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Abstract— This paper presents a fusion approach for improv-
ing human action recognition based on two differing modality
sensors consisting of a depth camera and an inertial body
sensor. Computationally efficient action features are extracted
from depth images provided by the depth camera and from
accelerometer signals provided by the inertial body sensor. These
features consist of depth motion maps and statistical signal
attributes. For action recognition, both feature-level fusion and
decision-level fusion are examined by using a collaborative repre-
sentation classifier. In the feature-level fusion, features generated
from the two differing modality sensors are merged before
classification while in the decision-level fusion, the Dempster-
Shafer theory is used to combine the classification outcomes
from two classifiers, each corresponding to one sensor. The
introduced fusion framework is evaluated using the Berkeley
Multimodal Human Action Database. The results indicate that
due to the complementary aspect of the data from these sensors,
the introduced fusion approaches lead to from 2% to 23%
recognition rate improvements depending on the action overthe
situations when each sensor is used individually.

Index Terms— Human action recognition, fusion of depth
camera and inertial sensor, depth motion map, wearable inertial
sensor.

I. I NTRODUCTION

H UMAN action recognition is used in human computer
interaction (HCI) applications, including gaming, sports

annotation, content-based video retrieval, health monitoring,
visual surveillance, and robotics. For example, game consoles
such as Nintendo Wii or Microsoft Kinect rely on the recog-
nition of gestures or full body movements for gaming interac-
tions. Human action recognition is also part of fitness training
and rehabilitation, e.g. [1], [2]. Some human action recognition
approaches are based on a depth camera or wearable inertial
sensors, e.g. [3]–[5].

Since the release of Microsoft Kinect depth cameras, re-
search has been conducted regarding human action recognition
using them. Depth images generated by a structured light depth
sensor, in particular the Kinect depth camera, are insensitive
to changes in lighting conditions and provide 3D information
towards distinguishing actions that are difficult to characterize
using intensity images. For example, an action graph was
employed in [6] to model the dynamics of actions and a
collection of 3D points from depth images were used to char-
acterize postures. In [7], a depth motion map-based histogram
of oriented gradients was utilized to compactly represent body
shape and movement information followed by a linear Support
Vector Machine (SVM) to recognize human actions. In [8], so
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called random occupancy pattern features were extracted from
depth images using a weighted sampling scheme and used for
action recognition. In [9], a 4D histogram over depth, time,
and spatial coordinates was used to encode the distributionof
the surface normal orientation which was then used for action
recognition. In [10], a filtering method extracted the spatio-
temporal interest points, followed by a depth cuboid similarity
feature for action recognition.

Several action recognition systems involve wearable inertial
sensors. For example, in [5] wearable inertial sensors were
employed to recognize daily activities and sports in unsu-
pervised settings by using artificial neural networks within a
tree structure. In [11], a sparse representation classifierwas
introduced for human daily activity modeling and recognition
using a single wearable inertial sensor. In [12], a hierarchical-
recognition scheme was proposed to extract features based on
linear discriminant analysis from a single tri-axial accelerom-
eter. Artificial neural networks were then used for human
activity classification. In [13], a wireless body area network
composed of multiple wearable inertial sensors monitored po-
sition and activity of upper and lower extremities for computer
assisted physical rehabilitation. In [14], a fall detection system
was presented based on wearable inertial sensors.

Depth sensors and wearable inertial sensors have been used
individually for human action recognition. However, simulta-
neous utilization of both depth and wearable inertial sensors
for human action recognition are less common [15]–[18]. In
[15], an inertial sensor and a Kinect were used to monitor a
person’s intake gesture. The position and angular displacement
of arm gestures captured by the Kinect and the acceleration
of arm gestures captured by the inertial sensor were analyzed
separately. No information was published about how the data
from the two sensors were fused together to achieve more
accurate monitoring. Moreover, the application involved intake
gestures not human action recognition. In [16], a Kinect depth
sensor and a sensor consisting of an accelerometer and a
gyroscope were used together to detect falls using a fuzzy
inference approach. More specifically, the acceleration data
from the accelerometer, the angular velocity data from the
gyroscope, and the center of gravity data of a moving person
from the Kinect were used as inputs into a fuzzy inference
module to generate alarms when falls occurred. However, in
the paper, only one action (falling) was considered and no
distinction between different actions was considered. In [17],
a Kinect depth sensor and five three-axis accelerometers were
used for indoor activity recognition. The acceleration data
from the accelerometers and the position data from the Kinect
were merged as the input to an ensemble of binary neural
network classifiers. However, only feature-level fusion was



performed and the input signals to the classifiers were raw
acceleration and position data without feature extraction. In
[18], a Hidden Markov Model (HMM) classifier was used for
hand gesture recognition with raw data from both a Kinect
depth camera and an inertial body sensor (position data of the
hand joint from a Kinect depth camera as well as acceleration
data and angular velocity data from an inertial body sensor).
No feature extraction was conducted and only feature-level
fusion was used.

