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Deep Manifold Structure Transfer
for Action Recognition

Ce Li, Baochang Zhang, Chen Chen, Qixiang Ye, Jungong Han, Guodong Guo, and Rongrong Ji

Abstract—While intrinsic data structure in subspace provides
useful information for visual recognition, it has not yet been
well studied in deep feature learning for action recognition.
In this paper, we introduce a new spatio-temporal manifold
network (STMN) that leverages data manifold structures to
regularize deep action feature learning, aiming at simultaneously
minimizing the intra-class variations of learned deep features and
alleviating the over-fitting problem. To this end, the manifold
prior is imposed from the top layer of a convolutional neural
network (CNN), and is propagated across convolutional layers
during forward-backward propagation. The observed correspon-
dence of manifold structures in the data space and feature space
validates that the manifold priori can be transferred across CNN
layers. STMN theoretically recasts the problem of transferring
the data structure prior into the deep learning architectures
as a projection over the manifold via an embedding method,
which can be easily solved by an Alternating Direction Method of
Multipliers and Backward Propagation (ADMM-BP) algorithm.
STMN is generic in the sense that it can be plugged into
various backbone architectures to learn more discriminative
representation for action recognition. Extensive experimental
results show that our method achieves comparable or even better
performance as compared with the state-of-the-art approaches on
four benchmark datasets.

Index Terms—Action Recognition, Manifold, Alternating Di-
rection Method of Multipliers, Backward Propagation, ADMM-
BP.

I. INTRODUCTION

HUMAN action recognition has been extensively studied
in the computer vision community [1]–[9], due to its

broad range of applications in human computer interaction,
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Fig. 1. Spatio-temporal manifold network (STMN) is a network designed
by the intuition that action samples have intrinsic data structure, based on
which an intra-class action space containing various samples is defined to
be a spatio-temporal manifold. For action recognition, existing CNN features
have been well studied to distinguish the inter-class variability, unfortunately
ignoring the intrinsic data structure and intra-class variation. We model the
intra-class action space as a spatio-temporal manifold, which is used as a
regularization term in the loss function. Consequently, the manifold structure
of intra-class actions remains in the resulting STMN approach. Two classes
(blue/red) of samples in the CNN feature space are randomly distributed
(upper). Differently, the manifold structure in STMN regularizes the samples
in a compact space (bottom).

video content analysis, and video surveillance. While many
researchers view action recognition in constrained simple
backgrounds as a well solved problem, action recognition in
real-world complex scenes possess many hurdles driven by the
change of human poses, viewpoints, and backgrounds.

Action classification in video had been one of the most chal-
lenging problems next to the image classification [10]. Recent
deep learning approaches including 3D CNN [11], two-stream
CNNs [2], C3D [12], TDD [13], TSN [14], ST-ResNet+iDT
[15], L2STM [16], ST-VLMPF [17], P3D ResNet [18],
I3D [19], 3D ResNeXt [20], R(2+1)D-TwoStream [7],
CO2FI+ASYN [21], and DML [22] have shown state-of-
the-art performances in action recognition. The recent de-
velopment of CNNs with spatio-temporal 3D convolutional
kernels (3D CNNs) rapidly grows and contributes to significant
advances in video recognition [7], [18]–[20] because 3D
CNNs can be used to directly extract spatio-temporal features
from raw videos. However, most of these approaches aim
at distinguishing the inter-class variability, but often ignore
the intra-class distribution [23], and therefore could suffer
from the over-fitting problem [22], particularly when the video
datasets are relatively small compared to immense number of
parameters in 3D CNNs [20] and intra-class variations in the
training data are significant [22].
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To alleviate the over-fitting problem, regularization tech-
niques [8], [22]–[24] and prior knowledge, e.g., 2D topological
structure of input data [25], graph-based embedding [26],
are explored in deep feature learning. Nonlinear structures,
e.g., Riemanian manifold [27], Grassmann manifold [28], [29]
have been incorporated as constraints to balance the learned
model [30], [31]. However, the problem about how to model
the data structure priori into the deep learning architectures
remains not being well solved.

In this paper, we propose a spatio-temporal manifold 1

network (STMN) approach for action recognition, to alleviate
the above problems from the perspective of deep learning
regularization. Fig. 1 depicts the basic idea, where the spatial
manifold models the non-linearity of action samples while
the temporal manifold considers the dependence structure of
action video frames. With spatial and temporal manifolds
defined, this paper aims to answer “how the spatio-temporal
manifold can be embedded into CNN to preserve the data
structure priori and thus improve the action recognition per-
formance”.

Specifically, our assumption is that the intrinsic data struc-
ture, i.e., manifold structure, can be preserved in the deep
learning pipeline, by being transferred from the input video
sequences into the feature space. With this assumption, CNN
is exploited to extract feature maps with respect to the
overlapped clips of each video. Meanwhile, a new manifold
constraint model is intuitively obtained and embedded into
the loss function of CNN to reduce the structure variations
in the high-dimensional data. The resulting constrained op-
timization problem is solved with an Alternating Direction
Method of Multipliers and Backward Propagation (ADMM-
BP) algorithm. This is based on the theoretical analysis that
the manifold structure constraint can be seamlessly fused with
the back propagation procedure through manifold embedding
in the feature layer (the last layer of CNN). As a result, the
optimization algorithm can be easily implemented by using a
projection operation to introduce the manifold constraint. The
main contributions of this paper include:

1. The deep manifold structure transfer is introduced into the
loss function of a deep learning model as a regularization
term for action recognition. The resulting STMN frame-
work reduces the intra-class variations, improves the gen-
eralization capability, and alleviates the over-fitting problem
of classifying action sequences.

