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Abstract—The goal of learning-based image super-resolution
(SR) is to generate a plausible and visually pleasing high-
resolution (HR) image from a given low-resolution (LR) input.
The SR problem is severely under-constrained, and it has to
rely on examples or some strong image priors to reconstruct the
missing HR image details. This paper addresses the problem of
learning the mapping functions (i.e., projection matrices) between
the LR and HR images based on a dictionary of LR and HR
examples. Encouraged by recent developments in image prior
modeling, where the state-of-the-art algorithms are formed with
nonlocal self-similarity and local geometry priors, we seek an SR
algorithm of similar nature that will incorporate these two priors
into the learning from LR space to HR space. The nonlocal self-
similarity prior takes advantage of the redundancy of similar
patches in natural images, while the local geometry prior of the
data space can be used to regularize the modeling of the non-
linear relationship between LR and HR spaces. Based on the
above two considerations, we firstly apply the local geometry
prior to regularize the patch representation, and then utilize
the nonlocal means (NLM) filter to improve the super-resolved
outcome. Experimental results verify the effectiveness of the
proposed algorithm compared to the state-of-the-art SR methods.

Index Terms—Super-resolution (SR), neighbor embedding,
anchored neighborhood regression, locality geometry, nonlocal
means.
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I. INTRODUCTION

Images with high-resolution (HR) are desired and often
required. They can offer more details that may be critical in
various applications, such as remote sensing [1], [2], medical
diagnostic [3], intelligent surveillance [4], [5], [6]. Given an
observed LR image, how to induce an HR image is an active
research topic in the image processing community. Super-
resolution (SR) reconstruction is a technology, which was
first proposed by Huang et al. [7] in 1984, can estimate
HR images from observed LR images. It increases the high
frequency components and removes the degradations caused
by the imaging process of camera sensors.

A. State of Research

Generally speaking, existing image SR methods can be
classified into three categories [8]: interpolation-based SR
methods, reconstruction-based multi-image SR methods, and
learning-based single image SR (SISR) methods.

To super-resolve an LR observation, interpolation-based SR
(e.g., Bilinear, Bicubic, and other resampling methods) utilizes
a base function or an interpolation kernel to estimate the
unknown pixels in HR grids. Although these approaches are
very simple and fast, they are prone to blur high-frequency
details and therefore may lead to noticeable blurring edges
and unclear textures in the super-resolved HR image. Recently,
a wide range of approaches that outperform functional inter-
polation have been developed, such as geometric regularity of
image structures [9], [10] and gradient profile priors [11], [12].

In order to introduce more prior knowledge, reconstruction-
based multi-image SR methods combine the non-redundant
information contained in multiple LR images to generate an
HR one. Due to the fact that image degeneration process
has information loss and numerous pixel intensities need
to be predicted from the limited input data, reconstruction-
based multi-image SR is also a challenging and severely ill-
posed problem [13], [14]. Recently, many prior knowledge
has been introduced to facilitate the reconstruction process
to enhance the SR performance, such as the projection-onto-
convex-sets (POCS) approach [15], iterative back projection
(IBP) approach [16], and adaptive filtering approach [17].
However, when the motion between two input LR images
is estimated inaccurately, which often occurs in non-global
motion fields [18], [19], [20], annoying artifacts will appear in
the super-resolved results. With the increasing of magnification
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Fig. 1. The pipeline of our proposed LANR-NLM based SR reconstruction framework.

factor, the reconstruction constraints and smoothness prior will
provide less useful information. They tend to smear out image
details and sometimes have difficulty with recovering fine
structures and textures [21]. It is also stated that for large
enough magnification factors, any smoothness prior will lead
to overly smooth results with very little high-frequency con-
tent. As reported in [22], the practical limit of magnification
factor for reconstruction-based multi-image SR methods is 1.6
if the noise removal and image registration is not good enough
in the pre-processing.

Learning-based or example-based SISR methods assume
that high-frequency details lost in the input LR image can
be learnt from a training set of LR and HR image pairs.
According to the differences of learning strategies, they can be
divided into two categories: explicitly regression based [23],
[24], [25] and implicitly coding based [26], [5], [27]. The
explicit regression relationship or the implicit coding rela-
tionship between LR images and the corresponding HR ones
can be used to predict the missing HR frequencies in the LR
observation. In recent years, many different prior constraints
have been introduced to regularize the under-constrained and
ill-posed explicit regression learning or implicit coding. Priors
that are commonly exploited in SISR methods mainly include
gradient profile prior [28], soft information regularization [29]
and sparsity either through Gaussian mixture models [30] or
through an analysis operator [31]. Liu et al. [32], [33] took
advantage of contextual information of local patches based on
a Markov random fields (MRFs) model, along with structure-
modulated image priors. Dong et al. [34], [35] combined
the ideas of data clustering, adaptive principal components
analysis (PCA) based sparse representations and nonlocal self-
similarity of image patches within a given image.

In machine learning and pattern recognition, locality prior
of training data is critical for exploring the geometry of data.
In particular, the locality constraint can help reveal the non-
linear manifold structure of the data space [36], [37], [38]. The
locality-constrained algorithms try to embed the relationship
in high dimensional space to low dimensional space, making
that nearby points in high dimensional space remain nearby
and similarly co-located with respect to one another in low

dimensional space [39], [40]. This is the essential of image
SR reconstruction, which states that the high-frequency details
lost in an LR image can be learnt from a training set of LR
and HR image pairs, i.e., the relationship between training
LR image patches and the corresponding HR patches can be
used to estimate the missing HR components in the given LR
input [41].