Depth and wearable inertial sensors are used to achieve
improved human action recognition compared to when the
sensors are used individually. While each of these sensors has
its own limitations when operating under realistic conditions,
utilizing them together provides synergy. In addition, our
recognition solution is devised to be computationally efficient
so as to run in real-time on desktop platforms.

In this paper, both feature-level and decision-level fusion
are considered. The decision-level fusion is performed viathe
Dempster-Shafer theory. The introduced fusion approach is
evaluated using a publicly available multimodal human action
database, the Berkeley Multimodal Human Action Database
(MHAD) [19]. Performance is compared in situations when
using each modality sensor individually. Depth and wearable
inertial sensors are low-cost, easy to operate, and can be
used in darkness. These attributes make their joint utilization
practical in many HCI applications.

The rest of the paper is organized as follows. In Section
II, mathematical techniques used in our fusion approach are
stated. In Section III, the multimodal human action database
is described. The details of our fusion approach are presented
in Section IV. The results are reported in Section V. The
conclusion is in Section VI.

II. M ATHEMATICAL TECHNIQUES

A. Sparse Representation Classifier

Sparse representation (or sparse coding) has received atten-
tion due to success in face recognition [20], [21]. The idea is to
represent a test sample according to a small number of atoms
sparsely chosen out of an over-complete dictionary formed
by all available training samples. Let us considerC distinct
classes and a matrixX = {xi}

n
i=1 ∈ R

d×n formed byn d-
dimensional training samples arranged column-wise to form
the over-complete dictionary. For a test sampley ∈ R

d, let us
expressy as a sparse representation in terms of matrixX as
follows:

y = Xα (1)

whereα is a n × 1 vector of coefficients corresponding to
all training samples from theC classes. One cannot directly
solve for α since (1) is typically under-determined [21].
However, a solution can be obtained by solving the following
ℓ1-regularized minimization problem:

α̂ = argmin
α

‖y−Xα‖22 + λ‖α‖1 (2)

whereλ is a regularization parameter which balances the in-
fluence of the residual and the sparsity term. According to the
class labels of the training samples,α̂ can be partitioned into

C subsetsα̂ = [α̂1, α̂2, . . . , α̂C ] with α̂j(j ∈ 1, 2, . . . , C)
denoting the subset of the coefficients associated with the
training samples from thejth class, i.e.Xj . After coefficients
partitioning, a class-specific representation,ỹj , is computed
as follows:

ỹj = Xjα̂j . (3)

The class label ofy can be identified by comparing the
closeness betweeny and ỹj via

class(y) = argmin
j∈{1,2,...,C}

rj(y) (4)

where rj (y) = ‖y − ỹj‖2 indicates the residual error. See
Algorithm 1.

Algorithm 1 The Sparse Representation Classifier (SRC)
Algorithm

Input: Training samplesX = {xi}
n
i=1 ∈ R

d×n, class label
ωi (used for class partitioning), test sampley ∈ R

d, λ, C
(number of classes)
Calculateα̂ via ℓ1-minimization of (2)
for all j ∈ {1, 2, . . . , C} do

PartitionXj , αj

Calculaterj(y) = ‖y − ỹj‖2 = ‖y −Xjα̂j‖2
end for
Decideclass(y) via (4)
Output: class(y)

B. Collaborative Representation Classifier

As suggested in [22], it is the collaborative representation,
i.e. the use of all the training samples as a dictionary, but not
the ℓ1-norm sparsity constraint, that improves classification
accuracy. Theℓ2-regularization generates comparable results
but with significantly lower computational complexity [22].
The collaborative representation classifier (CRC) [22] swapped
the ℓ1 penalty in (2) with anℓ2 penalty, i.e.

α̂ = argmin
α

‖y−Xα‖22 + θ‖α‖22. (5)

The ℓ2-regularized minimization of (5) is in the form of the
Tikhonov regularization [23] leading to the following closed
form solution

α̂ = (XTX+ θI)−1XTy (6)

where I ∈ R
n×n denotes an identity matrix. The general

form of the Tikhonov regularization involves a Tikhonov
regularization matrixΓ. As a result, (5) can be expressed as

α̂ = argmin
α

‖y−Xα‖22 + θ‖Γα‖22. (7)

The termΓ allows the imposition of prior knowledge on the
solution using the approach in [24]–[26], where the training
samples that are most dissimilar from a test sample are given
less weight than the training samples that are most similar.