2. An Alternating Direction Method of Multipliers and Back-
ward Propagation (ADMM-BP) algorithm is developed to
transfer the manifold structure between the input samples
and deep features, which leads to a new framework to solve
the theoretically reformulated optimization problem “how
the structure of the data can be transferred to constrain the
variable in learning 3D CNNs”.

3. Extensive experimental results show that our method
achieves comparable or better performance as compared
with the state-of-the-art approaches on four benchmark
datasets.

1The spatio-temporal structure is calculated based on sample sets from
manifold.

The rest of the paper is organized as follows. Section II
introduces the related works, and Section III describes the
details of the proposed method. Experiments and results are
presented in Section IV, and Section V concludes the paper.

II. RELATED WORK

Action recognition has attracted much attention in the past
decade [22], [29]. The targets of action recognition evolute
from scimple background to real-world video sequences,
while the recognition methods shift from hand-crafted to
learning based. Early methods represent human actions by
hand-crafted features [32], [33], such as Harris-3D, SIFT-3D,
HOG-3DHOF [34], ESURF [33] and MBH [35], and explicit
motion modeling [36]. Recently, Wang et al. [37] proposed
an improved dense trajectories (iDT) method, which is the
state-of-the-art hand-crafted feature with densely sampled and
tracked optical flow points along trajectories. However, it
becomes intractable on large-scale dataset due to its expensive
computation cost.

Recently, more effective action recognition approaches root
in powerful learning methods, particulary the deep CNN
approaches [25], [38]–[42]. The existing deep models to
learn action representations from videos are categorized as
four architectures, namely spatio-temporal networks, multiple
stream networks, deep generative networks, and temporal
coherency networks. The most dominant method is spatio-
temporal networks including Stacked ISA [25], Gated Re-
stricted Boltzmann [43], extended 3D CNN [11]. Despite of
good performance achieved by deep CNN methods, they are
usually adapted from image-based deep learning approaches,
ignoring the temporal information of action video sequences.
To arm the convolutional operation with temporal information,
Ng et al. [44] explored temporal pooling and concluded that
max pooling in the temporal domain is preferable, Karpathy
et al. [41] proposed the concept of slow fusion to increase the
temporal awareness of a CNN and trained deep structures on
Sports-1M dataset. Tran et al. [12] performed 3D convolutions
and 3D pooling to extract a generic video representation by
exploiting the temporal information in the deep architecture
named C3D, then Varol et al. [45] explored the effect of
performing 3D convolutions over longer temporal durations as
the input layer. Besides, some works tackle action recognition
through a cascade of spatial CNN and a class of Long-
Short Term Memory (LSTM) and Gated Recurrent Units
(GRU) [46]–[48], such as ConvNet+LSTM (LRCN) [47],
ConvNet+LSTM (unsup) [49], L2STM [16], thereby select-
ing attention parts and incorporating temporal dependency
between frames. However, the performance improvements
over the spatial baselines have also been marginal in video
classification [16], [44], [47], [49], [50].

Different from the above-mentioned spatio-temporal net-
works using raw video inputs, the second main architecture,
multiple stream networks, usually devise separate motion in-
formation (e.g., optical flow) from appearance input (i.e., video
frames) by pre-processing. Simonyan et al. [2] introduced
the first multiple-stream deep convolutional networks where
two parallel CNNs are used for capturing motion information.
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Fig. 2. The STMN model is solved with an ADMM-BP algorithm, which leads to a chain of compact CNN features for action recognition. STMN is fine-tuned
based the C3D model with manifold embedding in the back propagation procedure.

Similar to [2], Feichtenhofer et al. [15] showed that a two-
stream fusion at an intermediate layer using RGB images and
a stack of ten optical flow frames can improve the performance
with less parameters. Extensions of two stream networks
include Two-stream ConvNet(original) [2], Two-stream Con-
vPooling [44], TDD+FV [13], Two-stream Transformations
[51], Two-stream ResNet [15], TSN (3 modalities) [14],
KVMF [52], ST-ResNet [15], AdaScan [53], Three-stream
sDTD [54], ST-VLMPF [17], SPN (BN-Inception) [55], and
ActionVLAD [56]. Despite the good performance of multi-
stream framework, it still remains unclear whether the deep
learning based model can capture the subtle motion model
and long-term motion dynamics for good performance without
multi-stream fusion.

Unlike abovementioned approaches, we focus on 3D CNNs
which have made significant advances in action recognition
[20]. Based on the spatio-temporal 3D CNNs, some existing
works are targeted at learning discriminative representations
using only raw input videos, including with C3D [12], GRP
[57], P3D ResNet [18], I3D [19], and 3D ResNeXt [20]. In
this paper, a spatio-temporal manifold network which devises
manifold structure in a deep neural network architecture for
action recognition is proposed. The manifold structure is not
explicitly exploited in existing deep learning approaches. In
most deep learning approaches for action recognition, the
learning objective involves only the inter-class discrimination,
but ignores the intra-class variance and structure information.
Our proposed approach inherits the advantages of the C3D
method [12], while goes beyond it by introducing a new
regularization term to exploit the manifold structure during the
training process, in order to reduce intra-class variations and
alleviate the over-fitting problem. Rather than simply combine
the manifold and CNNs, we theoretically obtain the updating
formula of our CNN model by preserving the structure of the
data from the input space to the feature space.

Although using the manifold constraint among action
videos, our work differs from the latest manifold work [22],
[23], [26], [29] in the following aspects. First, our method is
obtained from a theoretical investigation under the framework
of ADMM, while [23] is empirical, [26] is based on
semisupervised learning an optimal graph, [22] is based on
incorporating the regularizer into RBM pretraining, and [29] is
based on extrinsic least squares regression. Second, we regu-
larize the spatio-temporal manifold embedding on a 3D CNN,

TABLE I
A BRIEF DESCRIPTION OF VARIABLES USED IN THE PAPER.

