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Abstract: Extreme learning machine (ELM) is a single-layer feedforward neural network 

based classifier that has attracted significant attention in computer vision and pattern 

recognition due to its fast learning speed and strong generalization. In this paper,  

we propose to integrate spectral-spatial information for hyperspectral image classification 

and exploit the benefits of using spatial features for the kernel based ELM (KELM) 

classifier. Specifically, Gabor filtering and multihypothesis (MH) prediction preprocessing 

are two approaches employed for spatial feature extraction. Gabor features have currently 

been successfully applied for hyperspectral image analysis due to the ability to represent 

useful spatial information. MH prediction preprocessing makes use of the spatial  

piecewise-continuous nature of hyperspectral imagery to integrate spectral and spatial 

information. The proposed Gabor-filtering-based KELM classifier and MH-prediction-based 

KELM classifier have been validated on two real hyperspectral datasets. Classification 

results demonstrate that the proposed methods outperform the conventional pixel-wise 

classifiers as well as Gabor-filtering-based support vector machine (SVM) and  

MH-prediction-based SVM in challenging small training sample size conditions. 
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1. Introduction 

Hyperspectral imagery (HSI) captures reflectance values over a wide range of electromagnetic 

spectra for each pixel in the image. This rich spectral information allows for distinguishing or 

classifying materials with subtle differences in their reflectance signatures. HSI classification plays an 

important role in many remote-sensing applications, being a theme common to environmental 

mapping, crop analysis, plant and mineral exploration, and biological and chemical detection, among 

others [1]. 

Over the last two decades, many machine learning techniques including artificial neural networks 

(ANNs) and support vector machines (SVMs) have been successfully applied to hyperspectral image 

classification (e.g., [2–5]). In particular, neural architectures have demonstrated great potential to model 

mixed pixels which result from low spatial resolution of hyperspectral cameras and multiple  

scattering [3]. However, there are several limitations involved with ANNs that use the back-propagation 

algorithm, the most popular technique, as the learning algorithm. Neural network model development 

for hyperspectral data is a computationally expensive procedure since hyperspectral images typically 

are represented as three-dimensional cubes with hundreds of spectral channels [6]. In addition, ANNs 

require a good deal of hyperparameter turning such as the number of hidden layers, the number of 

nodes in each layer, learning rate, etc. In recent years, SVM-based approaches have been extensively 

used for hyperspectral image classification since SVMs have often been found to outperform 

traditional statistical and neural methods, such as the maximum likelihood and the multilayer 

perceptron neural network classifiers [5]. Furthermore, SVMs have demonstrated excellent 

performance for classifying hyperspectral data when a relative low number of labeled training samples 

are available [4,5,7]. However, the SVM parameters (i.e., regularization and kernel parameters) have 

to be tuned for optimal classification performance.  

Extreme learning machine (ELM) [8] as an emerging learning technique belongs to the class of 

single-hidden layer feed-forward neural networks (SLFNs). Traditionally, a gradient-based method 

such as back-propagation algorithm is used to train such networks. ELM randomly generates the 

hidden node parameters and analytically determines the output weights instead of iterative tuning, 

which makes the learning extremely fast. ELM is not only computationally efficient but also tends to 

achieve similar or even better generalization performance than SVMs. However, ELM can produce a 

large variation in classification accuracy with the same number of hidden nodes due to the randomly 

assigned input weights and bias. In [9], kernel extreme learning machine (KELM) which replaces the 

hidden layer of ELM with a kernel function was proposed to solve this problem. It is worth noting that 

the kernel function used in KELM does not need to satisfy Mercer's theorem and KELM provides a 

unified solution to multiclass classification problems.  

The utilization of ELM for hyperspectral image classification has been fairly limited in the literature. 

In [10], ELM and optimally pruned ELM (OP-ELM) were applied to soybean variety classification in 
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hyperspectral images. In [11], ELM was used for land cover classification, which achieved comparable 

classification accuracies to a back-propagation neural network on two datasets considered. KELM was 

used in [12] for multi- and hyperspectral remote-sensing images classification. The results indicate that 

KELM is similar to, or more accurate than, SVMs in terms of classification accuracy and offer notably 

low computational cost. However, in these works, ELM was employed as a pixel-wise classifier, 

which indicates that only the spectral signature has been exploited while ignoring the spatial 

information at neighboring locations. Yet, for HSI, it is highly probable that two adjacent pixels belong 

to the same class. Considering both spectral and spatial information has been verified to improve the 

HSI classification accuracy significantly [13,14]. There are two major categories utilizing spatial 

features: to extract some type of spatial features (e.g., texture, morphological profiles, and wavelet 

features), and to directly use pixels in a small neighborhood for joint classification assuming that these 

pixels usually share the same class membership. In the first category (feature dimensionality increased), 

Gabor features have been successfully used for hyperspectral image classification [15–18] recently due 

to the ability to represent useful spatial information. In [15,16], three-dimensional (3-D) Gabor filters 

were applied to hyperspectral images to extract 3-D Gabor features; in [17,18], two-dimensional (2-D) 

Gabor features were extracted in a principal component analysis (PCA)-projected subspace. In our 

previous work [19], a preprocessing algorithm based on multihypothesis (MH) prediction was 

proposed to integrate spectral and spatial information for noise-robust hyperspectral image 

classification, which falls into the second category (feature dimensionality not increased).  