Specifically, the following diagonal matrixΓ ∈ R
n×n is

considered:

Γ =



‖y − x1‖2 0

. . .
0 ‖y − xn‖2


 . (8)

The coefficient vector̂α is then calculated as follows:

α̂ = (XTX+ θΓTΓ)−1XTy. (9)

C. Dempster-Shafer Theory

DST introduced by Demspter was later extended by Shafer
[27]. DST is able to represent uncertainty and imprecision and
can effectively deal with any union of classes and has been
applied to many data fusion applications, e.g. [28], [29].

Let Θ be a finite universal set of mutually exclusive and
exhaustive hypotheses, called a frame of discernment. In
classification applications,Θ corresponds to a set of classes.
The power set,2Θ is the set of all possible subsets ofΘ.
A mass function or Basic Probability Assignment (BPA) is
a functionm : 2Θ → [0, 1], which satisfies the following
properties: ∑

A⊆Θ

m(A) = 1 (10)

m(∅) = 0 (11)

where∅ is the empty set. A subsetA with nonzero BPA is
called a focal element. The value ofm(A) is a measure of
the belief that is assigned to setA, not to subsets ofA. Two
common evidential measures, belief and plausibility functions,
are respectively defined as follows (A ⊆ Θ, B ⊆ Θ):

Bel(A) =
∑

B⊆A

m(B) (12)

Pl(A) =
∑

B∩A 6=∅

m(B), P l(∅) = 0. (13)

These two measures have the following properties:

Bel(A) ≤ Pl(A) (14)

Pl(A) = 1−Bel(Ā) (15)

whereĀ is the complementary set ofA: Ā = Θ−A.
For combining the measures of evidence from two indepen-

dent sources, the Dempster’s rule for combining two BPAs,m1

andm2, is given by

m1,2(∅) = 0 (16)

m1,2(A) =
1

1−K

∑

B∩C=A 6=∅

m1(B)m2(C) (17)

K =
∑

B∩C=∅

m1(B)m2(C). (18)

The normalization factorK provides a measure of conflict
between the two sources to be combined. This rule is com-
mutative and associative. If there are more than two sources,
the combination rule can be generalized by iteration. A joint
decision is made based on the combined BPA by choosing the
class with the maximumBel or Pl [27].

III. H UMAN ACTION DATABASE

The Berkeley Multimodal Human Action Database
(MHAD) [19] contains temporally synchronized and geo-
metrically calibrated data from a motion capture system,
stereo cameras, Kinect depth cameras, wireless wearable ac-
celerometers, and microphones. After removing one erroneous
sequence, it consists of 659 data sequences from 11 actions
performed 5 times by 7 male and 5 female subjects (11 aged
23-30 years and one elderly). The 11 actions are:jumping
in place (jump), jumping jacks(jack), bending-hands up all
the way down(bend),punching(punch),waving two hands
(wave2),waving right hand(wave1),clapping hands(clap),
throwing a ball (throw), sit down and stand up(sit+stand),
sit down(sit), stand up(stand). The database incorporates the
intra-class variations. The database incorporates the intra-class
variations. For example, the speed of an action was different
for different subjects.

There are 5 sensor modalities in the Berkeley MHAD, from
which only the depth and inertial data are considered here.
Furthermore, only the data from the Kinect camera placed in
front of the subject are considered.

IV. FUSION APPROACH

A. Feature Extraction from Depth Data

Fig. 1 shows three example depth images of the actions
jumping jacks, punching, andthrowing a ball. A depth image
can be used to capture the 3D structure and shape information.
Yang et al. [7] proposed to project depth frames onto three
orthogonal Cartesian planes for the purpose of characterizing
an action. In [30] we considered the same approach to achieve
human action recognition based on depth images. Before
performing depth image projections, first the foreground that
contains the moving human subject needs to be extracted. Most
of the dynamic background subtraction algorithms involve
background modeling techniques [31] or spatio-temporal filter-
ing to extract the spatio-temporal interest points corresponding
to an action [32]. To make this task computationally efficient,
with the consideration that a human subject is expected to be
in front of the camera at a certain distance range, the mean
depth valueµ for eachM0×N0 depth image is computed and
then the foreground region is selected according to

da,b =

{
da,b, if |da,b − µ| ≤ ǫ

0, otherwise
(19)

whereda,b(a = 1, 2, . . . ,M0, b = 1, 2, . . . , N0) is the depth
value (indicating the distance between the Kinect camera and
the object) of the pixel in theath row andbth column of the
depth image,ǫ is a threshold for the depth value with unit
mm. We examined all depth video sequences in the Berkeley
MHAD and found that the foreground can be removed by
setting ǫ ∈ [800, 900]. In our experiments,ǫ = 850 was
chosen. An example of the foreground extracted depth image
is shown in Fig. 2.