Variable Description
X video training set
M manifold constraint
F C3D feature map
F̂ manifold embedding of F
F̃ STMN feature map
W convolution filters (exclude the last layer)
θ weight for the last fully connected layer
Ω the diagonal matrix of LLE weights

while [22] applied the manifold on a restricted Boltzmann
machine and a 2D CNN. Third, we are inspired from the fact
that deep learning is so powerful that it can well discriminate
the inter-class samples, and thus only intra-class manifold is
considered to tackle the unstructured problem existed in the
deep features (in Fig. 1). Differently, the method in [23]
focused on learning a deep metric to ‘pull’ features to clusters
considering intra-class and inter-class information based on the
complicated manifold regularization terms. However, our study
actually tend to ‘pull’ intra-class features and ‘push’ inter-
class features away from each other by revealing the manifold
structure information, which shows great advantages for action
recognition in videos.

III. SPATIO-TEMPORAL MANIFOLD NETWORK

In this section, we present how the spatio-temporal manifold
constraint can be introduced into CNN, i.e., C3D [12], for
action recognition. Fig. 2 shows the framework of STMN,
in which the intra-class manifold structure is embedded as
a regularization term into the loss function. The manifold
embedding leads to a new ADMM-BP learning algorithm to
train the CNN model.

For simplicity of explanation, we briefly describe the vari-
ables in the problem definition in Tab. I. F is the CNN feature
map, F̂ is the cloning of F , which formulates a manifold.
θ is the weight for the last fully connected layer, while W
represents convolution filters for other layers.

A. Model Formulation

Let X = {Xi} ∈ R, i ∈ [1, N ] be a training set of
videos, where N is the total number of videos and Xi =
{xi1, xi2, ..., xiNt} denotes the ith video with Xi divided into
Nt clips (see Fig. 2). X is the input of C3D, and the output
feature map is denoted as F . Given the convolution operator
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� and max pooling operator Ψ, the network performs convo-
lutions in the spatio-temporal domain with a number of filter
weights W and bias b. The function in the convolution layer is
fW (Xi) = Ψ(W �Xi + b). In the last fully connected (FC)
layer, the empirical loss function for the L-layers network is
formulated as the average loss on the training set:

Jλ(θ) =
1

N

∑N

i=1
L (Yi, fW (Xi)) +

λ

2
‖θ‖2, (1)

where θ denotes the weight vector in the last FC layer, and
all biases are omitted. In Eq. (1), the softmax loss term
L (Yi, fW (Xi)) is

L (Yi, fW (Xi)) = − log
eθ

T
Yi
fW (Xi)+bYi∑m

j=1 e
θTj fW (Xi)+bj

, (2)

where fW (Xi) denotes the deep feature for Xi, belonging
to the Yith class. θj denotes the jth column of weights in
the last FC layer, m is the number of classes. To simplify
the notation, we denote the output feature map for video Xi

as Fi =
{
FLi1, F

L
i2, ..., F

L
iNt

}
, which is able to describe the

nonlinear dependency of all features FLij after L layers for
video clips. As a result, the deep features are denoted as F =
{Fi} , i ∈ [1, N ], and F [k] refers to the learned feature at the
kth iteration (see Fig. 2).

The conventional objective function in Eq. (1) overlooks
a property that the action video sequences usually formulate
a specific manifold M, which represents the nonlinear de-
pendency of input videos. For example, in Fig. 1 the intra-
class of video X with separated clips lies on a spatio-temporal
manifold M, which is supported by the evidence that video
sequence with continuously moving and/or acting objects often
lies on specific manifolds [30]. To take advantage of the
property that the structure of the data can actually contribute to
better solutions for lots of existing problems [23], we deploy a
variable cloning technique X = X̂ with X̂ ∈M to explicitly
add manifold constraint into the optimization objective Eq. (1).
We then have a new problem:

Jλ(θ) =
1

N

∑N

i=1
L
(
Yi, fW (X̂i)

)
+
λ

2
‖θ‖2

s.t. X=X̂, X̂ ∈M
. (P1)

The Problem (P1) is more reasonable since the intrinsic
structure information is considered. However, it is unsolvable
because θ is for the last FC layer of CNN and is not directly
related to the input X .

In the deep learning approach with error propagation from
the top layer, it is more favorable to impose the manifold
constraint on the deep layer features. This is also inspired from
the idea of manifold on the structure for preserving in different
spaces, i.e. the high-dimensional and the low-dimensional
spaces. Similarly, the manifold structure of X in the input
space is assumed to be preserved in the feature F of CNN
in order to reduce variation in the higher-dimensional feature
space (Fig. 1). That is to say, an alternative manifold constraint
is obtained as F ∈ M, and evidently F is more related to
CNN training. In the problem of action recognition, the intra-
class variation at data level is interpreted as the data shift in
the same category of videos that have temporal evolution and

appearance variation, and the intra-class manifold at feature
level can be recognized as the similar structural information
in the same category of representation features. Ultimately,
the action variation in the same category may come from the
illumination, resolution, view point, action speed, and styles
of people performing the same action. To use F ∈ M to
solve the problem (P1), we perform variable replacement, i.e.
F = F̂ , alternatively formulate F̂ as a manifold, and achieve
a new problem (P2),

Jλ(θ) =
1

N

∑N

i=1
L
(
Yi, F̂i

)
+
λ

2
‖θ‖2

s.t. F=F̂ , F̂ ∈M
, (P2)

It is obvious that the objective in problem (P2) is learnable,
because F is the convolution result based on the learned
filter (W and θ) and θ is directly related to F . Indeed, the
manifold constraint adds weighted feature maps of the same
class to the original output, this regularization will make the
data points of the same class are further cluttered and become
more discriminative. The solution to the constraint F̂ ∈M is
elaborated in the next section.

