
IoT Phantom-Delay Attacks: Demystifying and
Exploiting IoT Timeout Behaviors

Chenglong Fu1, Qiang Zeng2, Haotian Chi1, Xiaojiang Du3, Siva Likitha Valluru2
1 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

2 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29201, USA
3 Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
Email: chenglong.fu@temple.edu, zeng1@cse.sc.edu, htchi@temple.edu, xdu16@stevens.edu, svalluru@email.sc.edu

Abstract—This paper unveils a set of new attacks against
Internet of Things (IoT) automation systems. We first propose
two novel IoT attack primitives: Event Message Delay and
Command Message Delay (event messages are generated by
IoT devices to report device states, and command messages
are used to control IoT devices). Our insight is that timeout
detection in the TCP layer is decoupled from data pro-
tection in the Transport Layer Security (TLS) layer. As a
result, even when a session is protected by TLS, its IoT
event and/or command messages can still be significantly
delayed without triggering alerts. It is worth highlighting
that, by compromising/controlling one WiFi device in a smart
environment, the attacker can delay the IoT messages of
other non-compromised IoT devices; we thus call the attacks
IoT Phantom-Delay Attacks. Our study shows the attack
primitives can be used to build rich attacks and some of
them can induce persistent effects. The presented attacks
are very different from jamming. 1) Unlike jamming, our
attacks do not discard any packets and thus do not trigger
re-transmission. 2) Our attacks do not cause disconnection
or timeout alerts. 3) Unlike reactive jamming, which usually
relies on special hardware, our attacks can be launched
from an ordinary WiFi device. Our evaluation involves 50
popular IoT devices and demonstrates that they are all vul-
nerable to the phantom-delay attacks. Finally, we discuss the
countermeasures. We have contacted multiple IoT platforms
regarding the vulnerable IoT timeout behaviors, and Google,
Ring and SimpliSafe have acknowledged the problem.

I. Introduction

The global IoT market size was valued at $212 billion in
2018 and is expected to reach $1,319 billion by 2026 [59].
Many IoT platforms support the integration of heterogeneous
IoT devices and the installation of powerful automation in a
smart environment. While prior works have described attacks
that exploit implementation vulnerabilities of IoT devices or
platforms [27], [30], [37], [53], this work unveils a set of IoT
attacks that do not rely on any implementation vulnerabilities
but exploit a design flaw in IoT timeout behaviors.

The attacks are built on two attack primitives, dubbed IoT
Event Message Delay (e-Delay, for short) and IoT Command
Message Delay (c-Delay, for short). An IoT event is raised
by an IoT device to report the device state usually to an IoT
server (such as a “motion active” event), and an IoT command
is typically issued by an IoT server to control a device (such
as a “lock front door” command). Due to packet transmission
time, a delay is inevitable from the moment an event or

command is raised to the moment it is delivered. Such delays
are typically sub-seconds and usually do not cause issues.
However, our study discovers that attackers can mali-

ciously increase the delay from sub-seconds to minutes or
even hours without causing any alarms. As a result, when an
IoT cloud server receives an IoT event that actually was raised
quite a while ago, it incorrectly assumes the corresponding
IoT device state update is fresh. In smart environments,
however, outdated knowledge, held by the cyber-world, about
the physical world can cause intriguing problems. Thus, this
work investigates two critical questions. (1) Why are such
large delays possible? (2) What attacks can be built?
To study the first question, we analyze the IoT network

protocol stack to demystify IoT timeout behaviors. Our
analysis starts from the TCP layer and moves upwards. A key
observation is that the timeout detection implemented in the
TCP layer is decoupled from the data protection provided by
the TLS layer. As a result, an attacker can fool both the IoT
device and server to believe that a session is healthy, while
the attacker actually delays IoT messages (although the data
integrity remains protected by TLS).
Consequently, the allowed delay of event/command mes-

sages is only bounded to the timeout behaviors implemented
in the application layer, such as MQTT or HTTP. Our
investigation shows that despite the diversity of IoT devices,
most of them allow c-Delay from multiple seconds to sub-
minutes, while the other attack primitive, e-Delay, ranges
from sub-minutes to hours.
To explore the second question, we exploit the two attack