Each foreground extracted depth image is then used to
generate three 2D projected maps corresponding to the front,
side, and top views (see Fig. 3), denoted bymapv where



Fig. 1. Example depth images of the actions (left to right)jumping jacks,
punching, and throwing a ball.

Fig. 2. Depth image foreground extraction: (left) originaldepth image, (right)
foreground extracted depth image.

v ∈ {f, s, t}. For a point (x, y, z) in the depth image
with z denoting the depth value in a right-handed coordi-
nate system, the pixel values in the three projected maps
(mapf ,maps,mapt) are indicated byz, x, andy, respectively.
For each projection view, the absolute difference between
two consecutive projected maps is accumulated through an
entire depth video sequence forming a so called depth motion
map (DMM) [30]. Specifically, for each projected map, the
motion energy is calculated as the absolute difference between
two consecutive maps. For a depth video sequence withN
frames, the depth motion mapDMMv is obtained by stacking
the motion energy across an entire depth video sequence as
follows:

DMMv =

N−1∑

q=1

∣∣mapq+1
v −mapqv

∣∣ , (20)

whereq represents the frame index, andmapqv the projected
map of theqth frame for the projection viewv. To keep the
computational cost low, only the DMM generated from the
front view, i.e.DMMf , is used as the feature in our case.

A bounding box is set to extract the non-zero region as
the region of interest (ROI) in eachDMMf . Let the ROI
extractedDMMf be denoted byDMM ′

f . Fig. 4 shows an
exampleDMM ′

f generated from awaving two handsdepth
video sequence. As seen here, DMM is able to capture the
characteristics of the motion. SinceDMM ′

f of different action
video sequences may have different sizes, bicubic interpolation
is used to resize allDMM ′

f to a fixed size in order to reduce
the intra-class variations.

B. Feature Extraction from Acceleration Data

In the Berkeley MHAD, 6 three-axis wireless accelerom-
eters (A1, . . . , A6) were placed on the subjects (Fig. 5) to
measure movements at the wrists, ankles and hips. The ac-
celerometers captured the motion data with the frequency of
about 30Hz. Here, each accelerometer sequence is partitioned
into Ns temporal windows as suggested in [19]. Statistical

Fig. 3. Three projection views of a depth image.

T
im

e

(front view)

Fig. 4. ADMM ′

f
generated from awaving two handsdepth video sequence.

measures includingmean, variance, standard deviation, and
root mean squareare computationally efficient and useful for
capturing structural patterns in motion data. Therefore, these
four measures are computed here along each direction in each
temporal window. For each accelerometer, concatenating all
measures fromNs windows results in a column feature vector
of dimensionality4× 3×Ns.

Although 6 accelerometers were used in the Berkeley
MHAD, we consider only two accelerometers due to prac-
ticality. To select the two accelerometers, an analysis was
conducted by using the first six subjects for training and
the remainder for testing. We setNs = 15 (an analysis of
choosing the number of segments is provided in Section V)
and employed SVM to classify the 11 actions. Based on the
recognition performance and the positions of the accelerome-
ters, the accelerometersA1 andA4 were found to be the most
effective for the human actions in the database (see Table I).
Note thatA1 and A4 are placed on the left wrist and right
hip, respectively, where people may wear a watch and a cell
phone pouch in a nonintrusive manner. NeitherA5 nor A6

were chosen because they were placed on the ankles and were
not able to generate useful information due to the relatively



Fig. 5. Body placement of the six accelerometers in the Berkeley MHAD.

static foot movements in the actions.

TABLE I

RECOGNITION RATES(%) WHEN USING DIFFERENT ACCELEROMETERS

Accelerometer Recognition rate (%)
A1 86.67
A2 85.15
A3 71.49
A4 72.42
A5 56.43
A6 57.88

C. Feature-Level Fusion

Feature-level fusion involves fusing feature sets of different
modality sensors. LetU = {ul}nl=1 in R

d1 (d1-dimensional
feature space) andV = {vl}nl=1 in R

d2 (d2-dimensional
feature space) represent the feature sets generated, respec-
tively, from the Kinect depth camera and the accelerometer
for n training action samples. Column vectorsul andvl are
normalized to have the unit length. Then, the fused feature set
is represented byF = {fl}

n
l=1 in R

d1+d2 with each column
vector beingfl = [uT

l ,v
T
l ]

T . The fused feature set is then fed
into a classifier.