In addition, object-based-classification approaches (e.g., [20–22]) are important methods in spectral-spatial 

classification as well. These approaches group the spatially adjacent pixels into homogeneous objects 

and then perform classification on objects as the minimum processing unit [20]. 

In this paper, we investigate the benefits of using spatial features (i.e., Gabor features and MH 

prediction) for KELM classifier under the small sample size (SSS) condition. Two real hyperspectral 

datasets will be employed to validate the proposed classification method. We will demonstrate that 

Gabor-filtering-based KELM and MH-prediction-based KELM yield superior classification performance 

over the conventional pixel-wise classifiers (e.g., SVM and KELM) as well as Gabor-filtering-based 

SVM and MH-prediction-based SVM in challenging small training sample size conditions. In addition, 

the proposed methods (i.e., KELM-based methods) are faster than the SVM-based methods since 

KELM runs at much faster learning and testing speed than the traditional SVM. 

The remainder of this paper is organized as follows. Section 2 introduces the Gabor filter, MH 

prediction for spatial features extraction, KELM classifier, and our proposed methods. Section 3 

presents the hyperspectral data and experimental setup as well as comparison of the proposed methods 

and some traditional techniques. Finally, Section 4 makes several concluding remarks. 

2. Spectral-Spatial Kernel Extreme Learning Machine 

2.1. Gabor Filter  

Gabor filters are bandpass filters which have been successfully applied for a variety of image 

processing and machine vision applications [23–26]. A 2-D Gabor function is an oriented complex 
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sinusoidal grating modulated by a 2-D Gaussian envelope. In a 2-D coordinate (a,b) system, the Gabor 

filter, including a real component and imaginary one, can be represented as  
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where 

a a b   cos sin  (2) 

b a b    sin cos  (3) 

where δ represents the wavelength of the sinusoidal factor, and θ represents the orientation separation 

angle of Gabor kernels (see Figure 1). Note that we need only to consider θ in the interval [0°, 180°] 

since symmetry makes other directions redundant. ψ is the phase offset, σ is the standard derivation of 

Gaussian envelope, and γ is the spatial aspects ratio (the default value is 0.5 in [27]) specifying the 

ellipticity of the support of the Gabor function. ψ = 0 and ψ = π/2 return the real part and imaginary 

part of Gabor filter, respectively. Parameter σ is determined by δ and spatial frequency bandwidth bw as 

2 2 1

2 2 1











bw

bw

ln
 (4) 

Figure 1. Two-dimensional Gabor kernels with different orientations, from left to right:  

0, π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, and 7π/8. 

 

2.2. MH Prediction for Spatial Features Extraction 

In our previous work [19], a spectral-spatial preprocessing algorithm based MH prediction was 

proposed. It was motivated by our earlier success at applying MH prediction in compresses-sensing 

image and video reconstruction [28], single-image super-resolution [29], and hyperspectral image 

reconstruction from random projections [30]. The algorithm is driven by the idea that, for each pixel in 

a hyperspectral image, its neighboring pixels will likely share similar spectral characteristics or have 

the same class membership since HSI commonly contains homogeneous regions. Therefore, each pixel 

in a hyperspectral image may be represented by some linear combinations of its neighboring pixels. 

Specifically, multiple predictions or hypotheses drawn for a pixel of interest are made from spatially 

surrounding pixels. These predictions are then combined to yield a composite prediction that 

approximates the pixel of interest.  

Consider a hyperspectral dataset with M pixels 𝐗 =  𝐗𝑚 𝑚=1
𝑀  in 𝑅𝑁  (N is the dimensionality or 

number of spectral bands). For a pixel of interest x, the objective is to find an optimal linear 

combination of all possible predictions to represent x. The optimal representation can be formulated as 

2
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here, 𝐙 =  𝐳1, … , 𝐳𝐾   ∈  𝑅𝑁 × 𝐾  is a hypothesis matrix whose columns are K hypotheses generated from 

all neighboring pixels of x within a d × d spatial search window, and 𝐰  ∈ 𝑅𝐾 × 1 is a vector of 

weighting coefficients corresponding to the K hypotheses in Z. In most cases, the dimensionality of the 

hypotheses is not equal to the number of hypotheses, i.e., 𝑁 ≠ 𝐾, Tikhonov regularization [31] is used 

to regularize the least-squares problem of (5). Then, the weight vector 𝐰  is calculated according to 