primitives, e-Delay and c-Delay, to build a family of attacks
against smart homes. (They leverage recent advances in infer-
ring smart home privacy by sniffing encrypted packets [17],
[21], [42], [57].) While some attacks merely incur automation
delays, others can disrupt, disable, and override automa-
tion rules’ execution. They are categorized into three types.
Type-I: State-Update Delay Attack. Given a critical IoT
device, a home owner should be notified of its state update
as soon as possible (e.g., a pop-up notification on her smart-
phone). However, an attacker can apply e-Delay to packets
of an event message that reports an IoT state update. Despite
the simplicity of the attack, it can cause severe consequences
if the state update from certain IoT devices is delayed for

minutes. Such critical IoT devices include a water sensor
that detects room flooding, a smoke detector [49], [55] that
reports fires, a contact sensor that detects home invasion,
and so forth. In these situations, every second matters.
Type-II: Action Delay Attack. Because of automation, an
event can trigger a critical action. Hence, by applying e-
Delay to that event, the triggered critical action is also
delayed. For example, a high carbon-monoxide level triggers
an open-window action, an attacker can hold the message
that reports “CO high” to delay the open-window action,
which may be fatal to the residents. The attacker can also
apply the c-Delay primitive to the critical action to further
delay the action for a longer time.
Type-III: Erroneous Execution Attack. An attacker may
leverage the attack primitives to launch two kinds of Er-
roneous Execution attacks. (1) Spurious Execution means
that an action command that should not be issued is, in
fact, issued. For instance, an attacker delays the state-update
event that could have turned the automation condition to
false (hence, the condition remains true due to the delay
attack); as a result, execution of the rule will trigger a
spurious action. (2) Disabled Execution means an action
command that should be issued is not issued. An attacker
can apply e-Delay to the message, which could have turned
an automation condition to true, until after the trigger event
happens, and hence the automation is disabled.

The presented attacks are different from jamming (and
other Denial of Service attacks) in three aspects. 1) Unlike
jamming, our attacks do not discard any packets and thus do
not trigger retransmission. Repetitive retransmission of pack-
ets is suspicious. 2) Our attacks do not cause disconnection or
timeout alerts. 3) Unlike reactive jamming, which selectively
jams certain packets but relies on specific hardware [23], [47],
our attacks can be launched from an ordinary WiFi device.
Thus, while reactive jamming, as a low-level attack method,
can be used to implement the delay attacks revealed in this
paper, we present an attack method that can be launched
using an ordinary device. As an attacker can control one
device to attack other non-compromised IoT devices, we call
it the phantom-delay attack .

We measure the timeout behaviors and delay ranges of
50 popular IoT devices. The allowed delays range from sub-
minutes to hours, which is a considerable time window for
attackers. The results alarm that numerous IoT devices can be
exploited. (They have the most significant impact on Apple’s
smart home users, as the HomeKit Accessory Protocol [15]
allows event messages to be delayed with an infinite upper
bound.) Moreover, through proof of concept exploits, we
demonstrate how an attacker can leverage the primitives to
launch sophisticated attacks in a real-world environment.

This work studies a largely omitted topic—IoT timeout
behaviors. It demonstrates that current IoT timeout behaviors
are exploitable in cyber-physical systems like smart homes,
and reveals a critical design flaw in many WiFi-based IoT
devices: the network-delay detection in the TCP layer is de-

coupled from the data protection in the TLS layer. Our study
thus raises a bigger question: Is TCP+TLS, despite being a
cornerstone of Internet security nowadays, really suitable for
IoT devices?
We make the following contributions:
• We study IoT timeout behaviors by analyzing the IoT

network protocol stack of WiFi-based IoT devices. Re-
sults of our analysis show that timeout behaviors among
IoT devices are loosely defined and lack standardization.

• Based on the timeout behaviors, we design two attack
primitives, e-Delay and c-Delay, allowing an attacker
to cause significant message delays, without raising
alarms in any layers of the IoT network protocol stack.

• Leveraging the two attack primitives, an attacker can
cause not only delays of IoT events and commands
(Type-I and II attacks) but also spurious or disabled IoT
operations (Type-III attack). These attacks do not rely
on any implementation vulnerabilities but can impose
serious threats on smart environments.

• Our evaluation of 50 IoT devices and various IoT plat-
forms shows that the exploitable timeout behaviors
widely exist. We also demonstrate proof-of-concept at-
tacks that exploit the delays to manipulate smart home
automation. The study reveals a critical design flaw of
IoT devices built on TCP+TLS.

• We have contacted multiple IoT vendors to report the at-
tacks. Google, Ring, and SimpliSafe have acknowledged
the problem and are fixing it.