Another property of natural images is the nonlocal cor-
relations, i.e., self-similarity of local patch patterns. Unlike
“local mean” filters, which take the mean value of a group of
pixels surrounding a target pixel to smooth the image, nonlocal
means (NLM) filtering takes a mean of all pixels in the
image, weighted by how similar these pixels are to the target
pixel. It has been successfully used for image denoising [42],
inpainting [43], [44], [45], and image restoration [46], [47],
[48], [49].

B. Motivation and Contributions

In this paper, we focus on the learning-based SISR. It
super-resolves the input LR image patch individually by
learning the prior knowledge from the LR and HR patch
pairs. We follow these works [23], [50] and learn the prior
information by regression functions. Specially, in this paper
we take the anchored neighborhood regression (ANR) based
SR method [50] as a starting point to propose a novel SISR
method by regression functions, namely locally regularized an-
chored neighborhood regression based SR with NLM (we call
it LANR-NLM for short). Specifically, we take the nonlocal
redundancies and the local geometry structure of the training
data into account and develop two assembled priors to regu-
larize the ill-posed SR reconstruction problem. By introducing
the nonlocal redundancies, more robust SR estimation can be
expected. Moreover, the proposed method utilizes the locality-
constrained regression in place of the ridge regression in ANR.
It can well explore the non-linear relationship between the LR
and HR spaces and make the regression solution more stable.
The experimental results show improvement of our proposed
method over the original ANR approach, for example, 0.1-0.4
dB higher than the ANR method in terms of PSNR.
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The proposed LANR-NLM based SR method consists of a
learning stage and a reconstruction stage as shown in Fig. 1.
In the learning stage, we first collect a training set consisting
of a large number of co-occurrence LR and HR images,
and then extract pairs of matching patches to form the LR
and HR training sets. A compact LR dictionary is trained
by sparse coding, and the corresponding HR dictionary is
constructed under the assumption that LR and HR features
share the same representations. LANR model is then used
to learn the projection matrix for each dictionary atom. In
the reconstruction stage, we first search the nearest atom in
the LR dictionary for each patch, and then use the learned
projection matrix of this atom to predict the HR features.
Finally, we employ an NLM filter enhancement approach to
reduce artifacts in the estimated HR images.

Built upon our preliminary work published in [51], here
we give a detailed description and evaluation of our proposed
LANR-NLM method in the following aspects: (i) the intro-
duction section is rewritten to provide an extensive review of
relevant work and to make our contributions clear; (ii) the
NLM filter is incorporated to the regression model to improve
the performance of our original model; (iii) extensive experi-
mental evaluations are carried out to verify the effectiveness of
our proposed method compared with existing state-of-the-art
SISR approaches.

C. Organization of This Paper

The remainder of the paper is organized as follows. Sec-
tion II provides problem definitions and related background.
Section III describes the details of our proposed LANR-NLM
method. Section IV presents the experimental results and
analysis. Finally, we conclude this paper in Section V.

II. PROBLEM DEFINITIONS AND RELATED BACKGROUND

A. Image Degradation Model

To comprehensively analyze the image SR reconstruction
problem, the first step is to formulate an observation model that
relates the HR image to the observed LR image. Concretely, let
x and y denote an HR image and the corresponding LR image,
respectively. The relationship between the original HR image
x and the LR observation y can be mathematically modeled
by the following expression:

y = DHx + v, (1)

where H is a blurring filter for the HR image, D is a matrix
representing the decimation operator, and v is the additive
Gaussian white noise accounting for the imaging sensor noise.
Here, x and y are lexicographically stacked versions of the
original HR image and the observed LR image, respectively.

Due to the ill-posed nature of SR reconstruction problem,
the regularization-based techniques have been widely used to
regularize the solution spaces. In order to obtain an effective
regularizer, it is of great importance to find and model an
appropriate prior knowledge of natural images, denoted by
Ω(x). The learned prior knowledge can be employed to
regularize the solution,

J(x) = ||y− DHx||22 + λΩ(x) , (2)

where λ is a Lagrangian multiplier parameter, which balances
the tradeoff between the regularization term Ω(x) and the
likelihood term ||y− DHx||22.

Various image prior models have been developed. Tikhonov
regularization [52] and total variation [53] regularization are
two popular explicit regularization techniques, which are pre-
defined, i.e., letting Ω(x) = ||Cx||22, or Ω(x) = ||Cx||1, where
C is a Laplacian operator. However, those methods based on
pre-defined priors tend to smooth image details and can hardly
lead to satisfactory results. This is mainly because it is difficult
to know what and how much prior information should be
used for the SR problem in advance [54]. Another class of
prior knowledge learned from a set of LR and HR image
pairs instead of using pre-defined ones usually lead to better
SR reconstruction results. These techniques assume that an
image can be locally or sparsely represented in some domain
spanned by a set of bases [55], [26], [8]. In particular, they first
learn coding coefficients in the LR space, and then apply the
same coding coefficients to the HR space to obtain the target
HR image. In the following, we will briefly review several
representative coding based image SR approaches.