B. ADMM-BP Solution (P2)

Based on the augmented lagrangian multiplier (ALM)
method, we have a new objective for the problem (P2) as

Jλ,σ(F̂ , F ; θ,R) = Jλ(θ) +RT (F̂ − F ) +
σ

2
‖F̂ − F‖2,

(3)
where RT denotes the Lagrange multiplier vector, σ is the
corresponding regularization factor. Optimizing the above ob-
jective involves complex neural network training problem.
Eq. (3) is solved based on ADMM and backward propagation
algorithm, named ADMM-BP, which integrates CNN training
with manifold embedding in an unified framework.

Specifically, we solve each variable in each sub-problem.
ADMM-BP is described from the kth iteration, and F̂ [k] is first
solved based on F [k]. Next F [k], R[k+1], θ[k+1] and W [k+1]

are solved step by step. Finally F [k+1] is obtained, which is
then used to calculate F̂ [k+1] similar to that in the kth iteration.
We have

F̂ [k] = arg minJλ,σ(F̂ |F [k])

s.t. F̂ ∈M
, (4)

which is described in the next section. And then

R[k+1] = R[k] + σ[k](F̂ [k] − F [k]). (5)

For the FC layer, we use the gradient descend method,

θ[k+1] = θ[k] − α
∂J [k]

λ,σ

∂θ[k]
= θ[k] − α

∂J [k]
λ

∂θ[k]
, (6)

and we update the parameters for convolutional layers W by
stochastic gradient descent in the backward propagation as

W [k+1] = W [k] − α
∂J [k]

λ,σ

∂F̂ [k]
· ∂F̂

[k]

∂W [k]
, (7)
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where α is the learning rate, k is the iterative number, and

∂J [k]
λ,σ

∂F̂ [k]
=
∂J [k]

λ

∂F̂ [k]
+ σ[k]

(
F̂ [k] − F [k]

)
+R[k]T . (8)

Now we have an updated CNN model to calculate the feature
map F [k+1], which is then deployed to calculate F̂ [k+1] via
Eq. (4) (replacing k by k + 1).

C. Manifold Embedding

In the ADMM-BP algorithm, only Eq. (4) is unsolved
because of an unknown manifold constraint M isometrically
embedded in R. Based on Eq. (3), we can rewrite Eq. (4) by
dropping the constant terms and the index of variables,

F̂ = arg min[RT (F̂ − F ) +
σ

2
‖F̂ − F‖

2
]

= arg min ‖F̂ − (F − R

σ
)‖2

s.t. F̂ ∈M

. (9)

In the kth iteration, we have F̂ [k]=AM(F [k] − R[k]

σ[k] )2,
where AM is the projection matrix related to the manifold
M. This is the key part of the proposed algorithm where the
constraint manifold M arises. Replacing M equals replacing
the projection AM. This is the modularity which we alluded
previously. To calculate AM, we exploit the locally linear
embedding (LLE) method [58] in order to find a structure-
preserving solution for our problem based on the embedding
technique. By considering intrinsic manifold structure of the
input data, the algorithm can stop on a manifold, AM, in the
kth iteration as

AM = F[1:H]Ω
[k], (10)

where Ω[k] is a diagonal matrix defined as Ω[k] =

diag(ω
[k]
1 , ..., ω

[k]
N ). F[i1:iH] are the H neighborhoods of the

sample and ω[k]
N are the corresponding weight vector calculated

in LLE.

D. Algorithmic Implementation

Based on the analysis above, we present a summary of the
ADMM-BP algorithm for STMN in Alg. 1, where the key step
defined by Eq. (11) is respectively solved in Sec. III-B and
Sec. III-C. Note that Eq. (10) is straightforward to implement,
and Eq. (11) is an optimization problem solved via ADMM
and then in the similar procedure to back-propagate the gra-
dient. Although the convergence of the ADMM optimization
problem with multiple variables remains an open problem, the
learning procedure experimentally never diverge. The reason
is that the new variables related to the manifold constraint
are solved following the similar pipeline of back propagation,
which essentially leads to no extra computational cost in the
stochastic gradient descent update.

We also give a brief analysis on the complexity of manifold
embedding in training STMN. To identify the H nearest
neighbors, each data point and its neighbors are assumed to
lie on a locally linear patch of the manifold, and the Ω[k] in

2We have F̂=(F − R
σ

) without manifold constraint.

Algorithm 1 ADMM-BP for the problem (P2)
1: Set t = 0 and εbest = +∞
2: Initialize α, λ, σ[0], R[0], and 0 < η <= 1
3: Initialize θ[0], W [0], F̂ [0], and Ω[0]

4: repeat
5:

(F̂ [k+1], R[k+1], θ[k+1],W [k+1]) =

arg min Jλ,σ[k](F̂ , F ; θ[k], R[k]|Ω[k])

s.t. F̂ ∈M,

(11)

Update Ω[k] and F̂ [k] by LLE
6: ε = ‖F̂ [k+1] − F̂ [k]‖2
7: if ε < η εbest
8: R[k+1] = R[k] + σ[k](F̂ [k] − F [k])
9: σ[k+1] = σ[k]

10: εbest = ε
10: else
10: R[k+1] = R[k]

11: σ[k+1] = 2 · σ[k]

12: endif
13: k ← k + 1
14: until maximum iteration step or ε ≤ 0.001

Eq. (10) is calculated by LLE. Note that LLE has the fast
optimization taking advantage of eigenvalue decomposition
by sparse matrix algorithms [58]. Next, the parameters θ and
W are updated by Eq. (6) and Eq. (7) in back propagation
training, which changes relatively in each iteration as the loss
Jλ,σ with the regularization of manifold embedding. That is to
say, it is not any deep learning network exclusive, but can be
widely applied to many fancy CNN models. In this paper, we
select the C3D model as the baseline due to its applicability
for the task of action recognition.