The rest of the paper is organized as follows. We discuss
some IoT background in Section II and present our attack
model in Section III. We demystify IoT timeout behaviors in
Section IV and build attacks that exploit them in Section V.
The evaluation results are presented in Section VI. We discuss
potential countermeasures in Section VII and related work in
Section VIII. The disclosure plan is described in Section IX.
Finally, we conclude in Section X.

II. Background
A. IoT Servers
Based on their locations, IoT servers can be roughly

categorized into two types: (1) Cloud IoT servers, such as
those of SmartThings and Amazon, host IoT services on cloud
servers. (2) Local IoT servers, such as Apple’s HomeKit hub,
operate on local devices. The cloud IoT servers can be further
categorized into endpoint servers and integration servers. An
endpoint server is operated by an IoT device vendor and
directly interacts with its own devices. An integration server,
on the other hand, indirectly interacts with third-party IoT
devices through their endpoint servers using cloud-to-cloud
communication. Some cloud-based servers combine the two
functionalities. For example, SmartThings’s IoT servers can
both connect IoT devices directly and integrate third-party
devices via vendors’ endpoint cloud servers.
B. Automation Rules
An increasing number of IoT platforms support user-

customized automation programs to allow devices to work

2

Cloud IoT
Server

Zigbee/ZWave
Devices

Home
WiFi

Router
Bridges/Hubs

WiFi
Devices

Zigbee/ZWave
Devices

Home
WiFi

Router
Bridges/Hubs

WiFi
Devices

Local IoT
Server

Home Area Network Home Area Network
(a) Cloud-based IoT

Deployment
(b) Local-based IoT

Deployment

Fig. 1: System model of a typical smart home deployment.

autonomously. Despite the different syntax of automation
programs among IoT platforms, an automation program is
equivalent to one or more automation rules, each of which
can be represented as a triplet of trigger-condition-action
(TCA, for short) [24], [28], [58]: When the trigger event is
received by an IoT server, if the condition is evaluated as
true, the specified action is taken. An IoT event is usually
generated by an IoT device and sent to an IoT server;
a delivered event triggers the execution of all automation
programs that subscribe to the event. To take an action
on an IoT device, an IoT server generates an IoT command
and sends it to the destination device. Not all rules have
conditions; in this case, a rule can be regarded as a special
case of the TCA rule whose condition is always true [8], [25].
C. IoT Sniffing Based Side Channel Attacks

Recent research has made significant progress in inferring
private information of a smart home from its encrypted
traffic. Some work utilizes the metadata in encrypted traffic,
such as packet headers, lengths, and frequencies, to recognize
the device’s identity [21], [44]. By incorporating the traffic
patterns, recent work achieves high precision in inferring
events [17], [57] and automation rules [42] from the traffic.
Finally, from a sequence of recognized IoT events, patterns of
user activities can also be inferred [19], [22], [29], [41], [56].
This work does not advance information inference methods
but uses the inferred information to build active attacks.

III. System Model and Attack Model
A. System Model

While the presented attacks can probably be applied to
other smart environments, to make the discussion and eval-
uation concrete, this paper mainly considers smart homes.
A typical smart home deployment consists of IoT devices,
a home WiFi router, and one or more IoT servers. The
home router establishes and maintains a home area network
and serves for both Internet and LAN access. As illustrated
in Figure 1(a), for a cloud-based IoT deployment, each WiFi
device has an individual network connection with the device
vendor’s endpoint server. These endpoint servers communi-
cate with an integration server (e.g., SmartThings’s server),

which stores and executes automation rules. As shown in
Figure 1(b), for a local-based deployment, IoT devices connect
with a local server (e.g., Apple’s HomePod) that executes
automation programs.

B. Attack Model

The goal of the attacker is to delay IoT messages of a target
IoT device, without triggering any timeout alerts or discon-
nection. This study focuses on IoT devices/hubs/bridges that
use the TCP/IP suite. Note that Zigbee/ZWave devices also
need an IoT hub/bridge that users TCP/IP to communi-
cate with IoT servers. For example, Philips Hue lights are
connected to a Hue bridge via Zigbee communication, and
the bridge maintains TCP connections with the Hue cloud
server. Thus, by delaying the TCP sessions of the bridge, an
attacker can delay IoT messages of Zigbee/ZWave devices.
To launch phantom-delay attacks, we assume the attacker

has the following capabilities. The attacker is able to control
one WiFi device in the victim’s smart environment, and use
it to sniff WiFi traffic and hijack the TCP session of the target
device. We then interpret the assumptions.
First, in many environments, such as hotels, offices, and