2 2

2 2
   

w

w x Zw x wˆ argmin  (6) 

where Γ is the Tikhonov matrix and λ is the regularization parameter. The Γ term allows the imposition 

of prior knowledge on the solution. Specifically, a diagonal Γ is used in the form of 
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where z1, …, zK are the columns of Z. Each diagonal term in Γ measures the similarity between the 

pixel of interest and a hypothesis. With this structure of Γ, hypotheses which are dissimilar from the 

pixel of interest x are given less weights than those which are similar. The weight vector 𝐰  can be 

calculated in a closed form 

 
1

ˆ +T T T


  w Z Z Z x  (8) 

Therefore, an approximation to x, i.e., the predicted pixel, is calculated as 

ˆx Zw  (9) 

For each pixel in X, a corresponding predicted pixel can be generated via (9) resulting in a predicted 

dataset 𝐗 =   𝐱 𝑚 𝑚=1
𝑀  in 𝑅𝑁 . Furthermore, once a predicted dataset 𝐗  is generated through MH 

prediction, it can be used as the current input dataset, i.e., a new X, to repeat the MH prediction 

process in an iterative fashion. The predicted dataset which effectively integrates spectral and spatial 

information is then used for classification. 

2.3. Kernel Extreme Learning Machine 

ELM was originally developed from feed-forward neural networks [8,32]. Recently, KELM 

generalizes ELM from explicit activation function to implicit mapping function, which can produce 

better generalization in most applications. 

For C classes, let us define 𝑦𝑘 ∈   0, 1 , 1 ≤ k ≤ C. A row vector y =  𝑦1, … , 𝑦𝑘 … , 𝑦𝐶    indicates the 

class that a sample belongs to. For example, if yk = 1 and other elements in y are zero, then the sample 

belongs to the kth class. Given P training samples  𝐱𝑖 , 𝐲𝑖 𝑖=1
𝑃  belonging to C classes, where 𝐱𝑖 ∈  𝑅𝑁 

and 𝐲𝑖 ∈  𝑅𝐶 , the output function of an ELM having L hidden neurons can be represented as 

1
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where h(∙) is a nonlinear activation function (e.g., Sigmoid function), 𝛃𝑖  ∈  𝑅𝐶  is the weight vector 

connecting the jth hidden neuron and the output neurons, 𝛚𝑗  ∈  𝑅𝑁 is the weight vector connecting the 

j th hidden neuron and the input neurons, and ej is the bias of the jth hidden neuron. 𝛚𝑗  ∙ 𝐱𝑖 denotes the 

inner product of 𝛚𝑗  ∙ and 𝐱𝑖 . With P equations, Equation (10) can be written compactly as 

Hβ Y  (11) 

where 𝐘 =  𝐲1
𝑇𝐲2

𝑇 …𝐲𝑃
𝑇   𝑇 ∈  𝑅𝑃 × 𝐶 , 𝛃  =  𝛃1

𝑇𝛃2
𝑇 …𝛃𝐿

𝑇   𝑇 ∈  𝑅𝐿 × 𝐶 , and H is the hidden layer output 

matrix of the neural network: 
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H(xi) = (h(ω1 ∙ xi + e1), …, h(ωL ∙ xi + eL)) is the output of the hidden neurons with respect to the input 

xi, which maps the data from the N-dimensional input space to the L-dimensional feature space.  

In most cases, the number of hidden neurons is much smaller than the number of training samples, 

i.e., ≪ 𝑃 , the smallest norm least-squares solution of Equation (11) proposed in [8] is defined as  

† β H Y  (13) 

where 𝐇†  is the Moore-Penrose generalized inverse of matrix 𝐇 [33]. The Moore-Penrose generalized 

inverse of H can be calculated as 𝐇†  = 𝐇𝑇 (𝐇𝐇𝑇 )
−1

 [9]. For better stability and generalization, a 

positive value 
1

𝜌
 is added to the diagonal elements of 𝐇𝐇𝑇. Therefore, we have the output function of 

ELM classifier 
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In ELM, a feature mapping h(xi) is usually known to users. If a feature mapping is unknown to users, a 

kernel matrix for ELM can be defined as follows: 

,
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Thus, the output function of KELM can be written as  
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The label of the input data is determined by the index of the output node with the largest value. 