D. Decision-Level Fusion

As noted earlier, for theC action classes and a test
sample y, the frame of discernment is given byΘ =
{H1, H2, . . . , HC}, where Hj : class(y) = j, j ∈
{1, 2, . . . , C}. The classification decision of the classifiers
SRC or CRC is based on the residual error with respect to
classj, rj(y), using (4). Each class-specific representationỹj

and its corresponding class labelj constitute a distinct item
of evidence regarding the class membership ofy. If y is close
to ỹj according to the Euclidean distance, for smallrj(y), it
is most likely thatHj is true. If rj(y) is large, the class of
ỹj will provide little or no information about the class ofy.
As demonstrated in [33], [34], this item of evidence may be
represented by a BPA overΘ defined as follows:

m(Hj |ỹj) = βφj(rj(y)) (21)

m(Θ|ỹj) = 1− βφj(rj(y)) (22)

m(D|ỹj) = 0, ∀D ∈ 2Θ \ {Θ, Hj} (23)

whereβ is a parameter such that0 < β < 1, andφj is a
decreasing function satisfying these two conditions:

φj(0) = 0 (24)

lim
r(yj)→∞

φj(rj(y)) = 0. (25)

However, as there exist many decreasing functions satisfying
the two conditions, [33] suggests to choose thisφj

φj(rj(y)) = e−γjrj(y)
2

(26)

with φj being a positive parameter associated with classj. In
[34], a method for tuning the parameterγj was proposed. To
gain computational efficiency,γj is set to 1 in our case which
makesφj a Gaussian function

φj(rj(y)) = e−rj(y)
2

. (27)

Since there areC class-specific representationsỹj ’s, the final
belief regarding the class label ofy is obtained by combining
the C BPAs using the Dempster’s rule of combination. The
resulting global BPA,mg, was shown in [33] to be:

mg(Hj) =
1

K0
(1−{1−βφj(rj(y))})·

∏

p6=j

{1−βφp(rp(y))},

p ∈ {1, . . . , C} (28)

mg(Θ) =
1

K0

C∏

j=1

{1− βφj(rj(y))} (29)

whereK0 is a normalization factor:

K0 =
C∑

j=1

∏

p6=j

{1−βφp(rp(y))}+(1−C)
C∏

j=1

{1−βφj(rj(y))}.

(30)
In our decision-level fusion here, SRC or CRC is first

applied to the depth feature setU and acceleration feature set
V, respectively. Therefore, two corresponding global BPAs,
mg,1 andmg,2, are generated. The combined BPA frommg,1

andmg,2 is then obtained via (17). The class label of a new test
sample is determined by which corresponds to the maximum
value ofBel(Hj), i.e. max(Bel(Hj)).

V. RESULTS

A. Experimental Setup

The size of the depth images in the database is480× 640
pixels. After the foreground extraction from each depth image,
the foreground extracted image was downsampled to1/4 of
the original size, i.e.120× 160, to reduce the dimensionality
and thus the computational complexity. Then, the DMM
generation was performed on the reduced size images. To have
a fixed size for theDMM ′

f , the sizes of these maps for all
action samples in the database were found. The fixed size of
eachDMM ′

f was set to the mean value of all of the sizes,
which was65 × 50. Therefore, each feature vectorul had a
dimensionality of 3250.



The number of segmentsNs for the acceleration data was
determined via experimentation using the first 6 subjects
for training and the rest for testing. SVM and CRC were
employed as the classifiers and the performance was tested
using differentNs; see Fig. 6. In this figure,A1 denotes
only using the accelerometerA1, A4 denotes only using
the accelerometerA4, and A1&A4 denotes using both of
the accelerometersA1 and A4 together where the features
from the two accelerometers are stacked.Average denotes
the mean accuracy of using the three accelerometer settings:
A1, A4, andA1&A4. The settingNs ∈ [13, 17] produced a
consistent recognition performance under three accelerometer
settings. Thus,Ns = 15 was chosen for the experiments. Each
feature vectorvl had the dimension of 180 and 360 for the
single-accelerometer setting and the two-accelerometer setting,
respectively.
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Fig. 6. Recognition rates (%) using different number of segments for
accelerometer features: (a) SVM classifier. (b) CRC classifier.

