coding) has received at

& = argmin [ly — Xa[|3 + 0[|ex]3. (5)

rJF‘he lo-regularized minimization of (5) is in the form of the
Tikhonov regularization [23] leading to the following chkxb
form solution

y =Xa 1) & = (XTX +01)"'XTy (6)
wherea is an x 1 vector of coefficients corresponding to

nxn 1 i i
all training samples from thé€' classes. One cannot directlyWhereI € R denotes an identity matrix. The general

solve for v since (1) is typically under-determined [21]‘form of the Tikhonov regularization involves a Tikhonov

However, a solution can be obtained by solving the followin
{1-regularized minimization problem:

rgegularization matrix’. As a result, (5) can be expressed as

& = argmin [ly — Xev3 + 6| Ter||3- )
& = argmin [ly — Xe[|3 + Al al|x ) °
o The termI" allows the imposition of prior knowledge on the
where A is a regularization parameter which balances the iselution using the approach in [24]-[26], where the trajnin
fluence of the residual and the sparsity term. According ¢éo tkamples that are most dissimilar from a test sample are given
class labels of the training sampl&s,can be partitioned into less weight than the training samples that are most similar.



Specifically, the following diagonal matriX’ € R"*" is 1. HUMAN ACTION DATABASE

considered: The Berkeley Multimodal Human Action Database

ly —xill, 0 (MHAD) [19] contains temporally synchronized and geo-
= . (8) metrically calibrated data from a motion capture system,
stereo cameras, Kinect depth cameras, wireless wearable ac

0 — Xp, ) _
o o Iy =nll, celerometers, and microphones. After removing one ernageo
The coefficient vectoty is then calculated as follows: sequence, it consists of 659 data sequences from 11 actions
& = (XTX 4+ 6r717) X y. 9) performed 5 times by 7 male and 5 female_subje.cts (_11 aged
23-30 years and one elderly). The 11 actions gueiping
C. Dempster-Shafer Theory in place (jump), jumping jacks(jack), bending-hands up all

the way down(bend), punching(punch),waving two hands

DST introduced by Demspter was later extended by ShamaveZ),waving right hand(wavel), clapping handg(clap),

[27]. DST _is able to represent ungertainty and imprecisiuth Athrowing a ball (throw), sit down and stand ufgsit+stand),
can effectively deal with any union of classes and has begh qon(sit), stand up(stand). The database incorporates the

applied t% manfy data fusion lappllc&}tlons, el'lg' [28]|’ [29]. gnra-class variations. The database incorporates the-ahass
Let 9_ e a finite universal set of mutually EXCIUSIVE anQaiations. For example, the speed of an action was differen
exhaustive hypotheses, called a frame of dlscernment.f

lassificati licati q el different subjects.
classiication ap%patlonf) corresponds t_o a set of Classes. 1pere gre 5 sensor modalities in the Berkeley MHAD, from
The power set2® is the set of all possible subsets 6f

.which only the depth and inertial data are considered here.

A mass function@or Basic Probgbility Asgignment (BP'.A‘) 'Furthermore, only the data from the Kinect camera placed in
a functionm : 2° — [0,1], which satisfies the following .o+ o the subject are considered

properties:
> om(4) =1 (10)
ACO IV. FUSION APPROACH
m(0) =0 (11) A. Feature Extraction from Depth Data

Fig. 1 shows three example depth images of the actions
jumping jacks punching andthrowing a ball A depth image
can be used to capture the 3D structure and shape information
Yang et al. [7] proposed to project depth frames onto three
orthogonal Cartesian planes for the purpose of charattgriz
an action. In [30] we considered the same approach to achieve
Bel(A) = Z m(B) (12) human action recognition based on depth images. Before

BCA performing depth image projections, first the foregrourst th

contains the moving human subject needs to be extracted. Mos

where () is the empty set. A subset with nonzero BPA is
called a focal element. The value of(A4) is a measure of
the belief that is assigned to st not to subsets ofi. Two
common evidential measures, belief and plausibility fiong,
are respectively defined as followd C ©, B C O):