2.4. Proposed Spectral-Spatial Kernel Extreme Learning Machine  

A Gabor filter can capture some physical structures of an object in an image, such as specific 

orientation information, using a spatial convolution kernel. Previous work [15–18] has applied 

extracted spectral-spatial features of Gabor filter for hyperspectral image classification. Following the 

recent research in [17,18], a two-dimensional Gabor filter is considered to exploit the useful 



Remote Sens. 2014, 6 5801 

 

 

information in a PCA-projected subspace. The Gabor features and the original spectral features are 

simply concatenated. Each spatial feature (Gabor feature) vector and spectral feature vector are 

normalized to have a unit l2 norm before feature concatenation or stacking. We note that the 

implementation of Gabor filter in a subset of original bands with band selection [34] could equally be 

employed. The Gabor-filtering-based KELM is denoted as Gabor-KELM. We also employ the MH 

prediction as the preprocessing of KELM classifier, which is denoted as MH-KELM. The proposed 

spectral-spatial KELM framework is illustrated in Figure 2. 

Figure 2. The proposed spectral-spatial KELM framework for hyperspectral image 

classification (first row: Gabor-KELM; second row: MH-KELM). 

 

3. Experiments  

In this section, we compare the classification performance of proposed Gabor-KELM and MH-KELM 

with SVM, KELM, Gabor-filtering-based SVM (Gabor-SVM), and MH-prediction-based SVM  

(MH-SVM). SVM with radial basis function (RBF) kernel is implemented using the libsvm package [35]. 

For KELM with RBF kernel, we use the implementation available from the ELM website [36]. 

3.1. Data Description and Experimental Setup  

We validate the effectiveness of proposed methods, i.e., Gabor-KELM and MH-KELM, using  

two hyperspectral datasets. The first HSI dataset in our tests was acquired using NASA’s Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and was collected over northwest Indiana’s Indian 

Pines test site in June 1992. This scene represents a vegetation-classification scenario with 145 × 145 pixels 

in the 0.4-–2.45-μm region of the visible and infrared spectrum with a spatial resolution of 20 m.  

For this dataset, spectral bands {104–108, 150–163, 220} correspond to water-absorption bands are 

removed, resulting in 200 spectral bands. The original Indian Pines dataset consists of 16 ground-truth 

land-cover classes.  

The second dataset used in our experiments, University of Pavia, is an urban scene acquired by the 

Reflective Optics System Imaging Spectrometer (ROSIS) [37]. The image scene, covering the city of 

Pavia, Italy, was collected under the HySens project managed by DLR (the German Aerospace 

Agency) [38]. The ROSIS sensor generates 115 spectral bands ranging from 0.43 to 0.86 μm and has a 

spatial resolution of 1.3 m per pixel and contains 610 × 340 pixels. The dataset consists of 103 spectral 

bands with the 12 noisiest bands removed. The labeled ground truth of this dataset is comprised  

of 9 classes. The class descriptions and sample distributions for both the Indian Pines and University  



Remote Sens. 2014, 6 5802 

 

 

of Pavia datasets are given in Table 1 and 2. Both datasets, and their corresponding ground truth maps, 

are obtained from the publicly available website [39] of the Computational Intelligence Group from 

the Basque University (UPV/EHU). False-color images of two datasets are displayed in Figure 3. 

Figure 3. False-color images: (a) Indian Pines dataset, using bands 10, 20, and 30 for red, 

green, and blue, respectively; and (b) University of Pavia dataset, using bands 20, 40, and 

60 for red, green, and blue, respectively. 

  

(a) (b) 

Table 1. Per-class samples for the Indian Pines dataset. 

Class 
Number of Samples 

No. Name 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-mowed 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-notill 972 

11 Soybean-mintill 2455 

12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Building-grass-trees-drives 386 

16 Stone-steel-towers 93 

Total 10,249 
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Table 2. Per-class samples for the University of Pavia dataset. 

Class 
Number of Samples 

No. Name 

1 Asphalt 6631 

2 Meadows 18,649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare soil 5029 

7 Bitumen 1330 

8 Self-blocking bricks 3682 

9 Shadows 947 

Total 42,776 

For the Indian Pines dataset, some of the classes contain a small number of samples. For example, 

the Oats class has only 20 samples. In one of our experiments, we sort the 16 classes according to the 

number of samples in each class in ascending order and conduct a separate set of experiments with the 

last nine classes, allowing for more training samples from a statistical viewpoint [5]. The class 

numbers of the nine classes are highlighted in boldface in Table 1. The SSS condition will be 

discussed in the following work, and if we select 20 labeled samples per class (180 total), all the left 

will be ones to be classified. Each classification experiment is repeated for 10 trials with different 

training and testing samples, and overall classification accuracy is averaged over 10 repeated trials. 

The University of Pavia dataset is processed similarly, the only difference being that we first choose 

900 samples at random from each class to form the total sample set (8100 total) for each trial. Then, 

the training and testing samples are chosen randomly from each class of the total sample set for 

classification. This procedure is used since some classes of the University of Pavia dataset contain 

significantly more samples than other classes, which might bias the accuracy. In order to have a fair 

comparison, the number of samples per class should be equal or similar. 