Although downsampling was used to reduce the dimension-
ality of the features generated from the depth images, the
dimensionality oful and the fused featurefl was greater than
3000. To gain computational efficiency, Principal Component
Analysis (PCA) was applied tofl to reduce the dimensionality.
The PCA transform matrix was calculated using the training
feature set and then applied to the test feature set. The principal
components that accounted for 95% of the total variation of
the training feature set were considered.

B. Recognition Outcome

For evaluation purposes, the leave-one-subject-out cross-
validation test (CV test) was considered. The recognition
outcome was found for each subject as the left-out subject
and the final recognition outcome was averaged over all

subjects to remove any bias. Five classifiers consisting of
SVM, SRC, CRC,k-nearest neighbor (k-NN), and HMM
were employed to evaluate the effectiveness of the proposed
fusion approach. SVM was implemented using the LIBSVM
toolbox1 with an RBF kernel. Additionally, the package solver
l1 ls 2 was used to calculate the sparse approximations for
SRC. The optimal parameters for SVM and the regularization
parameters,λ and θ, for SRC and CRC were assigned to
be those that maximized the training accuracy via a fivefold
cross-validation. The parameterk = 3 was used ink-NN as it
generated the best outcome among differentk’s. The left-to-
right topology with eight states [18] were used for HMM.

We compared the recognition performance of our feature-
level fusion framework with the performance of each in-
dividual modality sensor; see Table II. By combining the
features from the two differing modality sensors, the overall
recognition rate was improved over the Kinect camera alone
and over the accelerometer alone. This improved performance
was consistent for all five classifiers. The overall recognition
rate of accelerometerA1 was found to be higher than that
of accelerometerA4 mainly due to the type of actions in the
database consisting of hand movements. Fusing the Kinect
data withA1 data achieved similar recognition rates as fusing
the Kinect data withA4 data (except for the case when the
k-NN classifier was used) due to the complementary nature
of the data from the two differing modality sensors. For
example, the accelerometerA4 was not able to capture the
hand movement of the actionwaving two hands; however,
the DMM ′

f generated from the depth images as shown in
Fig. 4 could capture the characteristics of this action. Seen in
Table II, using the two accelerometersA1 andA4 in the fusion
approach did not lead to a substantial recognition improvement
over the situation when using a single accelerometerA1

or A4. For the five classifiers, the recognition accuracy of
Kinect+A1&A4 came close to that of Kinect+A1 (less than
1%) as the accelerometerA4 did not provide any additionally
useful data to distinguish certain actions, in particular the
actions that involved moving hands and arms.

Table III, Table IV, and Table V show three recognition
confusion matrices corresponding to using Kinect only, using
accelerometerA1 only, and using Kinect andA1 fusion,
respectively, with the SVM classifier. As can be seen from
Table III, the misclassifications mostly occurred among the
actions sit down and stand up, sit down, and stand up.
As illustrated in Fig. 7, the DMMs (representing shape and
motion) of these actions appeared quite similar; however, the
shape and motion of the actions sit down and stand up occurred
in different temporal orders. The actionsit down and stand up
is a complex movement composed ofsit downandstand up.
The failure of the DMM to distinguish the shape and motion
cues occurred in different temporal orders of these actions
which demonstrated a disadvantage of using the Kinect alone.
Table IV shows the confusion matrix associated with using
accelerometerA1 alone. The accuracies of the actionssit down
and stand up, sit down, andstand upwere improved noticeably

1http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm/
2http://www.stanford.edu/ ˜ boyd/l1_ls



TABLE II

RECOGNITION RATES(%) FOR THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION TEST

Method Kinect A1 Kinect+A1 A4 Kinect+A4 A1&A4 Kinect+A1&A4

SVM 92.39 91.77 98.48 79.03 98.18 94.20 99.24
SRC 84.93 92.38 98.79 72.03 97.57 95.73 99.54
CRC 87.52 93.00 98.18 82.19 97.11 96.81 99.13
k-NN 65.04 86.91 91.17 65.65 82.57 89.08 91.85
HMM 84.80 90.43 97.57 78.12 96.50 93.77 98.18