Based on the learned STMN model, we obtain a chain of
geometrically meaningful CNN features denoted as

F̃ =
{
F̃i

}
∈ R, i ∈ [1, N ]

F̃i =
{
F̃i1, F̃i2, ..., F̃iNt

} , (12)

where N is the number of videos, and F̃i is the STMN feature
for the video Xi with Nt clips for action classification.

IV. EXPERIMENTAL RESULTS

In this section ,we first present popular benchmark datasets,
then describe the details of our method, and finally present
and experimental results and analyze them compared with the
state-of-the-art results.

A. Datasets and Implementation

Three popular small-scale benchmark datasets
UCF101 [59], HMDB51 [60], and Hollywood2 [61] are
used to validate our approach for action recognition. Example
frames from the datasets are shown in Fig. 3.

UCF101 dataset contains 13320 videos from 101 action
classes with each class having at least 100 videos, which are
divided into 25 groups for each class. We follow the evaluation
scheme of the THUMOS13 Challenge [62] to use the three
training/testing splits. HMDB51 dataset consists of 6, 766



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

H
M

D
B

5
1

drawsword

pullup

17.2%

10.0%

U
C

F
1
0
1

BabyCrawling

GolfSwing

10.4%

15.3%

H
o
ll
y
w

o
o
d

2

9.6%
Run

Fig. 3. Example frames from Hollywood2, HMDB51 and UCF101 datasets.
(Numbers indicate the improvements of STMN over C3D for corresponding
actions.)

realistic videos from 51 action categories with each category
containing at least 100 videos. We follow the evaluation
scheme in [60] to report the average accuracy over three
different training/testing splits. Hollywood2 dataset provides
12 classes of human actions over 2, 517 videos from 69
movies with each category containing at least 210 videos [61].
The clean training subset and testing subset are with action
labels manually verified to be correct, respectively. In our
experiments, we use 823 training sequences and 884 testing
sequences from different movies.

TABLE II
EXPLORATION OF DIFFERENT NEIGHBORHOODS AS MANIFOLD

CONSTRAINTS FOR STMN+SVM ON DIFFERENT DATASETS (ACCURACY
%).

Neighborhoods # UCF101 HMDB51
H = 5 75.0 68.2
H = 10 79.8 68.6
H = 15 86.1 68.7
H = 20 92.5 69.7

Experimental settings. We employed the parallel comput-
ing strategy to implement our approach on Caffe [67] with four
Titan X Pascal GPUs and Xeon(R) E5-2620 V2 CPU. We use
C3D [12] as the baseline, which is the 3D version of CNN
designed to extract spatial and temporal features, to obtain a
chain of CNN features for video recognition. We initially use
the same pretrained model as C3D from sport1M [41] to train
the STMN model on UCF101 dataset, then further deploy and
finetune it on the other two datasets. Similar to C3D, each
video is divided into 16-frame clips with 8-frame overlapped
between two consecutive clips as the input of the STMN.
The frame resolution is set to 128× 171, and input sizes are
3 × 16 × 128 × 171 (channels×frames×height×width). The
network uses 5 convolution layers, 5 pooling layer, 2 FC layers
and a softmax loss layer to predict action labels. The filter
numbers from the first to fifth convolutional layer respectively
are 64, 128, 256, 256 and 256. The sizes of convolution filter
kernels and the pooling layers respectively are 3× 3× 3 and
2 × 2 × 2. The output feature size of each FC layer is 4096.
During the STMN training, the batch size, initial learning rate,
weight decay parameters, and maximum iteration are set to be
24, 0.001, 0.9999, 60000, respectively. Following to the three-
net deployment for higher performance on C3D [12], we also
extract STMN features from all clips and finally concatenate
them for video classification.

Model settings and baseline. To evaluate the effective-
ness of our STMN (F̃ ), we follow the same protocols of

training/testing splits as used in TDD [13], TSN [14] and
C3D [12] on UCF101, HMDB51, and Hollywood2, in order
to have a fair comparison with other methods. Since many
works reported results by performing the fusion with hand-
crafted iDT features [37], we also conduct three different
settings for classification models for a fair comparison: (A)
STMN – it uses STMN features directly with a softmax layer
for classification, (B) STMN+SVM – it combines the STMN
features with a multi-class linear SVM for classification, (C)
STMN+iDT+SVM – it concatenates the STMN features and
iDT features with multi-class linear SVM for final classifica-
tion, which follows the same protocol as used in C3D [12].
Table III compares the mean average accuracy over splits of
our approach with the state-of-the-art methods. In Table III, the
methods in the first block are based on hand-crafted features,
the second block are based on recent deep learning features,
and the third block are based on the combination of various
deep learning features and the hand-crafted iDT features. We
also recognize each method whether or not using multi-stream
architectures in the fifth column, and also list each method
whether or not using deep learning in the sixth column. Noted
that the methods without multi-stream architectures only using
raw video input but others using video and motion input. As
a confirmation in the table, the proposed STMN model can
learn compact feature representation, and the performance on
datasets will be compared in Section IV-C.

(a) (b)
Fig. 4. Feature visualization of twenty difficult classes on the UCF101 dataset.
(a) are the C3D features, and (b) are the STMN features. The STMN feature
is more discriminative than the C3D feature.

C3D
input

C3D 

conv5b

STMN 

conv5b

STMN
input

C3D 
conv4b

C3D 
conv3b

C3D 
conv2a

STMN 
conv4b

STMN 
conv3b

STMN 
conv2a

Fig. 5. Visualization of feature maps in conv2a, conv3b, conv4b and conv5b
layer. Second row: the learned filters detect moving edges, the third row:
the learned feature maps detect moving textures, the fourth row: the learned
feature maps detect moving body parts, the last row: the learned feature maps
detect moving motions of crawling. Left group is C3D and right is STMN.
Best viewed in color.