All experiments are carried out using MATLAB (except SVM, which is implemented in C) on an 

Intel i7 Quadcore 2.63-GHz machine with 6 GB of RAM. 

3.2. Parameter Tuning 

First of all, we study the parameters of Gabor filter for hyperspectral images. In our work, eight 

orientations,  0,
𝜋

8
,
𝜋

4
,

3𝜋

8
,
𝜋

2
,

5𝜋

8
,

3𝜋

4
,

7𝜋

8
,  , as shown in Figure 1 are considered. According to Equation (4), 

δ and bw are the two parameters of Gabor filter to be investigated. We test different δ and bw as shown 

in Figure 4a for the Indian Pines dataset and (b) for the University of Pavia dataset. Figure 4 illustrates 

the classification accuracy of the proposed Gabor-KELM versus varying δ as well as bw. Note that for 

Gabor-KELM in the experiment, we empirically choose the first 10 principal components (PCs) of 

both datasets that account for over 99% of the total variation in the images. From the results, we set the 

optimal δ and bw for both experimental datasets to 26 and 1, respectively.  
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Figure 4. Classification accuracy (%) versus varying δ and bw for the proposed  

Gabor-KELM using 20 labeled samples per class for (a) Indian Pines dataset; and  

(b) University of Pavia dataset. 

  

(a) (b) 

An important parameter involved in MH prediction is the search-window size d used in hypothesis 

generation. We analyze the effect of the search-window size in terms of the overall classification 

accuracy as well as the execution time of the algorithm. A set of window sizes, d ∈  3, 5, 7, 9, 11, 13 , , 

is used for testing. From Figure 5, we can see that the classification accuracies are similar when the 

window size is between 9 × 9 and 13 × 13. We also find that using d = 11 takes over twice the 

execution time of d = 9 but does not yield any significant gains in classification accuracy. Specifically, 

Table 3 shows the execution time of one iteration of MH prediction for various search-window sizes. 

In all the experiments, two iterations of MH prediction are used. Another important parameter is λ that 

controls the relative effect of the Tikhonov regularization term in the optimization of Equation (6).  

Many approaches have been presented in the literature—such as L-curve [40], discrepancy principle, 

and generalized cross-validation (GCV)—for finding an optimal value for such regularization 

parameter. Here, we find an optimal λ by examining a set of values as shown in Figure 6, which 

presents the overall classification accuracy with different values of λ for MH prediction. One can see 

that the classification accuracy is quite stable over the interval λ ∈ [1, 2]. As a result, in all the 

experiments reported here, we use λ = 1.5. 

Figure 5. Classification accuracy (%) versus varying search-window size (d) for the 

proposed MH-KELM using 20 labeled samples per class for two experimental datasets. 
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Table 3. Execution time (s) for one iteration of MH prediction for the Indian Pines dataset 

as a function of search-window size d. 

Window Size (d) Time (s) 

3 6.4 

5 13.7 

7 39.4 

9 109.5 

11 260.2 

13 564.6 

Figure 6. Classification accuracy (%) for Indian Pines and University of Pavia datasets as 

a function of the MH-prediction regularization parameter λ for the proposed MH-KELM 

using 20 labeled samples per class. The search-window size for MH prediction is d = 9 × 9. 

 

3.3. Classification Results  

The SSS problem is one of the most fundamental and challenging issues in hyperspectral image 

classification. In practice, the number of available labeled samples is often insufficient for 

hyperspectral images. Thus, we investigate the classification accuracy of aforementioned classifiers as 

a function of different labeled samples size, varying from 20–40 per class. To avoid any bias, all the 

experiments are repeated 10 times, and we report the averaged classification accuracy as well as the 

corresponding standard deviation. In all experiments, if no specific instructions, the tuning parameters 

of KELM (RBF kernel parameters) and the parameters of the competing method (SVM) are chosen as 

those that maximize the training accuracy by means of five-fold cross-validation to avoid over-fitting. 

The performance of the proposed spectral-spatial-based KELM methods is shown in Tables 4 and 5 for 

two experimental data. 

From the results of each individual classifier, with Gabor features or MH prediction, the 

classification accuracy is significantly improved at all training sample sizes compared with the 

accuracy of classifying with the original spectral signature only. For example, in Table 4, Gabor-SVM 

has 26.9% higher accuracy than SVM, MH-SVM has 21.8% higher accuracy than SVM, Gabor-KELM 

has 24.7% higher accuracy than KELM, and MH-KELM has 24.1% higher accuracy than KELM when 

there are 20 labeled samples per class for training for the Indian Pines dataset. Moreover, for the Indian 

Pines dataset, KELM employing spatial features (Gabor features or MH prediction) achieved better 

classification performance than SVM employing spatial features. Especially for the MH-prediction-based 
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methods, the accuracy of proposed MH-KELM is always about 5% higher than MH-SVM at all 

sample sizes. For the University of Pavia dataset, in terms of classification accuracy, Gabor-KELM 

outperforms Gabor-SVM, and MH-KELM outperforms MH-SVM. It is interesting to notice that the 

performance of Gabor-KELM is close to MH-KELM for both datasets, which demonstrates that 

KELM has better generalization than SVM.  