TABLE III

CONFUSION MATRIX WHEN USINGK INECT ONLY FOR THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION TEST

Action jump jack bend punch wave2 wave1 clap throw sit+stand sit stand
jump 98.33 - - - - - - 1.67 - - -
jack - 95 - - - - - 5 - - -
bend - - 100 - - - - - - - -
punch - - - 100 - - - - - - -
wave2 - 8.33 - - 91.67 - - - - - -
wave1 - - - - - 100 - - - - -
clap - - - 11.67 - - 86.67 1.67 - - -

throw - - - 1.69 1.69 - - 96.61 - - -
sit+stand - - - - - - - - 88.33 3.33 8.33

sit - - - - - - - - 8.33 86.67 5
stand - - - - - - - - 13.33 13.33 73.33

TABLE IV

CONFUSION MATRIX WHEN USING ACCELEROMETERA1 ONLY FOR THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION TEST

Action jump jack bend punch wave2 wave1 clap throw sit+stand sit stand
jump 93.33 1.67 - 1.67 - - 3.33 - - - -
jack 11.67 88.33 - - - - - - - - -
bend - - 100 - - - - - - - -
punch 6.67 - - 75 - - 18.33 - - - -
wave2 - - - - 100 - - - - - -
wave1 - - - - - 100 - - - - -
clap 1.69 - - 3.39 - - 93.22 1.69 - - -

throw 1.69 - - - - 10.17 1.69 76.27 - - 10.17
sit+stand - - - - - 1.67 - 1.67 96.67 - -

sit - - - - - 1.67 - 1.67 - 96.67 -
stand - - - - - 3.33 - 1.67 - 5 90

TABLE V

CONFUSION MATRIX WHEN USINGK INECT AND ACCELEROMETERA1 FUSION FOR THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION TEST

Action jump jack bend punch wave2 wave1 clap throw sit+stand sit stand
jump 100 - - - - - - - - - -
jack 1.67 98.33 - - - - - - - - -
bend - - 100 - - - - - - - -
punch - - - 98.33 - - 1.67 - - - -
wave2 - 1.67 - - 98.33 - - - - - -
wave1 - - - - - 100 - - - - -
clap 1.69 - - - - - 98.31 - - - -

throw - - - 1.69 - - - 98.31 - - -
sit+stand - - - - - - - - 100 - -

sit - - - - - - - - - 100 -
stand - - - - - - - - 8.33 - 91.67

(over 10% for these three actions) as compared to the Kinect
only situation. The three-axis acceleration data were ableto
distinguish similar motions that occurred in different temporal
orders since the trend of the three-axis acceleration data for the
actionsit downwas opposite to that for the actionstand upas
illustrated in Fig. 8. However, some of the actions, e.g.punch,
produced much lower accuracy than when using the Kinect
alone. The action punch was mostly misclassified with the
actionclap. From Fig. 9, one sees that the features generated

from the three-axis acceleration data for the two actions were
similar. By integrating the Kinect depth images with the
acceleration data, the fused features were more discriminatory
leading to the improved recognition rates over the Kinect alone
and the accelerometer alone situations. Table V shows that
the low recognition rates for those actions when using one
modality sensing improved when the Kinect and accelerometer
data were used together due to the complementary nature
of the data from these two differing modality sensors. For



TABLE VI

RECOGNITION RATES(%) FOR RANDOM TEST

Method Kinect A1 Kinect+A1 A4 Kinect+A4 A1&A4 Kinect+A1&A4

SVM 86.34±1.92 87.69±2.95 97.02±1.33 70.52±2.98 96.41±1.43 90.30±2.27 98.23±0.70
SRC 79.20±2.01 87.05±2.82 97.41±0.94 65.65±3.24 94.64±1.97 90.64±2.64 98.14±0.83
CRC 81.61±2.00 88.09±3.12 96.87±1.09 73.59±3.43 94.89±2.01 92.01±2.84 97.94±0.93
k-NN 63.81±2.06 84.02±3.71 90.65±2.08 62.71±3.31 81.52±3.16 86.16±3.26 90.93±1.64
HMM 78.83±2.24 86.12±2.47 95.70±1.38 69.13±2.75 93.42±1.82 89.62±2.06 96.68±1.14

example, the overall recognition rate for the actionsit was
improved by 13% over the Kinect alone and the accuracy for
the actionpunchwas improved by 23% over the accelerometer
alone.

Fig. 7. Depth motion maps for the actions (left to right)sit down and stand
up, sit down, andstand up.

To investigate training data size, we conducted a random
test experiment by randomly choosing half of the subjects
for training and the remaining subjects for testing. Each test
was repeated 20 times and the mean performance (mean
recognition rate± standard deviation) was computed. As can
be seen from Table VI, our fusion approach produced the same
performance as the CV test. Again, the overall recognition rate
of the fusion approach was improved over the Kinect alone and
the accelerometer alone (the improvement was even greater
than that of the CV test). This trend was consistent for the
four different classifiers.