B. Experimental Analysis

Parameter analysis. To investigate the performance of
SMTN using different numbers of neighborhoods in LLE, we
first study the average recognition accuracies of STMN on
the same trail of UCF101 and HMDB51 datasets in Tab. II.
Due to limited number of training videos in each class, we
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TABLE III
COMPARISON TO THE STATE-OF-THE-ART RESULTS ON UCF101 DATASET (3 SPLITS), HMDB51 (3 SPLITS), AND HOLLYWOOD2 DATASET.
Method UCF101 (%) HMDB51 (%) Hollywood2 (%) Multi-stream Deep Learning Year
STIP+BoVW [60] 43.9 23.0 32.6 N N 2011
DT+BoVW [63] 79.9 46.6 63.0 N N 2013
DT+MVSV [64] 83.5 55.9 – N N 2014
iDT+FV [37] 84.7 57.2 64.3 N N 2013
DT+BOW [65] – 60.9 63.0 N N 2016
3D ConvNet [41] 65.4 – – N Y 2014
ConvNet+LSTM (LRCN) [47] 82.9 – – N Y 2015
ConvNet+LSTM (unsup) [49] 84.3 – – N Y 2015
Two-stream ConvNet(original) [2] 88.0 59.4 – Y Y 2014
Two-stream ConvPooling [44] 88.2 – – Y Y 2015
TDD+FV [13] 90.3 63.2 – Y Y 2015
Two-stream Transformations [51] 92.4 63.4 – Y Y 2016
Two-stream ResNet [15] 93.4 – – Y Y 2016
TSN (3 modalities) [14] 94.2 69.4 66.8 Y Y 2016
KVMF [52] 93.1 63.3 – Y Y 2016
ST-ResNet [15] 93.4 66.4 – Y Y 2016
AdaScan [53] 89.4 54.9 – Y Y 2017
GRP [57] 91.9 65.4 – N Y 2017
Three-stream sDTD [54] 92.2 65.2 – Y Y 2017
L2STM [16] 93.6 66.2 – Y Y 2017
ST-VLMPF [17] 93.6 69.5 – Y Y 2017
ActionVLAD [56] 92.7 66.9 – Y Y 2017
P3D ResNet [18] 88.6 – – N Y 2017
3D ResNeXt [20] 90.7 63.8 – N Y 2017
SPN (BN-Inception) [55] 94.6 68.9 – Y Y 2017
MiCT [6] 89.1 – – N Y 2018
CO2FI+ASYN [21] 94.3 69.0 – Y Y 2018
R(2+1)D-TwoStream [7] 95.0 72.7 – Y Y 2018
DML without additional training data [22] 94.7 65.2 – Y Y 2018
DML [22] 96.7 72.5 – Y Y 2018
C3D [12] (baseline) 79.4 49.3 55.7 N Y 2015
STMN (ours) 83.7 56.2 58.5 N Y –
C3D+SVM [12] (baseline) 85.2 50.3 60.6 N Y 2015
STMN+SVM (ours) 92.5 69.7 63.2 N Y –
TDD+iDT [13] 91.5 65.9 – Y Y 2015
Dynamic Image Networks+iDT [66] 89.1 65.2 – Y Y 2016
AdaScan+iDT [53] 91.3 61.0 – Y Y 2017
GRP+iDT [57] 92.3 67.0 – N Y 2017
ActionVLAD+iDT [56] 93.6 69.8 – Y Y 2017
P3D ResNet+iDT [18] 93.7 – – N Y 2017
ST-ResNet+iDT [15] 94.6 70.3 – Y Y 2016
CO2FI+ASYN+iDT [21] 95.2 72.6 – Y Y 2018
C3D+iDT [12] (baseline) 90.4 63.5 67.7 N Y 2015
STMN+iDT (ours) 92.8 70.2 70.1 N Y –

Fig. 6. Comparison of intra-class means and variances of C3D (black) and STMN (red) features. 51 classes are from HMDB51 dataset.

learned the STMN on the UCF101 using H = 5, 10, 15, 20
neighbor samples and extracted features for the SVM classifier.
By the comparison of the second column and the third column,
STMN+SVM achieves the best accuracies of 92.5% and
69.7% on UCF101 dataset and HMDB51 dataset, respectively,
when H = 20. Note that the value of H has to be smaller
than the batch size. In our experiment, we can only evaluate
the performance of STMN with three different classification
models by setting H up to 20 due to memory limitation of
GPUs.

Feature visualization. To better understand our network,

we analyze and visualize the learned features based on C3D
and STMN on the UCF101 dataset. Fig. 4 shows the embed-
ding feature visualizations on UCF101 dataset by t-SNE [68].
The C3D features of twenty difficult classes on UCF101 are
visualized in Fig. 4(a), while the STMN features are illustrated
in Fig. 4(b), respectively. It is shown that the STMN features
in Fig. 4(b) can be better discriminated for action classification
than the C3D features in Fig. 4(a). As another verification, the
quantitative evaluation is performed based on intra-class mean
and variance in the next section.

Model effect. To compare the baseline and STMN learned
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Fig. 7. Comparison of intra-class means and variances of C3D (black) and STMN (red) features. 101 classes are from UCF101 dataset.

Fig. 8. The analysis of training loss curves of
STMN and C3D on the UCF101 datasset.
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Fig. 9. The training and testing accuracy curves of STMN and C3D on the UCF101 datasset.

feature maps in convolution layer of deep networks, we select
a clip of frames in BabyCrawling example from UCF101 and
visualize the deconvolutions of feature maps from the layers
of conv2a, conv3b, conv4b and conv5b in Fig. 5, where the
top activations are projected into image space [42]. As shown
in the visualizations, STMN learns low level motion patterns
such as moving edges, edge orientation changes and color
changes at early layer conv2a, higher level motion patterns
such as textures, body parts and trajectories at convolution
layer conv3b and conv4b, and complicated motion patterns
of moving objects at the conv5b layer. It also shows that
the feature maps at deeper convolutional layer are stronger
to capture the motions.