B. Coding based image SR

Following the notation used in [54], for an HR image x ∈
RN , let xi = Rix denote an HR image patch of size

√
n×
√
n

extracted at location i, where Ri is the matrix extracting patch
xi from x at location i. Similarly, for an LR image y ∈ RN/s2 ,
let yi = Riy denote an LR image patch of size

√
n/s×

√
n/s

extracted at location i. Here, s is the down-sampling factor.
Given the LR and HR dictionaries DL = [d1

L,d
2
L, ...,d

M
L ]

and DH = [d1
H ,d

2
H , ...,d

M
H ], where M is the dictionary size,

the key issue of coding based methods is how to represent an
image patch yi in the LR space and obtain the optimal weight
vector w:

ŵi = arg min
wi

||yi − DLwi||22 + λΩ(wi). (3)

The target HR patch can be obtained by xi = DHwi and
the final HR image x is calculated by averaging all the
reconstructed patches with the set of coding coefficients wi.
Mathematically, it can be written as:

x =

(
N∑
i=1

RiTRi

)−1 N∑
i=1

RiTDHwi. (4)

For the convenience of expression, we define the operator
“◦” as follows:

x ≈ DH ◦ w =

(
N∑
i=1

RiTRi

)−1 N∑
i=1

RiTDHwi (5)

where w denotes the concatenation of all wi.
In the following, we will introduce two representative local

patch based coding approaches.
1) Neighbor Embedding: Based on the assumption that

LR and HR image patches lie on low-dimensional nonlinear
manifolds and share similar local structures, Chang et al. [55]
proposed to allow LR input patches to be approximated by a
linear combination of their nearest neighbors in the database.
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Firstly, for each LR patch yi in the input LR image, the
optimal reconstruction weights can be obtained by minimizing
the local reconstruction error:

ŵi = arg min
wi

||yi −
∑
k

wi,kDkL||22
s.t.

∑
k

wi,k = 1,
(6)

where k is the index of nearest neighbors of yi in the LR
dictionary. Minimizing Eq. (6) is a constrained least squares
problem, which can be transform to solve a linear system
equation with the “sum to one” constraint.

Recently, Bevilacqua et al. [56] also used neighbor embed-
ding for SR. They assume that the local nonnegative least
squares decomposition weights over a local neighborhood in
the LR space are the same as those in the HR space.

2) Sparse Coding: Neighbor embedding approaches may
produce undesirable results due to over- or under-fitting
problem. To this end, Yang et al. [26] replaced the least
square estimation with a sparsity constrained optimization to
obtain more accurate solution. Accordingly, the LR patches
are sparsely reconstructed from a learned dictionary using the
following formulation:

ŵi = arg min
wi

||yi −
M∑
m=1

wi,mDmL ||22 + λ||w||1, (7)

where || • ||1 denotes the `1-norm. Here, DL is the learned LR
dictionary, which is different from the neighbor embedding
approaches. Sparse dictionaries are jointly learned for LR and
HR coupled feature spaces, with the goal of having the same
sparse representation for LR patches and their corresponding
HR patches.

Built upon this sparse coding based framework, Zeyde et
al. [57] used the K-SVD algorithm to learn the LR dictionary
while directly used the pseudo-inverse to obtain the HR
dictionary. Moreover, they performed dimensionality reduction
on the patches using PCA.

III. THE PROPOSED METHOD

In order to achieve a reasonable solution to the severely ill-
posed SR problem , in this paper we propose to take advantage
of local geometry prior of the data space and the nonlocal
self-similarity prior of natural images to regularize the SR
reconstruction. In the following, we first review the ANR
method, and then present our proposed locally regularized
anchored neighborhood regression model with NLM.

A. Anchored Neighborhood Regression (ANR)

In [50], Timofte et al. supported the use of sparse learned
dictionaries in combination with neighbor embedding meth-
ods, and proposed an ANR based SR approach.

In ANR, each atom of the learned dictionary (by the method
of [57]) is considered as one anchor point in the LR patch
space. Each anchor point is associated with a mapping function
that is learned off-line. Instead of considering the whole
dictionary like the sparse encoding approach in Section II-B2,

ANR proposes to work in the local neighborhood NLi,j of the
LR dictionary,

NLi,j = {DkL}k∈CK(Dj

L)
, (8)

where DjL denotes the nearest neighbor of the input LR patch
yi in the LR dictionary DL, and CK(DjL) is the index set of
the K nearest neighbors of DjL in the LR dictionary DL.

In particular, an input LR image patch is constructed as a
least squares regression problem regularized by the l2-norm
of the reconstruction vector. Thus,

ŵi = arg min
wi

||yi − NLi,jwi||22 + λ1||w||22. (9)

Here, λ1 is a regularization parameter, which balances the
tradeoff between the reconstruction error of yi and the smooth-
ness of ŵi.

Eq. (9) is a ridge regression problem and it has a closed-
form solution:

wi = (NLi,j
T

NLi,j + λ1I)−1NLi,j
T

yi. (10)

The HR patches can be computed using the same recon-
struction weights on the HR neighborhood NHj :

xi = NHj wi, (11)

where xi is the HR output patch and NHj is the HR neighbor-
hood corresponding to NLi,j .