We also tested the effectiveness of our decision-level fu-
sion approach. We used CRC rather than SRC due to its
computational efficiency. As suggested in [33], we setβ =
0.95 for the BPA in (21). Table VII shows that the feature-
level fusion outperformed the decision-level fusion in most
cases. However, the decision-level fusion involving the Kinect
camera and accelerometer still achieved better performance
than each individual modality sensor. One disadvantage of the
decision-level fusion is that CRC needs to be applied to both
the depth feature and the acceleration feature. In other words,
CRC has to be run twice.

We conducted a comparison of our fusion approach with the
one described in [19], where multiple kernel learning (MKL)
was employed to fuse information from different modality
sensors. In [19], each depth video was first divided into
8 disjoint Depth-Layered Multi-Channel (DLMC) videos by
dividing the depth range into 8 equal depth layers and by
keeping the pixels within the depth range of the corresponding
depth layer. The first two depth layers and the last depth layer
were discarded due to a lack of depth information. Histogram
of Gradients (HOG) and Histogram of Flow (HOF) features
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Fig. 8. Three-axis acceleration signals corresponding to the actions: (a)sit
down, and (b)stand up.

[35] were then extracted from each DLMC video. Then, the
Bag-of-Features (BoF) representation in [36] was employedto
code the DLMC videos into histograms to serve as the features.
Note that the type of fusion in [19] was a feature-level fusion
and SVM was employed in MKL. Therefore, our feature-level
fusion with the SVM classifier is compared to the approach
in [19]. As listed in Table VIII, our approach led to higher
recognition rates. For the acceleration data, only variance was
utilized to extract features from the temporal windows as
described in [19]. For the depth videos, HOG/HOF features
were computed at the space-time-interest-points (STIPs).Due
to the noise in the depth videos, the detected STIPs contained
many points that were not related to the actions. Also, the
feature extraction method in [19] calculates the HOG/HOG
descriptors for each DLMC video which is computationally
expensive and poses real-time implementation challenges.

Finally, the computational aspect of our solution is con-
sidered, see Fig. 10. An action is normally completed ap-
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Fig. 9. Features generated from three-axis acceleration data for the actions
punchandclap.

TABLE VII

RECOGNITION RATES(%) COMPARISON BETWEEN FEATURE LEVEL

FUSION (CRC)AND DECISION LEVEL FUSION(CRC)

Method Kinect+A1 Kinect+A4 Kinect+A1&A4

CV test
Feature-level fusion 98.18 97.11 99.13

Decision-level fusion 98.05 97.38 98.97
Random test

Feature-level fusion 96.87 94.89 97.94
Decision-level fusion 96.04 95.36 97.31

proximately within a 2-second time duration. The numbers in
Fig. 10 indicate the main components in our fusion approach.
More specifically, the components are as follows: (1) depth
image foreground extraction and image downsampling, (2)
DMMf = DMMf + |mapq+1

f − mapqf | computation, (3)
acceleration feature extraction captured within a time window,
(4) ROI extraction from theDMMf and resizing theDMM ′

f

to a fixed size via bicubic interpolation, (5) applying PCA
dimensionality reduction on the fused feature vector, and (6)
performing classification using SVM. The components (1) and
(2) are executed right after each depth frame is captured while
the components (3)-(6) are performed after an action sequence
completes. Since the PCA transform matrix is calculated using
the training feature set, it can be directly applied to the feature
vector of a test sample. Our code is written in MATLAB and
the processing time reported is for an Intel i7 Quadcore 2.67-
GHz PC platform with 8GB RAM. The average processing
time of each component is listed in Table IX.

VI. CONCLUSION

In this paper, a fusion framework was introduced that
utilizes data from two differing modality sensors (a Kinect
camera and a wearable inertial sensor (accelerometer)) forthe
purpose of achieving human action recognition. Using data
from the Berkeley Multimodality Human Action Database,
improved recognition rates were achieved by using these two
differing modality sensors together compared to the situations
when each sensor was used individually. This was found to
be due to the complementary aspect of data from these two
differing modality sensors.

TABLE VIII

COMPARISON OF RECOGNITION RATES(%) BETWEEN OUR

FEATURE-LEVEL FUSION (SVM) AND THE MKL METHOD IN [19]

Method Kinect+A1 Kinect+A4 Kinect+A1&A4

CV test
Ours 98.48 98.18 99.24
[19] 92.65 91.93 93.77

Random test
Ours 97.02 96.41 98.23
[19] 90.59 88.87 91.43

time window

...

(3) (4) (5) (6)

(1) (1) (2) (1) (2)

Fig. 10. Real-time action recognition timeline of our fusion framework.
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