Pl(4) = Z m(B), P1(0) = 0. (13) of the dynamic background subtraction algorithms involve
BnA#D background modeling techniques [31] or spatio-tempotakfil
These two measures have the following properties: ing to extract the spatio-temporal interest points comesjng
Bel(A) < PI(A) (14) to_ an action [_32]. Tc_) make this task computa‘;ionally effitien
- with the consideration that a human subject is expected to be
PIl(A) =1 - Bel(A) (15) in front of the camera at a certain distance range, the mean

depth value: for eachM, x Ny depth image is computed and

whereA is the complementary set of: 4 =6 — A, et{tg_en the foreground region is selected according to

For combining the measures of evidence from two indep

dent sources, the Dempster’s rule for combining two BRPAs, dap, i |day — | < e
andms, is given b dop =14 “ or o (19)
2159 y ’ 0, otherwise
0)y=0 16

m2(0) (16) whered, p(a = 1,2,..., Mo, b = 1,2,...,Np) is the depth

mya(A) = ﬁ Z my(B)may(C) (17) Vvalue (_indicating thg dis_tance between the Kinect cameda an
TN Brc—Az0 the object) of the pixel in theth row andbth column of the

depth imageg¢ is a threshold for the depth value with unit
K= > m(B)m(C). (18)  mm. We examined all depth video sequences in the Berkeley
BNC=0 MHAD and found that the foreground can be removed by

The normalization factoX provides a measure of conflictsetting e € [800,900]. In our experimentse = 850 was
between the two sources to be combined. This rule is comhiosen. An example of the foreground extracted depth image
mutative and associative. If there are more than two sourcesshown in Fig. 2.

the combination rule can be generalized by iteration. Atjoin Each foreground extracted depth image is then used to
decision is made based on the combined BPA by choosing tienerate three 2D projected maps corresponding to the, front
class with the maximunBel or Pl [27]. side, and top views (see Fig. 3), denoted /yp, where



top view
(x-z projection)

side view
&\ (v-z projection)
i ; ; i P front view
Ehgﬁcﬁ}ngi);?jq]hﬁlgw?ﬁgtz t|)r;1|(lalges of the actions (left to righthping jacks {x-grprojeckion)
)
=l

\Kinect

Fig. 2. Depth image foreground extraction: (left) origidaipth image, (right) Fig. 3. Three projection views of a depth image.

foreground extracted depth image.

v € {f,s,t}. For a point(z,y,z) in the depth image
with z denoting the depth value in a right-handed coordi-
nate system, the pixel values in the three projected maps
(mapys, maps, map) are indicated by, z, andy, respectively.

For each projection view, the absolute difference between
two consecutive projected maps is accumulated through an
entire depth video sequence forming a so called depth motion
map (DMM) [30]. Specifically, for each projected map, the
motion energy is calculated as the absolute differencedstw
two consecutive maps. For a depth video sequence With
frames, the depth motion mdpM M, is obtained by stacking

DMM;}

(front view)

the motion energy across an entire depth video sequence as mapy
follows:
N_1 Fig. 4. ADMMJQ generated from waving two handslepth video sequence.
DMM, = Z !mapZH — mapi|, (20)
q=1

the projected measures includingnean variapce stand_a_rd deviationand
root mean squarare computationally efficient and useful for
apturing structural patterns in motion data. Therefdresé
our measures are computed here along each direction in each

A bounding box is set to extract the non-zero region égmporal window. For each accelerometer, concatenating al
the region of interest (ROI) in eacKM ;. Let the ROI measures froniV, windows results in a column feature vector

extracted DM M; be denoted byDM Mj. Fig. 4 shows an of dimensionality4 x 3 x N;. _

example DM M/ generated from avaving two handslepth Although 6 agcelerometers were used in the Berkeley
video sequence. As seen here, DMM is able to capture t¢1AD, we consider only two accelerometers due to prac-
characteristics of the motion. Siné&\/ M} of different action ticality. To select the two accelerometers, an analysis was
video sequences may have different sizes, bicubic intatjool conducted by using the first six subjects for training and

is used to resize alD M} to a fixed size in order to reduceth® remainder for testing. We séf; = 15 (an analysis of
the intra-class variations. choosing the number of segments is provided in Section V)

and employed SVM to classify the 11 actions. Based on the
recognition performance and the positions of the accelerom
ters, the accelerometers and A, were found to be the most