From Eq. (10) and Eq. (11), we obtain:

xi = NHj (NLi,j
T

NLi,j + λ1I)−1NLi,j
T

yi. (12)

Let Pj = NHj (NLi,j
T

NLi,j + λ1I)−1NLi,j
T

be the projection
matrix for dictionary atom DjL, then the coding based SR
problem is transformed to the regression problem. Therefore,
we can calculate the projection matrix Pj for each dictionary
atom DjL, j = 1, 2, ...,M , based on its own neighborhood
NLi,j .

Upon acquiring all the projection matrices, the SR problem
can be solved by mapping the input LR patch into the HR
space:

xi = Pjyi. (13)

B. Locally regularized Anchored Neighborhood Regression for
Regularization

From Eq. (9), we learn that ANR treats all the neighbors in
NLi,j equally. Thus, it is not flexible and adaptive to the input
patch when obtaining the mapping function. To obtain more
accurate reconstruction weights, in this paper we introduce
more prior information to the ridge regression problem (9).
Locality has been verified to be a very important property for
exploring the non-linear data structure. In fact, [36], [37], [4]
have shown that locality is more essential than sparsity, as
locality must lead to sparsity but not necessary vice versa.

Inspired by this, we introduce the locality regularization to
the objective function,

ŵi = arg min
wi

||yi − NLi,jwi||22 + λ1||gi � wi||22
s.t. 1Twi = 1,

(14)
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where “�” denotes a point wise vector product, λ1 is a
parameter to balance the tradeoff between the reconstruction
error of yi and the locality of the solution of ŵi. The constraint
1Twi = 1 follows the shift-invariant requirement, and gi is a
K-dimensional vector that penalizes the distance between the
input LR patch yi and each K nearest dictionary atom, thus
giving different freedom to each dictionary atom, which is
inversely proportional to the correlation corr(yi,D

k
L) to the

input LR patch yi (Note that in this paper we follow [50]
to use the correlation rather than the Euclidean distance to
measure the similarity between patches). Specifically,

gi,k = {1/corr(yi,D
k
L)}α, k ∈ CK(DjL), (15)

where α is used for adjusting the weight decay speed for the
locality adaptor, which is set to 11 in all our experiments. More
details about the setting of α, please refer to Section IV-B.

For all yi, we can rewrite Eq. (14) as:

ŵ = arg min
w

||y− NLw||22 + λ1||Gw||22
s.t. 1Twi = 1.

(16)

Here, NL and G are block diagonal matrices,
NL = blkdiag(NL1,j ,N

L
2,j , ...,N

L
N,j) and G =

blkdiag(g1, g2, ..., gN ).
From Eq. (1), we can easily deduce y = DLŵ = DHDHw.

Similarly, we have NLw = DHNHw. Thus, Eq. (16) can be
rewritten as:

ŵ = arg min
w

||y− DHNHw||22 + λ1||Gw||22
s.t. 1Twi = 1.

(17)

By introducing the locality prior, our proposed method can
achieve more appropriate patch representation. It can obtain
relative smooth reconstruction weights. In other words, large
reconstruction weights will be assigned to the training patches
that are similar to the input patch while small reconstruction
weights will be assigned to the training patches that are
dissimilar to the input patch.

C. Adaptive Regularization by Nonlocal Similarity

The LANR model can exploit the local geometry in data
space. In addition, there are often many repetitive patterns
throughout a natural image. Such nonlocal redundancy is
very helpful to improve the quality of reconstructed images.
Therefore, we further incorporate NLM to the LANR model
as a complementary regularization term.

Alternatively, for each local patch xi, we search for its L
similar patches {xli}Ll=1 in the whole image x (in practice,
a large enough area around xi can be used for the sake of
efficiency). Then we use the obtained L similar patches to
predict the patch xi by

xi =
∑L

l=1
xlib

l
i. (18)

We set the nonlocal weight bli to be inversely proportional to
the distance between patches xi and xli,

bli =
1

γ
exp(−||x̂i − x̂li||22/h), (19)

Algorithm 1 Projection Matrix Learning
Input:

A set of HR training images {IjH}j .
Output:

Projection matrices {Pj}j .
1: Construct LR images, {IjL}j , by a 7×7 Gaussian blurring operator with

a standard deviation of 1.6 and decimated by a factor of 3.
2: Extract pairs of matching patches form the LR and HR training databases,
{pkH , p

k
L}k .

3: Remove low-frequencies from pkH and extract the high frequency infor-
mation of LR patches pkL.

4: Project the extracted features onto a low-dimensional subspace using PCA
dimensionality reduction.

5: Train a dictionary DL for the LR patches, such that they can be
represented sparsely.

6: Construct the corresponding HR dictionary DH for the LR patches, such
that it matches the LR one.

7: for each LR atom DjL of DL do
8: Search DjL over DL to obtain the K LR nearest neighbors and the

penalize vector:
NLi,j = {DkL}k∈CK(Dj

L
)
, gj,k = {1/corr(DjL,D

k
L)}

α, k ∈

CK(DjL).
9: Obtain the corresponding K LR nearest neighbors in HR dictionary

DH :
NHj = {DkH}k∈CK(Dj

L
)
.

10: Calculate gj = diag(gj,1, gj,2, ..., gj,K).
11: Calculate the projection matrix:

P j = NHj (NLi,j
TNLi,j + λgj)−1NLi,j

T
.

12: end for
13: Output the projection matrices {Pj}j .