Intra-class variation. Considering that the manifold regu-
larization aims to make the data point of the same class are
further cluttered in the feature space, we evaluate the intra-
class variation at the feature level in terms of the mean and
variance values of features’ similarity. The variance values
are smaller, and the learnt features are more cluttered. We
calculate the pairwise Euclidean distances of STMN features
and C3D features, and then compute the intra-class mean
and variance values. The quantitative intra-class means and
variances of STMN features and C3D features on HMDB51
and UCF101 are shown in Fig. 6 and Fig. 7, respectively.
We observe that the variance value of STMN features for
most of the classes are less than those of C3D. Fig. 4, Fig. 6
and Fig. 7 demonstrate that STMN can exploit the manifold

structure to better eliminate the randomness of samples in
the feature space. Especially as shown in Fig. 6 and Fig. 7,
the quantitative intra-class means and variances 3 of STMN
features are much smaller than those of C3D, e.g. the total
mean on the UCF101 dataset has decreased from 14.02 to
11.15. We can also observe that 21.22 (STMN mean) versus
18.78 (C3D mean) and 8.58 (STMN variance) versus 13.23
(C3D variance) for the specific action BabyCrawling.

Learning convergence. We plot the training loss curves in
Fig. 8, the training accuracy curves in Fig. 9(a), and testing
accuracy curves in Fig. 9(b) of STMN and C3D networks on
a same trail of UCF101. It is clear that the training loss of
STMN (red line) converges much faster than C3D (black line)
from the 1000th iteration to the 15000th iteration. We also can
observe that STMN curve stops increasing much early than
C3D curve for the training accuracy, and it obtains higher
testing accuracy than C3D. These curves show that STMN
obviously converge faster and gain better performance than
C3D, which proves that the proposed manifold regularization
can alleviate the over-fitting problem by taking the instrinsic
input data structure information into account in the same
framework.

C. Results and Comparisons

To provide comprehensive evaluation, we follow the same
evaluation scheme to compare our STMN with several rep-

3The statistics are computed using pairwise Euclidean distance.
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resentative human action recognition methods. Tab. III shows
the performance comparison of three settings of classification
models for the STMN architecture, including with (A) STMN,
(B) STMN+SVM, and (C) STMN+iDT, with other state-of-
the-art approaches. Note that all our STMN-based approaches
under different classification models are able to achieve better
performance than the baseline C3D-based approaches (C3D,
C3D+SVM, C3D+iDT), demonstrating the superiority of our
spatio-temporal manifold regularization.

Results of three small-scale datasets. We analyze the
results of STMN-based approaches from the second column
to the fourth column in Tab. III. For the UCF101 dataset,
STMN performs better than the hand-crafted STIP+BoVW
[60], DT+BoVW [63], DT+MVSV [64] methods in the first
block of table and the deep learning based 3D ConvNet
[41] in the second block. STMN+SVM achieves better per-
formance than all hand-crafted methods and most of deep
learning based methods, such as 3D ConvNet [41], Con-
vNet+LSTM (LRCN) [47], ConvNet+LSTM (unsup) [49],
Two-stream ConvNet(original) [2], Two-stream ConvPool-
ing [44], TDD+FV [13], Two-stream Transformations [51],
AdaScan [53], AdaScan [53], Three-stream sDTD [54], and
C3D+SVM [12]. STMN+iDT also gains good result compar-
ing to other methods based on the combination of various deep
learning features and the hand-crafted iDT features in the third
block. The improved results of STMN+SVM and STMN+iDT
suggest that our STMN can exhibit better feature modeling
ability than other models by the manifold regularization. For
the HMDB51 dataset and Hollywood2, STMN, STMN+SVM,
and STMN+iDT also lead to comparable results than the state-
of-the-art methods. Limited by the problem of hollywood
movie data, such as multi-objects, object parts and various
background etc., the results of existing methods have not been
as good at Hollywood2 as UCF101 and HMDB51. Noted
that STMN+iDT performs better than MiCT [6] which mixes
the 3D CNNs and 2D CNNs in the convolutional tube for
intergrating feature representation.

To demonstrate the enhancement of STMN, We plot the
recognition confusion matrices for the best 30 classified
classes on HMDB51 and UCF101 dataset in Fig. 10, which
show most of the classes achieve high recognition accura-
cies. We take five classes including Run, drawsword, pullup,
BabyCrawling, and GolfSwing as examples for more detailed
analysis as shown in Fig. 3. We can see that the recognition
accuracies of STMN+SVM for these five actions are 88.4%,
100%, 98%, 99% and 100%, and the improvements over
baseline are 9.6%, 17.2%, 10.0%, 10.4% and 15.3%, respec-
tively. It would be interesting to look into the comparison
on the manifold strctures of the input data, C3D features,
and STMN features. As illustrated in Fig. 11, STMN has
a similar structure as that of the original input data, whilst
the manifold structure of C3D is obviously different. Together
with quantitative evaluation in Fig. 6 and Fig. 7, we believe
that manifold constraint can decrease the intra-class variance
in these classes, which is important for action recognition. As a
further confirmation in Tab. III, the proposed STMN model can
learn compact feature representation, and therefore it achieves
comparable results with the spatio-temporal architectures and

TABLE IV
COMPARISON OF DIFFERENT BACKBONE ARCHITECTURES ON UCF101

DATA SET.
Architecture Layer Dim UCF101
STMN+SVM (ours) 10 3D 92.5
STMN ResNet+SVM (ours) 152 3D 93.6
STMN+iDT (ours) 10 3D 92.8
STMN ResNet+iDT (ours) 152 3D 94.5

multi-stream networks.
Analysis of backbone architectures. It is worth mentioning

that our results of STMN+SVM and STMN+iDT achieve the
comparable performance on HMDB51 and they are lower on
UCF101 than some recent methods, such as ST-ResNet+iDT
[15], L2STM [16], ST-VLMPF [17], R(2+1)D-TwoStream
[7], DML [22], and CO2FI+ASYN+iDT [21], which use
sophisticated deep models (BN-Inception+RBM, ResNet), and
multi-stream modalities of fusion (RGB, Optical Flow, Warped
Flow and audio), while we only use the RGB and flow features
(i.e., original video frames, iDT) in our STMN with the simple
10-layer C3D backbone architecture. Note that our manifold
regularization scheme is very general and could be used in any
architecture where input data constraints are natural, and the
similar idea of multi-stream can be used to improve STMN in
our future work.