In the Berkeley MHAD, 6 three-axis wireless acceleromeffective for the human actions in the database (see Table I)
eters @y,..., Ag) were placed on the subjects (Fig. 5) tdNote thatA; and A, are placed on the left wrist and right
measure movements at the wrists, ankles and hips. The hip, respectively, where people may wear a watch and a cell
celerometers captured the motion data with the frequencymfone pouch in a nonintrusive manner. Neith®r nor Ag
about 30Hz. Here, each accelerometer sequence is paettiowere chosen because they were placed on the ankles and were
into N, temporal windows as suggested in [19]. Statisticalot able to generate useful information due to the relativel

wheregq represents the frame index, antip?
map of theqth frame for the projection view. To keep the
computational cost low, only the DMM generated from th
front view, i.e. DM My, is used as the feature in our case.

B. Feature Extraction from Acceleration Data



m(Dly;) =0,¥D € 2°\ {©, H;} (23)

where § is a parameter such that< 5 < 1, and¢, is a
decreasing function satisfying these two conditions:

$;(0)=0 (24)
lim  ¢;(r;(y)) = 0. (25)

7(y;)—ro0
However, as there exist many decreasing functions satpfyi
the two conditions, [33] suggests to choose thjs

@;(rj(y)) = e 1) (26)

with ¢, being a positive parameter associated with clads
[34], a method for tuning the parametgr was proposed. To
gain computational efficiency; is set to 1 in our case which
makes¢,; a Gaussian function

Fig. 5. Body placement of the six accelerometers in the BeykHAD.

static foot movements in the actions.

TABLE | )
RECOGNITION RATES(%) WHEN USING DIFFERENT ACCELEROMETERS 9j(ri(y)) =e " . (27)

Accelerometer| Recognition Tate (%) Since there ar€’' class-specific representatiopss, the final

Ay 86.67 belief regarding the class label gfis obtained by combining
Az 85.15 the C BPAs using the Dempster’s rule of combination. The
ﬁz ;;:22 resulting global BPAn,, was shown in [33] to be:

As 56.43 )

e o my(Hj) = 7= (1={1=50;(ri (W) ) [T (1=Ben(rn(y))},

PFj
pe{l,...,C} (28)

C. Feature-Level Fusion

1 C
Feature-level fusion involves fusing feature sets of diffe mg(©) = Ko H{l = B;(ri(y))} (29)

modality sensors. LeU = {u;}7, in R% (d;-dimensional =1

feature space) an¥ = {v;}/., in R% (d,-dimensional whereKj is a normalization factor:

feature space) represent the feature sets generatedctespe c

tively, fr(_)m the K_inect depth camera and the accelerometgf, — Z H{l—ﬂ¢p(rp(y))}+(1—0) H{l_ﬂqu(rj ()}

for n training action samples. Column vectaig andv; are sy i

normalized to have the unit length. Then, the fused featetre s (30)

is represented bf = {f;}1, in R¥* 92 with each column In our decision-level fusion here, SRC or CRC is first

vector beingf; = [u/, v/]7. The fused feature set is then fecapplied to the depth feature sBtand acceleration feature set

into a classifier. V, respectively. Therefore, two corresponding global BPASs,

mg1 andmy o, are generated. The combined BPA from) ;

andmy » is then obtained via (17). The class label of a new test

, , sample is determined by which corresponds to the maximum
As noted earlier, for theC' action classes and a tes{, | e of Bel(H;), i.e. max(Bel(H;)).

sample y, the frame of discernment is given bg = !
{H1,Hs,...,Hc}, where H; : class(y) = j, j €