Algorithm 2 Image SR via LANR-NLM
Input:

LR and HR dictionaries, DL and DH 1 and an LR test image y. The
regularization parameters λ1, λ2, α and nearest neighbor number K,
maxIter, e.

Output:
HR target image x.

1: for each LR patch yi of y do
2: Search yi over DL to find the nearest neighbor and its position j (i.e.,

the subscript of the nearest neighbor).
3: Compute the HR version of yi via linear mapping, xi = Pjyi.
4: end for
5: Integrate all the reconstructed HR patches xi and average pixel values in

the overlap regions to form the HR image x.
6: Adopt the gradient descent rule to refine the output of Step 5 to get the

target HR version x.
7: repeat
8: x̂(t+1/2) = x(t) + δHTDT (y − DHx(t)), where δ is the pre-

determined constant.
9: if mod(t, M0)

10: Update the matrix B using the improved estimation x̂(t+1/2).
11: end
12: x̂(t+1) = (I− B)x(t+1/2).
13: t = t+ 1.
14: until t > maxIter or ||xt − xt+1||22/N < e
15: Output the reconstructed HR image x̂

where x̂i = DHŵi and x̂li = DHŵi,l are the estimates
of the patches xi and xli, h is a pre-determined control
factor of the weight, B is the normalization factor, and
γ =

∑L
l=1 exp(−||x̂i − x̂li||22/h).

Let bi be the column vector containing all the weights bli
and βi be the column vector containing all xli. Eq. (18) can
be rewritten as:

xi = bTi βi. (20)
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D. Summary of the Algorithm

By incorporating the nonlocal similarity regularization term
into the LANR model in Eq. (17), we have:

ŵ = arg min
w

||y− DHNHw||22 + λ1||Gw||22+

λ2
N∑
i=1

(xi − bTi βi) s.t. 1Twi = 1.
(21)

where λ2 is a constant balancing the contribution of nonlocal
regularization. For the convenience of expression, we can

rewrite
N∑
i=1

(xi − bTi βi) as ||(I − B)NHw||22, where I is the

identity matrix and B is defined as:

B(i, j) =

{
bli, if xli is an element of βi, b

l
i ∈ bi;

0, otherwise.
(22)

Then, Eq. (21) can be rewritten as:

ŵ = arg min
w

||y− DHNHw||22 + λ1||Gw||22+

λ2||(I− B)NHw||22 s.t. 1Twi = 1,
(23)

In Eq. (23), the first term is the data fidelity term to ensure
the solution x̂ = NHŵ can well fit the observation y after
image degradation process by operators B and D; the second
term is the local geometry prior based adaptive regularization
term to preserve the local geometry of the data manifold; the
third term is the nonlocal similarity regularization term, which
uses the nonlocal redundancy to enhance each local patch.

E. Optimization of LANR-NLM

In our objective function, there are two regularization
terms, the nonlocal self-similarity regularization and the local
geometry regularization. The former takes advantage of the
redundancy of similar patches in natural images, while the
latter can be used to regularize the modeling of the non-linear
relationship between LR and HR spaces.

Based on the above two considerations, we firstly apply the
local geometry prior to regularize the patch representation to
predict the HR target patch on a pixel-by-pixel basis. And
then, we utilize the NLM filter to improve the super-resolved
outcome. Therefore, the optimization of LANR-NLM includes
the following two main steps: learning the patch representation
(i.e., projection matrix) for each anchor patch in the dictionary,
and refining the outcome by the NLM filter.

The solution of a regularized least square in Eq. (14) can
be derived analytically as:

wi = (NLi,j
T

NLi,j + λ1U)−1NLi,j
T

yi, (24)

where U is a K ×Kdiagonal matrix with

Ukk = gi,k, k = 1, 2, ...,K. (25)

In analogy to Eq. (11) and Eq. (12), we can obtain the stored
projection matrices of our proposed LANR-NLM method:

Pj = NHj (NLi,j
T

NLi,j + λ1U)−1NLi,j
T
. (26)

If we calculate the projection matrix for each dictionary
atom off-line (as given in Algorithm 1), we then can predict
the HR image patch by patch. Integrating all the super-resolved

Fig. 2. SR outcome comparisons of LANR (left) and LANR-NLM (right).

HR patches according to their positions, we can generate the
target HR image x.

Given the estimated HR image, we adopt the gradient
descent rule to obtain the optimal result as in [34]. The
entire image SR process of the proposed method is given in
Algorithm 2. In Algorithm 2, the LR and HR dictionaries are
trained by the first six steps in Algorithm 1. e is a predefined
scalar controlling the convergence of the iterative process, and
maxIter is the allowed maximum number of iterations. The
step δ is set to 5. The iteration parameters are experimentally
set as M0 = 20 and maxIter = 160, respectively. Note that
to reduce computational complexity, we update the NLM in
every M0 iterations.

IV. EXPERIMENTS

In this section, we analyze the performance of our proposed
LANR-NLM method in relation to its design parameters and
compare it quantitatively and qualitatively with ANR and other
state-of-the-art methods.