factories, it is very common that users share a WiFi network.
Given an attacker (such as a hotel customer) having access
to such a network, he can trivially control his own device
to launch attacks. Alternatively, given the many vulnerable
IoT devices, an attacker can compromise one and use it as
a stepping-stone for sniffing and delaying the IoT messages
of other devices. Rampant IoT attacks, such as Mirai [38],
have compromised millions of IoT devices. What makes our
attacks unique is that, by compromising one IoT device, the
IoT messages of non-compromised devices can be delayed
without causing timeout or disconnection alerts.
Second, once the attacker has controlled one WiFi device,

he can use it for sniffing. As described in Section II, IoT
sniffing is highly accurate in identifying device and message
types based on encrypted traffic [17], [20], [21], [57].
Third, the attacker uses the controlled device, called TCP

hijacker , to hijack the TCP session of the target IoT device.
For instance, ARP spoofing [60] is a well-known and ma-
ture attack method for TCP session hijacking. A large-scale
study [36] shows that IoT devices are widely vulnerable to
ARP spoofing, which is confirmed by our evaluation results.1
In sum, given an attacker who has controlled an IoT device

in the victim smart environment for sniffing and TCP session
hijacking, he can launch phantom-delay attacks against other
non-compromised IoT devices. For example, a hotel customer
may attack the IoT devices of other customers; a student can
attack the IoT devices of faculty members and other students
who share a WiFi network; a remote attacker who has
compromised one device of a home can delay IoT messages
to manipulate other devices.

1Alternative to ARP spoofing, if the network cable is exposed to an
attacker, he can deploy an active TAP [34] to hijack TCP sessions. Moreover,
if an attacker has compromised/controlled an ISP router, he can launch the
presented attacks at scale.

3

Clarification I. One misconception is that an attacker who
has hijacked a TLS-protected TCP session can perform pow-
erful attacks. Note we assume the attacker does not know
the TLS session keys and the TLS implementation has no
vulnerabilities. Thus, any attempts trying to forge, modify,
discard, or disorder packets protected by TLS will be detected
and cause alerts, while phantom-delay attacks delay IoT
messages and disrupt automation without causing any alerts.
Clarification II. It is true that if an attacker does not know
the traffic fingerprint [57] of an IoT device, the step of
sniffing cannot recognize it. But it is worth highlighting that
it is unnecessary for an attacker to recognize all the IoT
devices. A reasonable attacker can first profile popular IoT
devices and uses the knowledge to online recognize them in
a victim environment. For example, in the market of home
security cameras, the top five brands take more than 30%
of the market share [45]. Considering the total sales of 42.5
million home security cameras in 2020, this means attackers
can recognize more than 12.5 million home security cameras
by only profiling a few cameras. In some cases when an
attacker can visually see the IoT device, e.g., in a hotel, he
can specifically collect the fingerprint for the device before
launching attacks.

Similarly, an attacker does not need to hijack the sessions
of all IoT devices; instead, a reasonable attacker will hijack
the session of an IoT device only if he is interested in delaying
its messages.

IV. Demystifying IoT Timeout Behaviors

In this section, we analyze IoT network protocols in differ-
ent layers regarding their timeout behaviors. Our insight is
that, the timeout detection in the TCP layer is decoupled
from the data protection in the Transport Layer Security
(TLS) layer, which allows attackers to delay messages without
breaking data integrity in the TLS layer. Based on this insight,
we present a practical method to delay IoT messages without
triggering timeout at any layers. The attack method leads to
our two attacking primitives: Command Message Delay (c-
Delay) and Event Message Delay (e-Delay).

A. IoT Network Protocol Analysis

In Figure 2, we present a typical IoT network protocol
stack. The layers beneath the transport layer are not end-
to-end and do not impose barriers on attempts to delay IoT
messages. Thus, our analysis starts from the transport layer
and moves upwards.

1) Transport Layer Protocols: For the transport layer, out of
the popular UDP and TCP protocols, we focus on the latter
one because the former is rarely adopted for communicating
with IoT servers [18], [39] and does not provide any timeout
detection. As a connection-oriented protocol, TCP is designed
to handle delayed, out-of-order, and lost segments by requir-
ing each transmitted segment to be acknowledged by the
receiver. For this purpose, either side of a TCP connection
maintains a retransmission timer and a keep-alive timer [52].