{1,2,...,C}. The classification decision of the classifiers

SRC or CRC is based on the residual error with respect Ao Experimental Setup

classj, r;(y), using (4). Each class-specific representafion  The size of the depth images in the databaséSisx 640

and its corresponding class labglconstitute a distinct item pixels. After the foreground extraction from each depthgma

of evidence regarding the class membershig off y is close the foreground extracted image was downsampled/tb of

to y; according to the Euclidean distance, for smally), it the original size, i.e120 x 160, to reduce the dimensionality

is most likely thatH; is true. If r;(y) is large, the class of and thus the computational complexity. Then, the DMM

y; will provide little or no information about the class §f  generation was performed on the reduced size images. To have

As demonstrated in [33], [34], this item of evidence may bg fixed size for theDM M}, the sizes of these maps for all

represented by a BPA ovér defined as follows: action samples in the database were found. The fixed size of

- eachDM M, was set to the mean value of all of the sizes,
m(H;13) = B;(ri(v)) (21) which Wa56f5 x 50. Therefore, each feature vectay had a
m(O|y;) =1—B¢;(r;(y)) (22) dimensionality of 3250.

D. Decision-Level Fusion

V. RESULTS



The number of segment¥, for the acceleration data wassubjects to remove any bias. Five classifiers consisting of
determined via experimentation using the first 6 subjec®/M, SRC, CRC,k-nearest neighbork(NN), and HMM
for training and the rest for testing. SVM and CRC werwere employed to evaluate the effectiveness of the proposed
employed as the classifiers and the performance was tediggion approach. SVM was implemented using the LIBSVM
using different N,; see Fig. 6. In this figureA, denotes toolbox with an RBF kernel. Additionally, the package solver
only using the accelerometed;, A, denotes only using I1 _Is 2 was used to calculate the sparse approximations for
the accelerometed,, and A;&A, denotes using both of SRC. The optimal parameters for SVM and the regularization
the accelerometergl; and A, together where the featuresparameters)\ and 6, for SRC and CRC were assigned to
from the two accelerometers are stacked.erage denotes be those that maximized the training accuracy via a fivefold
the mean accuracy of using the three accelerometer settingyess-validation. The parameter= 3 was used irk-NN as it
Ay, Ay, and A1&Ay4. The settingN; € [13,17] produced a generated the best outcome among diffedést The left-to-
consistent recognition performance under three acceksierm right topology with eight states [18] were used for HMM.
settings. Thus)V, = 15 was chosen for the experiments. Each We compared the recognition performance of our feature-
feature vectorv; had the dimension of 180 and 360 for thdevel fusion framework with the performance of each in-
single-accelerometer setting and the two-accelerometiéing, dividual modality sensor; see Table 1l. By combining the
respectively. features from the two differing modality sensors, the ollera

o recognition rate was improved over the Kinect camera alone

and over the accelerometer alone. This improved performanc
90% was consistent for all five classifiers. The overall recagnit
%85*//\'\”/*\*‘*\*//\ rate of accelerometed; was found to be higher than that
IS so*/\e/e\e/e\e\e—e/@\{ of accelerometerl, mainly due to the type of actions in the
2 75l | database consisting of hand movements. Fusing the Kinect
gl i T [ data with A, data achieved similar recognition rates as fusing
® . the Kinect data withA, data (except for the case when the
85y A A, < A&As o Average l’ k-NN classifier was used) due to the complementary nature
O 11 13 15 17 19 a2 2 Of the data from the two differing modality sensors. For
Number of segments (V) example, the accelerometer, was not able to capture the
€) hand movement of the actiowaving two handshowever,