The peak signal to noise ratio (PSNR), structure similarity
(SSIM) index [58] and feature similarity (FSIM) [59] are used
to assess the objective quality of the reconstructed images.
PSNR measures the ratio between the maximum possible
power of a signal and the power of corrupting noise that
affects the fidelity of its representation. SSIM is a method
for measuring the similarity between two images. Compared
with the measurement of PSNR, SSIM can better reflect the
structure similarity between the target image and the reference
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Fig. 3. Visual reconstruction results for part of the image “woman” from
Set5. Top (from left to right): ground truth HR image, reconstructed HR
image by Bicubic interpolation, and Yang et al. [26]. Bottom (from left to
right): reconstructed HR image by Zeyde et al. [57], Timofte et al. [50] and
our proposed LANR-NLM.

Fig. 4. Visual reconstruction results for part of the image “foreman” from
Set14. Top (from left to right): ground truth HR image, reconstructed HR
image by Bicubic interpolation, and Yang et al. [26]. Bottom (from left to
right): reconstructed HR image by Zeyde et al. [57], Timofte et al. [50] and
our proposed LANR-NLM.

image. SSIM is designed to improve the traditional evaluation
methods such as PSNR and mean squared error (MSE), which
have proven to be inconsistent with human eye perception. In
addition to the well-known PSNR and SSIM numeric metrics,
we also utilize one recently proposed image quality assessment
approach, i.e., FSIM model. It is based on the observation that
human visual system perceives an image mainly according to
its low-level features and is among the leading image quality
assessment models in terms of prediction accuracy.

Since human visual system is more sensitive to the lumi-
nance component, the SR reconstruction is only performed on
the luminance channel of color images, and the simple Bicubic
interpolation is used for the chromatic components. Therefore,
in all our experiments, the numeric metrics are measured only
on the luminance component.

Fig. 5. Visual reconstruction results for part of the image “monarch” from
Set14. Top (from left to right): ground truth HR image, reconstructed HR
image by Bicubic interpolation, and Yang et al. [26]. Bottom (from left to
right): reconstructed HR image by Zeyde et al. [57], Timofte et al. [50] and
our proposed LANR-NLM.

Fig. 6. Visual reconstruction results for part of the image “zebra” from Set14.
Top (from left to right): ground truth HR image, reconstructed HR image
by Bicubic interpolation, and Yang et al. [26]. Bottom (from left to right):
reconstructed HR image by Zeyde et al. [57], Timofte et al. [50] and our
proposed LANR-NLM.

A. Experimental Configurations

1) Databases: Training Set. For learning-based SR meth-
ods, training set has a direct impact on the reconstruction
quality of the super-resolved images. In our experiments,
follow the same procedure in [26], [57], [50], exactly the same
91 example training images are used to generate example HR
and LR patches.

Testing Set. Following ANR [50], we use “Set5” and
“Set14” which respectively contain 5 and 14 commonly used
images for SR evaluation. Note that all the test images are
absent completely in the training set.

2) Experimental Settings: In our experiments, the LR im-
ages are obtained from the original HR images by a 7 × 7
Gaussian blurring operator with a standard deviation of 1.6
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TABLE I
THE SR PERFORMANCES OF DIFFERENT APPROACHES IN TERMS OF PSNR (DB), SSIM AND FSIM PER IMAGE ON THE SET5 DATASET.

Set5 

Image 

Bicubic ScSR Zeyde ANR LANR LANR-NLM 

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM 

baby 29.43  0.8348  0.9309  29.36  0.8303  0.9246  34.43  0.9089  0.9863  34.71  0.9144  0.9885  34.97  0.9194  0.9906  35.10 0.9230 0.9918  

bird 27.54  0.8369  0.8697  27.64  0.8391  0.8726  33.59  0.9341  0.9380  33.93  0.9399  0.9423  34.44  0.9432  0.9471  34.54 0.9458 0.9482  

butterfly 20.72  0.7201  0.7443  21.22  0.7547  0.7748  25.24  0.8561  0.8274  25.37  0.8562  0.8257  25.92  0.8694  0.8322  26.01 0.8724 0.8360  

head 30.21  0.7373  0.8400  30.04  0.7276  0.8236  33.11  0.8037  0.8955  33.30  0.8110  0.9021  33.56  0.8211  0.9139  33.65 0.8256 0.9178  

woman 24.50  0.8060  0.8448  24.52  0.8073  0.8514  29.62  0.9024  0.9122  29.89  0.9069  0.9134  30.34  0.9118  0.9215  30.35 0.9123 0.9238  

Average 26.48  0.7870  0.8459  26.56  0.7918  0.8494  31.20  0.8810  0.9119  31.44  0.8857  0.9144  31.85  0.8930  0.9211  31.93 0.8958 0.9235  

Gain 5.45 0.1088 0.0776 5.37 0.1040 0.0741 0.73 0.0148 0.0116 0.49 0.0101 0.0091 0.14 0.0038 0.0028 — — — 

 

TABLE II
THE SR PERFORMANCES OF DIFFERENT APPROACHES IN TERMS OF PSNR (DB), SSIM AND FSIM PER IMAGE ON THE SET14 DATASET.