Table 4. Overall classification accuracy (%)—mean ± standard deviation over 10 trials 

using varying number of labeled training samples (ratio represents the proportion of 

labeled training samples and samples to be classified) per class for the Indian Pines dataset 

(nine classes). 

Method 
Number of Training Samples Per Class (Ratio) 

20 (1.99%) 30 (3.01%) 40 (4.06%) 

SVM 65.83 ± 2.71 71.96 ± 2.20 75.67 ± 1.39 

KELM 68.28 ± 2.04 72.97 ± 1.47 76.02 ± 1.45 

Gabor-SVM 92.74 ± 1.22 95.25 ± 1.26 96.51 ± 1.05 

Gabor-KELM 93.02 ± 1.08 95.44 ± 1.03 96.64 ± 1.14 

MH-SVM 87.61 ± 2.01 89.91 ± 1.05 91.87 ± 0.86 

MH-KELM 92.43 ± 1.89 94.87 ± 0.98 96.75 ± 0.78 

Table 5. Overall classification accuracy (%)—mean ± standard deviation over 10 trials using a 

varying number of labeled training samples (ratio represents the proportion of labeled training 

samples and samples to be classified) per class for the University of Pavia dataset. 

Method 
Number of Training Samples Per Class (Ratio) 

20 (2.27%) 30 (3.45%) 40 (4.65%) 

SVM 81.11 ± 1.15 82.80 ± 0.86 84.09 ± 0.63 

KELM 81.21 ± 1.64 82.96 ± 0.98 84.34 ± 0.64 

Gabor-SVM 90.83 ± 1.11 93.45 ± 1.48 94.88 ± 0.85 

Gabor-KELM 92.57 ± 1.49 94.77 ± 1.26 96.07 ± 0.92 

MH-SVM 92.85 ± 0.91 94.89 ± 0.74 95.74 ± 0.47 

MH-KELM 93.14 ± 1.05 95.29 ± 0.68 96.31 ± 0.53 

Based on the results shown in Tables 4 and 5, we further perform the standard McNemar’s test [41], 

which is based on a standardized normal test statistic 

12 21

12 21

f f
Z

f f





 (17) 

where f12 indicates the number of samples classified correctly by classifier 1 and simultaneously 

misclassified by classifier 2. The test is employed to verify the statistical significance in accuracy 

improvement of the proposed method. Tables 6 and 7 present the statistical significance from the 

standardized McNemar’s test about the difference between the proposed KELM-based methods and 

the traditional SVM-based methods. In these two tables, classifier 1 is denoted as C1 and classifier 2 is 

denoted as C2. As listed in the tables, the difference in accuracy between the two methods is viewed to 

be significantly differently at 95% confidence level if  𝑍 > 1.96  and at 99% confidence level  
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if  𝑍 > 2.58. Moreover, the sign of Z indicates whether classifier 1 outperforms classifier 2 (Z > 0) or 

vice versa. We can observe that the overall results of McNemar’s test for both datasets all have 

negative signs. This demonstrates that KELM-based methods outperform SVM-based methods, which 

confirms the conclusions obtained from the classification accuracies as shown in Tables 4 and 5. 

Table 6. McNemar’s test (Z ) for the Indian Pines dataset (nine classes, 20 samples per 

class for training). 

Class 
(SVM, KELM) 

(C1, C2) 

(Gabor-SVM, Gabor-KELM) 

(C1, C2) 

(MH-SVM, MH-KELM) 

(C1, C2) 

Hay-windrowed 1.73 NaN NaN 

Grass-pasture −0.26 2.83 2.00 

Soybean-clean 0.32 1.51 4.56 

Grass-trees −0.76 −1.41 −0.77 

Corn-mintill 2.56 5.40 4.06 

Soybean-notill 1.53 2.89 6.35 

Woods 2.45 −1.73 −0.20 

Corn-notill 3.51 4.67 8.09 

Soybean-mintill 8.30 −7.00 12.23 

Overall 6.09 1.34 16.65 

Table 7. McNemar’s test (Z) for the University of Pavia dataset (180 training and 

7920 testing samples). 