©
o

the DMM} generated from the depth images as shown in
Fig. 4 could capture the characteristics of this actionnSee
Table 1, using the two accelerometets and A4 in the fusion
approach did not lead to a substantial recognition imprer&m
& over the situation when using a single accelerometer
B g R S 1 or Ay. For the five classifiers, the recognition accuracy of
Kinect+A;& A4 came close to that of Kinecth (less than
1%) as the accelerometdr, did not provide any additionally
: useful data to distinguish certain actions, in particulae t
7 9 1" 13 15 17 19 21 23 25 . . .
Number of segments (V) actions that involved moving hands and arms.
(b) Table 1ll, Table IV, and Table V show three recognition
confusion matrices corresponding to using Kinect onlyngsi
Fig. 6.  Recognition rates (%) using different number of segm for accelerometerd; only, and using Kinect and4; fusion,
accelerometer features: (a) SVM classifier. (b) CRC classifi respectively, with the SVM classifier. As can be seen from
Although downsampling was used to reduce the dimensio-F\a-lple I”'. the misclassifications "_‘OS“V occurred among the
. g ctions sit down and stand ypsit down and stand up
ality of the features generated from the depth images, the . R .
. . . S illustrated in Fig. 7, the DMMs (representing shape and
dimensionality ofu; and the fused featur® was greater than motion) of these actions appeared quite similar; howeber, t
3000. To gain computational efficiency, Principal Compdnen PP d ’ '

. . ! - ., _shape and motion of the actions sit down and stand up occurred
Analysis (PCA) was app"?d th to reduce the dlmenS|onaI!ty. in diF;‘ferent temporal orders. The actigit down and stffnd up

a complex movement composedsif downand stand up

Tpe failure of the DMM to distinguish the shape and motion
Q o .
cues occurred in different temporal orders of these actions
which demonstrated a disadvantage of using the Kinect alone
Table IV shows the confusion matrix associated with using
accelerometed; alone. The accuracies of the actimitsdown

For evaluation purposes, the leave-one-subject-out €rogad stand upsit down andstand upwere improved noticeably
validation test (CV test) was considered. The recognition

outcome was found for each subject as the left-out subjecthp:/mww.csie.ntu.edu.tw/ ~ cjlin/libsvm/
and the final recognition outcome was averaged over alPhttp://www.stanford.edu/ ~boyd/I1_ls

f

o<}
a
T
L

@
=]
L

~
o
T
jac
|

Recognition rate (%)

~
o
T
L

o
&7

—— A 5 Ay —<— A&Ay 49*Average‘7

(2]
(=]
o

feature set and then applied to the test feature set. Theijpain
components that accounted for 95% of the total variation
the training feature set were considered.

B. Recognition Outcome



TABLE Il

RECOGNITION RATES(%) FOR THE LEAVE-ONE-SUBJECFOUT CROSSVALIDATION TEST

Method | Kinect Ay Kinect+A4, Ay Kinect+A, | A1& A4 | Kinect+A1& Ay
SVM 92.39 | 91.77 98.48 79.03 98.18 94.20 99.24
SRC 84.93 | 92.38 98.79 72.03 97.57 95.73 99.54
CRC 87.52 | 93.00 98.18 82.19 97.11 96.81 99.13
k-NN 65.04 | 86.91 91.17 65.65 82.57 89.08 91.85
HMM 84.80 | 90.43 97.57 78.12 96.50 93.77 98.18

TABLE Il

CONFUSION MATRIX WHEN USINGKINECT ONLY FOR THE LEAVE-ONE-SUBJECFOUT CROSSVALIDATION TEST

Action jump

jack bend punch wave2 wavel

clap

throw

sit+stand sit ndsta

jump 98.33
jack -
bend -
punch -
wave2 -
wavel -
clap -
throw -
sit+stand -
sit -
stand -

95

100

86.67

1.67

1.67
96.61

8.33
5
73.33

3.33
86.67
13.33

TABLE IV

CONFUSION MATRIX WHEN USING ACCELEROMETERA] ONLY FOR THE LEAVE-ONE-SUBJECFOUT CROSSVALIDATION TEST

Action jump jack bend punch wave2 wavel clap  throw sit+stand sit ndsta
jump 93.33 1.67 - 1.67 - - 3.33 - - - -
jack 11.67 88.33 - - - - - - - - -
bend - - 100 - - - - - - - -
punch 6.67 - - 75 - - 18.33 - - - -
wave2 - - - - 100 - - - - - -
wavel - - - - - 100 - - - - -
clap 1.69 - - 3.39 - - 93.22 1.69 - - -
throw 1.69 - - - - 10.17 1.69 76.27 - - 10.17
sit+stand - - - - - 1.67 - 1.67 96.67 - -
sit - - - - - 1.67 - 1.67 - 96.67 -
stand - - - - - 3.33 - 1.67 - 5 90
TABLE V