Set14 

Image 

Bicubic ScSR Zeyde ANR LANR LANR-NLM 

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM 

baboon 22.13 0.4339 0.8503 22.22 0.4485 0.8571 23.24 0.5518 0.9386 23.48 0.5871 0.9466 23.49 0.5901 0.9537 23.56 0.6038 0.9566 

barbara 24.29 0.6608 0.8833 24.18 0.6597 0.8819 26.43 0.7615 0.9594 26.66 0.7748 0.9624 26.65 0.7756 0.9669 26.79 0.7842 0.9695 

bridge 22.41 0.5130 0.8598 22.53 0.5314 0.8679 24.60 0.6588 0.9489 24.86 0.6892 0.9539 24.94 0.6920 0.9607 25.03 0.7031 0.9635 

coastguard 25.01 0.5162 0.6690 25.12 0.5176 0.6766 26.73 0.6191 0.7660 26.98 0.6428 0.7783 26.99 0.6433 0.7992 27.00 0.6437 0.8063 

comic 20.83 0.5537 0.7133 21.02 0.5839 0.7345 23.42 0.7174 0.8069 23.78 0.7432 0.8142 23.97 0.7531 0.8276 24.09 0.7632 0.8324 

face 30.17 0.7358 0.8402 30.01 0.7268 0.8240 33.12 0.8038 0.8966 33.47 0.8181 0.9034 33.58 0.8207 0.9143 33.66 0.8250 0.9181 

flowers 24.25 0.6955 0.7778 24.49 0.7103 0.7899 27.73 0.8120 0.8561 28.11 0.8299 0.8627 28.42 0.8360 0.8743 28.56 0.8417 0.8783 

foreman 27.29 0.8551 0.8692 27.28 0.8570 0.8753 32.29 0.9165 0.9240 32.49 0.9194 0.9284 33.41 0.9292 0.9408 33.43 0.9298 0.9315 

lenna 27.82 0.7887 0.9181 27.82 0.7861 0.9140 32.28 0.8639 0.9802 32.67 0.8742 0.9837 32.97 0.8768 0.9872 33.14 0.8807 0.9887 

man 24.56 0.6500 0.8818 24.66 0.6548 0.8821 27.45 0.7626 0.9627 27.66 0.7784 0.9670 27.93 0.7852 0.9736 28.01 0.7913 0.9755 

monarch 25.90 0.8635 0.9135 26.25 0.8695 0.9199 30.37 0.9283 0.9744 30.62 0.9313 0.9770 31.06 0.9359 0.9808 31.23 0.9378 0.9833 

pepper 28.20 0.8193 0.9308 28.14 0.8119 0.9255 33.45 0.8773 0.9851 33.25 0.8782 0.9852 33.83 0.8821 0.9881 33.96 0.8848 0.9893 

ppt3 20.88 0.8020 0.8297 21.08 0.8075 0.8376 24.61 0.8960 0.9300 24.58 0.8832 0.9258 25.12 0.9024 0.9393 25.15 0.9011 0.9432 

zebra 22.35 0.6445 0.8299 22.51 0.6585 0.8393 27.51 0.8091 0.9568 27.85 0.8299 0.9588 28.10 0.8338 0.9656 28.28 0.8425 0.9697 

Average 24.72 0.6809 0.8405 24.81 0.6874 0.8447 28.09 0.7841 0.9204 28.32 0.7985 0.9248 28.61 0.8040 0.9337 28.71 0.8095 0.9361 

Gain 3.99 0.1286 0.0956 3.90 0.1221 0.0914 0.62 0.0254 0.0157 0.39 0.0110 0.0113 0.10 0.0055 0.0024 — — — 

 

10
0

10
1

10
2

30.5

31

31.5

32

K

P
S

N
R

 (
d

B
)

10
0

10
1

10
2

0.86

0.88

0.9

K

S
S

IM

10
-8

10
-6

10
-4

31.6

31.8

32


1

P
S

N
R

 (
d

B
)

10
-8

10
-6

10
-4

0.88

0.89

0.9


1

S
S

IM

0 5 10 15 20
31.6

31.8

32



P
S

N
R

 (
d

B
)

0 5 10 15 20
0.88

0.89

0.9



S
S

IM

Fig. 7. Influence of the nearest neighbor number K, the regularization
parameter λ1 and the power parameter α of the proposed LANR-NLM
method.

and decimated by a factor of 3. We use the size of 9 × 9
pixels for HR image patches and the overlap between neighbor
patches is 6 pixels. The size of the corresponding LR image
patches is set to 3 × 3 pixels with an overlap of 2 pixels.
Note that the overlap patch representation and reconstruction
strategy is very time consuming, which can be accelerated by
some parallel computation algorithms [60], [61].

We use the same feature extraction strategy in Yang et
al. [26], Zeyde et al. [57] and Timofte et al. [50]. Specifically,
to extract the high frequency information of LR images, four
1-D filters (f1 = [−1, 0, 1], f2 =, fT1 , f3 = [1, 0,−2, 0, 1],
f4 = fT3 ) are used to extract the derivatives of each patch,
and then PCA dimensionality reduction is applied to project
the extracted features onto a low-dimensional subspace while
preserving 99.9% of the total variance. This usually leads to
features of about 30 dimensions for up-scaling factor 3 and
3×3 LR patch size. As for the HR patch features, we subtract
the Bicubic interpolated LR image from the HR image to
create the normalized HR patches.

We adopt the same dictionary training method in [57]
and [50]. The two dictionaries for HR and LR image patches
are trained from 135,581 patch pairs randomly sampled from
natural images collected from the 91 example training images.
Firstly, we obtain a sparse dictionary DL by optimizing over
LR patches. And then, we reconstruct its corresponding DH
with the same coefficients obtained on the LR dictionary. Note
that we choose the training set size to be 1024 as suggested
in [50].