Class 
(SVM, KELM) 

(C1, C2) 

(Gabor-SVM, Gabor-KELM) 

(C1, C2) 

(MH-SVM,  

MH-KELM) (C1, C2) 

Asphalt 7.01 −1.29 4.51 

Meadows −4.82 4.56 −6.29 

Gravel 0 −6.40 0.54 

Trees −2.47 −1.13 2.71 

Painted metal sheets −1.73 −1.00 −1.00 

Bare Soil −1.07 −7.75 −0.23 

Bitumen −2.72 −5.66 −3.15 

Self-Blocking Bricks −2.10 −0.99 −5.17 

Shadows 5.66 −1.04 6.71 

Overall −0.50 −6.29 −0.97 

We also conduct an experiment using the whole scene of the two datasets. For the Indian Pines 

dataset, we randomly select 10% of the samples from each class (16 classes are used in this experiment) 

for training and the rest for testing. For the University of Pavia dataset, we use 1% of the samples from 

each class for training and the rest for testing. The classification accuracy for each class, overall 

accuracy (OA), average accuracy (AA), and the Cohen-қ are shown in Tables 8 and 9 for the  

two datasets, respectively. As can be seen from Tables 8 and 9, the proposed Gabor-KELM and  

MH-KELM have superior performance to the pixel-wise classifiers and outperform Gabor-SVM and 

MH-SVM. More importantly, we can see that employing the spatial features for classification can 

improve the accuracy under the SSS condition. For example, in Table 8, the classification accuracies 
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for class 1 (four training samples), 7 (two training samples) and 9 (two training samples) improved 

over 40% by integrating the spatial information (i.e., Gabor features or MH prediction) for KELM 

classifier. Due to the high cost of training data, such performance at low numbers of training data is 

important in many applications. Hence, we conclude that proposed Gabor-KELM and MH-KELM are 

very effective classification strategies for hyperspectral data analysis tasks under the SSS condition.  

Figures 7 and 8 provide a visual inspection of the classification maps generated using the whole HSI 

scene for the Indian Pines dataset (145 × 145 including unlabeled pixels) and the University of Pavia 

dataset (610 × 340, including unlabeled pixels), respectively. As shown in the two figures, 

classification maps of spectral-spatial based classification methods are less noisy and more accurate 

than maps generated from pixel-wise classification methods. Moreover, spectral-spatial based 

classification methods exhibit better spatial homogeneity than pixel-wise classification methods.  

This homogeneity is observable within almost every labeled area. 

Table 8. Classification accuracy (%) for the Indian Pines dataset (16 classes). 

Class 
Samples 

SVM KELM Gabor-SVM Gabor-KELM MH-SVM MH-KELM 
Train Test 

Alfalfa 4 42 57.14 54.76 64.29 97.62 26.19 90.48 

Corn-notill 142 1286 78.85 81.03 98.76 98.68 97.43 98.99 

Corn-mintill 83 747 62.25 62.78 97.86 98.39 96.12 99.06 

Corn 23 214 50.00 53.74 98.13 99.07 96.26 99.53 

Grass-pasture 48 435 93.56 90.80 99.54 100 97.47 100 

Grass-trees 73 657 95.28 95.28 100 100 99.70 100 

Grass-pasture-mowed 2 26 0 42.31 0 92.31 0 96.15 

Hay-windrowed 47 431 96.29 98.84 100 100 99.30 100 

Oats 2 18 0 33.33 100 100 0 100 

Soybean-notill 97 875 69.94 71.66 99.31 98.17 96.91 99.89 

Soybean-mintill 245 2210 88.64 85.48 99.32 99.28 97.24 99.41 

Soybean-clean 59 534 76.97 72.66 97.75 97.57 98.88 98.50 

Wheat 20 185 99.46 98.92 96.62 98.92 100 100 

Woods 126 1139 97.54 95.61 100 100 99.91 100 

Bldg-Grass-Trees-Drives 38 348 44.54 62.93 97.99 98.85 97.70 99.14 

Stone-Steel-Towers 9 84 94.05 75.00 100 100 95.24 98.81 

OA   82.00 82.02 98.64 99.08 97.10 99.44 

AA   69.03 73.45 90.57 98.68 81.15 98.75 

   79.28 79.37 98.44 98.95 96.69 99.36 

Table 9. Classification accuracy (%) for the University of Pavia dataset (whole scene). 

Class 
Samples 

SVM KELM Gabor-SVM Gabor-KELM MH-SVM MH-KELM 
Train Test 

Asphalt 66 6565 87.02 84.01 94.30 94.49 97.93 96.29 

Meadows 186 18463 97.28 97.51 99.82 99.96 99.91 99.98 

Gravel 20 2079 57.58 61.28 93.27 95.00 87.01 93.25 

Trees 30 3034 74.03 76.43 94.99 95.45 94.96 96.30 

Painted metal sheets 13 1332 99.25 99.47 99.77 99.92 99.55 99.70 

Bare Soil 50 4979 57.02 60.88 99.92 99.98 98.57 99.46 

Bitumen 13 1317 63.63 72.59 88.23 98.56 82.38 95.67 
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Table 9. Cont. 