CONFUSION MATRIX WHEN USINGKINECT AND ACCELEROMETERA] FUSION FOR THE LEAVEONE-SUBJECFOUT CROSSVALIDATION TEST

Action jump

jack

clap

throw

sit+stand sit ndsta

jump 100
jack 1.67
bend -
punch -
wave2 -
wavel -
clap
throw -
sit+stand -
sit -
stand -

98.33

bend punch wave2 wavel

100

98.33

(over 10% for these three actions) as compared to the Kinéam the three-axis acceleration data for the two actionsewe
only situation. The three-axis acceleration data were &blesimilar. By integrating the Kinect depth images with the

distinguish similar motions that occurred in different omal acceleration data, the fused features were more discriotina
orders since the trend of the three-axis acceleration dataé leading to the improved recognition rates over the Kineanel
actionsit downwas opposite to that for the acti@tand upas and the accelerometer alone situations. Table V shows that
illustrated in Fig. 8. However, some of the actions, @gnch the low recognition rates for those actions when using one
produced much lower accuracy than when using the Kinetibdality sensing improved when the Kinect and acceleromete
alone. The action punch was mostly misclassified with thiata were used together due to the complementary nature
actionclap. From Fig. 9, one sees that the features generatedthe data from these two differing modality sensors. For



TABLE VI
RECOGNITION RATES(%) FOR RANDOM TEST

Method Kinect Aq Kinect+A4, Ay Kinect+A,4 A1& Ay Kinect+A1 & A4
SVM 86.34+1.92 | 87.69:2.95 | 97.02£1.33 | 70.52+:2.98 | 96.41+1.43 | 90.30£2.27 98.23+0.70
SRC 79.20+2.01 | 87.05£2.82 | 97.41+0.94 | 65.65:3.24 | 94.64+1.97 | 90.64+2.64 98.14+0.83
CRC 81.614+-2.00 | 88.09:3.12 | 96.8741.09 | 73.59:3.43 | 94.89:2.01 | 92.01+2.84 97.94+0.93
k-NN 63.8142.06 | 84.02+3.71 | 90.65:2.08 | 62.714+3.31 | 81.52+3.16 | 86.16+3.26 90.93+1.64
HMM 78.83:2.24 | 86.12:2.47 | 95.70£1.38 | 69.13+2.75 | 93.42+£1.82 | 89.62+2.06 96.68+1.14

example, the overall recognition rate for the actigih was
improved by 13% over the Kinect alone and the accuracy for
the actionpunchwas improved by 23% over the accelerometer
alone. 5
S
g
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Fig. 7. Depth motion maps for the actions (left to righif) down and stand L5
up, sit down andstand up il
To investigate training data size, we conducted a random 2 o5y
test experiment by randomly choosing half of the subjects 2 o et
for training and the remaining subjects for testing. Eac te ks ‘.‘:
was repeated 20 times and the mean performance (mean g-05 v e
recognition ratet standard deviation) was computed. As can . AT ',i —x
. -1t S H
be seen from Table VI, our fusion approach produced the same it ==Y
. . ===
performance as the CV test. Again, the overall recognitade r -15 ‘ ‘ ‘ ‘
of the fusion approach was improved over the Kinect alone and 0 06 1T'i2me (selc')s 24 3
the accelerometer alone (the improvement was even greater (b)
than that of the CV test). This trend was consistent for the
four different classifiers. Fig. 8. Three-axis acceleration signals correspondindi¢oattions: (akit

We also tested the effectiveness of our decision-level féewn and (b)stand up
sion approach. We used CRC rather than SRC due to its

computational efficiency. As suggested in [33], we Set
0.95 for the BPA in (21). Table VII shows that the feature{35] were then extracted from each DLMC video. Then, the

level fusion outperformed the decision-level fusion in modag-of-Features (BoF) representation in [36] was empldged
cases. However, the decision-level fusion involving thee¢t code the DLMC videos into histograms to serve as the features
camera and accelerometer still achieved better perforenaiNote that the type of fusion in [19] was a feature-level fusio
than each individual modality sensor. One disadvantagheof tand SVM was employed in MKL. Therefore, our feature-level
decision-level fusion is that CRC needs to be applied to bdilsion with the SVM classifier is compared to the approach
the depth feature and the acceleration feature. In othedsyorin [19]. As listed in Table VIII, our approach led to higher
CRC has to be run twice. recognition rates. For the acceleration data, only vagamas