Inspired by the recent successful application of ResNet
backbone for action recognition, e.g. ST-ResNet+iDT [15],
R(2+1)D-TwoStream [7], P3D ResNet [18], and 3D
ResNeXt [20], we also use the ResNet backbone in 3D CNN
to learn the spatio-temporal representation. Following the mix-
ing residual blocks of P3D ResNet [18] and name this special
STMN as STMN ResNet, we implement it in Tensorflow
and initially use the same pretrained model from Sport-1M
as P3D ResNet, embed the manifold regularization in the
output feature space of convolutional architecture, and extract
a generic 2048 dimensional feature for final classification. In
Tab. IV, we compare the original 10-layer C3D backbone and
the ResNet 3D backbone on UCF101 dataset. Benefied from
the spatio and temporal residual connections throughout the
architecture, STMN ResNet+SVM outperforms C3D+SVM
when using only RGB features, and STMN ResNet+iDT
achieves better recognition accuracy than C3D+iDT when
fusing RGB and flow features. The results indicate that the
deeper backbone architecture makes our method boost the
performance and it leads to consistent improvement combing
with flow features. In addition, by performing the ResNet
backbone on the 3D spatio-temporal convolutional network,
the accuracy of our STMN ResNet+iDT gets close to the state-
of-the-art ST-ResNet+iDT [15], SPN (BN-Inception) [55],
DML [22], and CO2FI+ASYN+iDT [21]. This makes us to
believe that using 3D CNNs together with complex deeper
architectures, more huge pretraining dataset, and multiple
stream inputs will further develop the spatio-temporal video
representation in the future work.

Results of large-scale ActivityNet-200 dataset. To further
evaluate our method, we also conduct the experiment on
ActivityNet-200 dataset. The ActivityNet-200 dataset (v1.3)
[70] is one of the most popular large-scale video benchmarks
for human activity classification. It contains 19,994 videos
from 200 activity categories, which are divided into 10,024,
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(a)

(b)
Fig. 10. Recognition confusion matrices of top 30 classes with most improvements than baseline on (a) HMDB51 and (b) UCF101 datasets.

(a) (b)

-1
1

0

1

10 0
-1 -1

-1
1

0

1

1

0 0
-1 -1

1-1

0

1

1

00 -1-1

(c)

-1
1

0

1
0

1

0
-1 -1

-1
1

0

1

1

0 0
-1 -1

-1
1

0

1
0

1

0
-1 -1

(d)

1
0-1

1

0

0 -1

1

-1

1-1
01

0

0

1

-1-1

1-1
01

0

0

1

-1-1

(e)
Fig. 11. Manifold structure visualization of input data (blue), C3D features
(black) and STMN (red) for the examples in Fig. 3, including (a) Run, (b)
drawsword, (c) pullup, (d)BabyCrawling, and (e) GolfSwing.

TABLE V
PERFORMANCE COMPARISONS IN TERMS OF TOP-1 CLASSIFICATION

ACCURACY ON ACTIVITYNET-200 DATASET.
Method top-1
C3D+SVM [12] 65.8
ResNet+SVM [69] 71.4
P3D ResNet+SVM [18] 75.1
STMN ResNet+SVM (ours) 76.3

4,926 and 5,044 videos for training, validation and test set,
respectively. This dataset is very challenging since it suf-
fers from complex temporal evolution, untrimmed non-action
frames, appearance variation and background clutters. Follow-
ing ResNet+SVM and P3D ResNet+SVM [18], we implement
the STMN ResNet+SVM using ResNet-152 as the backbone
architecture and report the performance in terms of top-1 clas-
sification accuracy on the validation set. As shown in Tab. V,
STMN ResNet+SVM outperforms C3D+SVM, ResNet+SVM
and P3D ResNet+SVM by 10.5%, 4.9%, and 1.2% in terms of
top-1 accuracy, respectively. The performance improvements
validate that our method is indeed effective and gets better
spatio-temporal representation than others on the large-scale
dataset due to the use of the manifold regularization on 3D
CNN.

V. CONCLUSIONS

This paper focuses on a new insight into deep feature
extraction for action recognition using raw videos from the

perspective of spatio-temporal manifold constraint. By trans-
ferring the structure of the data to a new constraint of the vari-
able, we have proposed a new spatio-temporal convolutional
manifold network (STMN) to solve the action classification
problem. STMN is solved based on the proposed ADMM-BP
algorithm. Experimental results on four benchmark datasets
have demonstrated that STMN provides an effective way
to reduce intra-class variation while preserve the inter-class
discrimination of high-dimensional spatio-temporal deep fea-
tures, which effectively alleviates the over-fitting problem
of classifying action sequences. Based on the experimental
evaluation, STMN achieves comparable or better performance
as compared with the state-of-the-art approaches on four
benchmark datasets. Our manifold regularization scheme is
general and could be adapted to most existing architectures
where input data constraints are natural. The idea of multi-
stream will be also applied to improve the effectiveness of
STMN in future work.
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