For our proposed LANR-NLM model, there are three pa-
rameters need to be set, i.e., λ1, K, and α. The following
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reported SR results are obtained using the best parameters,
λ1 = 1e − 5, K = 200, and α = 11. λ2 of the proposed
LANR-NLM algorithm is set to 0.005. In the following, we
will provide some analysis on the parameter settings.

B. Parameters Analysis

In this subsection, we analyze the influence of the nearest
neighbor number K, the regularization parameter λ1 and the
power parameter α of the proposed LANR-NLM method. It is
worth mentioning that we only conduct experiments on Set5,
and we can obtain similar conclusions on Set14.

1) Influence of the nearest neighbor number K: The first
row of Fig. 7 shows the plots of the average PSNR (dB)
and SSIM values of all 5 test images from Set5 according to
different values of nearest neighbor number. We can see that
this parameter has a large impact on the performance of the
proposed method: as the nearest neighbor number increases,
the gain of the proposed method becomes larger, which implies
that large training set will induce more detailed features and
good reconstruction results. Therefore, we set K to 200 in our
experiments.

2) Influence of the regularization parameter λ: In the
second row of Fig. 7, we present the average PSNR (dB) and
SSIM values of all 5 test images in Set5 according to various
values for the regularization parameter λ, which controls the
weight of locality in the objective function. We can find that
when λ = 0, the performance of LANR-NLM is not the best.
With the increase of locality, the SR performance is improved.
This implies that the locality constraint is essential for regres-
sion reconstruction. However, we also observe that the value
of λ could not be set too large because the reconstruction
error in the objective function cannot be ignored. Therefore,
LANR-NLM can achieve good results by selecting a proper
regularization parameter λ (e.g., λ = 1e− 5),

3) Influence of the power parameter α: In the third row of
Fig. 7, we show the average PSNR (dB) and SSIM values of
all 5 test images in Set5 according to various values for the
regularization parameter α, which controls the weight decay
speed of the locality adaptor. When α is set to around 11,
LANR-NLM achieves the best performance. This implies that
by setting a relative large value of α, samples that are far away
from the observation sample will be heavily penalized and
samples that are close to the observation sample will be given
more freedom. This implies LANR-NLM can well explore the
non-linear manifold structure of the data space.

C. Results Comparison

To demonstrate the effectiveness of the newly introduced
NLM prior, we report some visual results of the bird and lenna
of LANR and LANE-NLM in Fig. 2. Based on the results in
Fig. 2, we find that NLM prior does affect the SR reconstruc-
tion results. This is principally because local constraint and
nonlocal similarity in natural images can complement each
other. The combination of these two priors can contribute more
faithful and reliable SR reconstruction.

In addition, we also compare our proposed LANR-NLM
method to the sparse coding based algorithms (Yang et al. [26]

and Zeyde et al. [57] and ANR [50]. The results of the
Bicubic interpolation method are also given as baselines for
comparison. The results of the comparison algorithms are
obtained using the corresponding software packages that are
publicly available 2.

Tables I and II compare the image reconstruction perfor-
mances (PSNR (dB), SSIM and FSIM) of various methods un-
der the same testing conditions. We can see that the proposed
LANR-NLM method reaches the highest numeric results in
all experiments. The gain is 0.49 dB in term of PSNR, 0.0101
in term of SSIM, and 0.0091 in term of FSIM better than
ANR [50] on Set5, and 0.39 dB in term of PSNR, 0.0110
in term of SSIM, and 0.0113 in term of FSIM better than
ANR [50] on Set14, respectively. When compared to other
approaches, the gains of our proposed method are much more
obvious on both test sets (Set5 and Set14). To demonstrate the
effectiveness of the NLM constraint, we also report the results
with and without NLM, i.e., LANR-NLM and LANR. Results
on both test sets all show that LANR-NLM is slightly better
than LANR.

In Figs. 3, 4, 5, 6, we can see that our proposed method
achieves slightly better quality over the other methods on a
couple of images. The reconstructed images of our method are
much more visually pleasing. Specifically, our prosed method
can gain sharper edges. For example, the grid lines of the head
scarf in the woman image (Fig. 3), the diagonal lines in the
background of the foreman image (Fig. 4), the wing of the
butterfly in the monarch image (Fig. 5), and the foreleg in the
zebra image (Fig. 6).

V. CONCLUSIONS

This paper presents a novel image SR method called locally
regularized anchored neighborhood regression with nonlocal
means (LANR-NLM). It applies locality constraint to select
similar dictionary atoms and assigns different freedom to
each dictionary atom according to its correlation to the input
LR patch. By introducing this flexible prior, the proposed
method can well learn simple regression functions and gener-
ate natural looking results with sharp edges and rich textures.
Furthermore, we also incorporate the nonlocal self-similarity
to the our proposed model to refine the outcome. Experimental
results on standard benchmarks with qualitative and quantita-
tive comparisons against several state-of-the-art SR methods
demonstrate the effectiveness of the proposed LANR-NLM
approach. Particularly, the improvement of LANR-NLM over
the ANR method [50] (which is considered as the current state-
of-the-art SR algorithm) is around 0.4 dB in terms of PSNR,
0.01 in terms of SSIM and around 0.01 in terms of FSIM.
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