We conducted a comparison of our fusion approach with thigllized to extract features from the temporal windows as
one described in [19], where multiple kernel learning (MKL¥lescribed in [19]. For the depth videos, HOG/HOF features
was employed to fuse information from different modalityvere computed at the space-time-interest-points (STR®.
sensors. In [19], each depth video was first divided inf® the noise in the depth videos, the detected STIPs coutaine
8 disjoint Depth-Layered Multi-Channel (DLMC) videos bymany points that were not related to the actions. Also, the
dividing the depth range into 8 equal depth layers and Bg§ature extraction method in [19] calculates the HOG/HOG
keeping the pixels within the depth range of the correspapdidescriptors for each DLMC video which is computationally
depth layer. The first two depth layers and the last deptlr lay@xpensive and poses real-time implementation challenges.
were discarded due to a lack of depth information. HistogramFinally, the computational aspect of our solution is con-
of Gradients (HOG) and Histogram of Flow (HOF) featuresidered, see Fig. 10. An action is normally completed ap-
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punchandclap.

TABLE VII
RECOGNITION RATES(%) COMPARISON BETWEEN FEATURE LEVEL
FUSION(CRC)AND DECISION LEVEL FUSION(CRC)

Method Kinect+A;  Kinect+44  Kinect+A1& Ay
CV test
Feature-level fusion 98.18 97.11 99.13
Decision-level fusion 98.05 97.38 98.97
Random test
Feature-level fusion 96.87 94.89 97.94
Decision-level fusion 96.04 95.36 97.31

proximately within a 2-second time duration. The numbers ir[l
Fig. 10 indicate the main components in our fusion approach.
More specifically, the components are as follows: (1) dept
image foreground extraction and image downsampling, (
DMM; + |map%™ — map?| computation, (3)

DMM; =
acceleration feature extraction captured within a timedeim,
(4) ROI extraction from thé> M M and resizing theDMMJQ

to a fixed size via bicubic interpolation, (5) applying PCA
dimensionality reduction on the fused feature vector, &)d (
performing classification using SVM. The components (1) ang
(2) are executed right after each depth frame is capturetbwhi
the components (3)-(6) are performed after an action seguen
completes. Since the PCA transform matrix is calculatedgusi

the training feature set, it can be directly applied to treddee

vector of a test sample. Our code is written in MATLAB and
the processing time reported is for an Intel i7 Quadcore-2.67
GHz PC platform with 8GB RAM. The average processingé]

time of each component is listed in Table IX.

VI. CONCLUSION

In this paper, a fusion framework was introduced that
utilizes data from two differing modality sensors (a Kinectl®!
camera and a wearable inertial sensor (accelerometeri)dor
purpose of achieving human action recognition. Using data
from the Berkeley Multimodality Human Action Database,[®]
improved recognition rates were achieved by using these two
differing modality sensors together compared to the ditnat
when each sensor was used individually. This was found [{6]
be due to the complementary aspect of data from these two

differing modality sensors.

Features generated from three-axis acceleratitan fdathe actions

TABLE VI
COMPARISON OF RECOGNITION RATE$%) BETWEEN OUR
FEATURE-LEVEL FUSION (SVM) AND THE MKL METHOD IN [19]

Method | Kinect+A;  Kinect+A;,  Kinect+4; & A4
CV test
Ours 98.48 98.18 99.24
[19] 92.65 91.93 93.77
Random test
Ours 97.02 96.41 98.23
[19] 90.59 88.87 91.43
b time window ——

=)@ () (©)

@

L@ OI)

Fig. 10. Real-time action recognition timeline of our fusifsamework.
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