Class 
Samples 

SVM KELM Gabor-SVM Gabor-KELM MH-SVM MH-KELM 
Train Test 

Self-Blocking Bricks 36 3646 86.48 83.19 85.24 88.62 94.30 97.11 

Shadows 9 938 98.83 86.99 75.69 79.64 82.73 52.35 

OA 9 938 85.46 85.4 96.16 97.08 97.04 97.31 

AA   80.12 80.26 92.36 94.62 93.04 92.23 

   80.23 80.53 94.89 96.12 96.06 96.42 

Figure 7. Thematic maps resulting from classification using 1018 training samples (10% per 

class) for the Indian Pines dataset with 16 classes. The overall classification accuracy of 

each algorithm is indicated in parentheses. 
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Figure 8. Thematic maps resulting from classification using 423 training samples (1% per 

class) for the University of Pavia dataset. The overall classification accuracy of each 

algorithm is indicated in parentheses. 

 

Finally, we report the computational complexity of the aforementioned classification methods  

using 20 labeled samples per class. All experiments are carried out using MATLAB on an Intel  

i7 Quadcore 2.63-GHz machine with 6 GB of RAM. The execution time for the two experimental data 

is listed in Table 10. For spectral-spatial based methods, we report the time for feature extraction and 

classification (training and testing) separately. It should be noted that SVM is implemented in the 
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libsvm package which uses the MEX function to call C program in MATLAB while KELM is 

implemented purely in MATLAB. As can be seen in Table 10, in terms of execution time of pixel-wise 

classifiers, KELM is much faster than SVM even though SVM is implemented in C. For the  

spectral-spatial based classifiers (i.e., Gabor-filtering-based and MH-prediction-based classifiers) are, 

as expected, much slower than the pixel-wise classifiers due to the fact that they carry the additional 

burden of spatial feature extraction (i.e., Gabor filtering on PCs, or MH prediction preprocessing). 

MH-prediction-based methods are the most time-consuming ones since two iterations of MH 

prediction are used in the experiments and the weight vector 𝐰  has to be calculated for every pixel in 

the image according to Equation (8) during MH prediction. It is worth mentioning that Gabor feature 

extraction procedure is performed independently on each PC, which means that Gabor feature 

extraction can go parallel. Thus, the speed of Gabor feature extraction on PCs can be greatly improved. 

Table 10. Execution time for the Indian Pines dataset (nine classes, 180 training and 9054 

testing samples) and the University of Pavia dataset (180 training and 7920 testing samples). 

Method 

Indian Pines University of Pavia 

Time (s) 

(Feature Extraction) 

Time (s) 

(Classification) 

Time (s) 

(Feature Extraction) 

Time (s) 

(Classification) 

SVM - 0.94 - 0.89 

KELM - 0.23 - 0.17 

Gabor-SVM 46.83 1.02 377.04 0.93 

Gabor-KELM 46.83 0.27 377.04 0.20 

MH-SVM 215.40 0.91 479.78 0.85 

MH-KELM 215.40 0.25 479.78 0.16 

4. Conclusions 

In this paper, we proposed to integrate spectral and spatial information to improve the performance 

of KELM classifier by using Gabor features and MH prediction preprocessing. Specifically, a simple 

two-dimensional Gabor filter was implemented to extract spatial features in the PCA-projected domain. 

MH prediction preprocessing makes use of the spatial piecewise-continuous nature of hyperspectral 

imagery to integrate spectral and spatial information. The proposed classification techniques, i.e., 

Gabor-KELM and MH-KELM, have been compared with the conventional pixel-wise classifiers, such 

as SVM and KELM, as well as Gabor-SVM and MH-SVM, under the SSS condition for hyperspectral 

data. Experimental results have demonstrated that the proposed methods can outperform the 

conventional pixel-wise classifiers as well as Gabor-filtering-based SVM and MH-prediction-based 

SVM in challenging small training sample size conditions. Specifically, the proposed spectral-spatial 

classification methods achieved over 16% and 9% classification accuracy improvement over the  

pixel-wise classification methods for the Indian Pines dataset and the University of Pavia dataset, 

respectively. MH-KELM outperformed MH-SVM by about 5% for the Indian Pines dataset and 

Gabor-KELM outperformed Gabor-SVM by about 1.3% for the University of Pavia dataset at all 

training sample sizes. Moreover, KELM exhibits very fast training and testing speed, which is an 

important attribute for hyperspectral analysis applications. Although the proposed methods  
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carry additional burden on spatial feature extraction, the computational cost can be reduced by  

parallel computing. 
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