By default, if the ACK is not received before the retrans-
mission timer expires, the sender will make several attempts
to re-transmit the packet (with random backoff intervals).
If all retransmission attempts fail, the sender will terminate
the TCP connection and notify upper-layer protocols of the
timeout. Besides, a TCP probing segment is sent if a session
stays idle for a period that makes the keep-alive timer expire.
Since the TCP ACK is not encrypted and is independent of
the segment payload, attackers that have access to the TCP
connection can avoid TCP timeout by generating fake ACKs
for either normal or probing segments, which fools both sides
to believe the connection is still healthy.
2) Transport Layer Security Protocol: The TLS protocol is

adopted by most of today’s WiFi-based IoT devices to pro-
vide security services [18]. An implicit sequence number is
maintained by two parties of a TLS session and incremented
after each successful transmission. The sequence number is
included in the generation of message authentication code
(MAC) for each record, which is protected by the TLS session
key. Without the TLS session key, attackers cannot forge a
valid MAC for disordered or replayed records. However, TLS
does not provide timeout detection.
3) Application Layer Protocols: In the application layer, de-

vice vendors have the flexibility to choose existing protocols
or build their proprietary protocols. Message Queuing and
Telemetry Transport (MQTT) and Hypertext Transfer Proto-
col (HTTP) are two of the most commonly used protocols by
IoT devices [18], [39].
The MQTT protocol, which is one of the most popular

protocols for IoT devices [37], requires a long-live session
between a device and an IoT server, for full-duplex message
pushing and subscribing [9]. The protocol requires the IoT
device to send PINGREQ messages if the connection stays
idle for a time longer than a predefined keep-alive interval.
If a PINGREQ message is not received within 1.5 times of
the keep-alive period [54], the server should reset the TCP
connection with the device and raise a “device offline” alarm.
Unlike MQTT, HTTP-based protocols are connectionless

and highly customizable [39]. Usually, the sender of an
HTTP request waits for the response from the receiver. If
the response is not received before the pre-defined period,
the sender raises 408 ‘request timeout’ error [31] and drops
the session. The pre-defined period is the message’s timeout
threshold, which is configurable by both the server and the
device sides. Besides normal messages that carry events and
commands, some devices also exchange keep-alive messages
with their server to maintain long-live TCP and TLS sessions.
Excessive delay or missing keep-alive messages trigger time-
out and cause the session to be dropped. In contrast, other
devices only establish on-demand sessions with their servers
upon sending normal messages and terminate the sessions
once the transmission is completed.

B. Description of Device Timeout Behaviors

According to our analysis of IoT network protocols, time-
out in the TCP layer can be completely avoided with spoofed

4

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound Queue
IoT Device

MQTT/HTTP/... ...Application
Layer

Transport
Layer Security

Transport
Layer

IoT Server

Application
Layer

Transport
Layer Security

Transport
Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We first classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. This
parameter is only applicable to devices that use long-live
sessions because the purpose of keep-alive messages is
to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. This parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in a
fixed period or non-periodically when the session stays
idle longer than a threshold. The keep-alive message
pattern comprises the period and strategy (fixed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. This
parameter is only applicable to a portion of devices, as
some devices do not implement a timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an attacker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can fine-tune the delay imposed on the IoT
messages without causing timeouts.

C. Attack Primitives

With the analysis of IoT network protocols, we obtain
two major insights: (1) We find that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history traffic, attackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, attackers can accurately
predict when timeout is to occur and achieve the maximum
delay without causing timeout. Following these insights,
we build two attack primitives, e-Delay and c-Delay, for
delaying event and command messages, respectively.

TCP timeouts can be avoided with forged TCP ACKs. As
shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, attackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the attacker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.

If the delay is long and triggers the TCP’s keep-alive timeout,
the probing segments can be acknowledged using a forged
ACK to avoid TCP connection termination. At the end of
the delay, all held packets are released in their original order
so that the TLS MAC verification is not violated. This way,
transport layer protocols no longer have any restrictions on
the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to profile the parameters

of a device’s timeout behavior. Attackers can perform these
steps on their own devices to collect parameters, and then
apply them to delay other devices of the same model.
1) By monitoring the device’s traffic in an idle state,

devices can be distinguished using on-demand sessions
by their intermittent TCP/TLS sessions. For devices
that are using long-live sessions, the packet length and
period of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pattern can be detected and confirmed. If the
next keep-alive message is postponed accordingly, the
device’s keep-alive messages are exchanged only when
the session is idle. Otherwise, the keep-alive messages
are exchanged for a fixed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in an idle state
until the timeout happens. The interval between the
beginning of the delay and the occurrence of timeout is
recorded as the timeout period of keep-alive messages.

4) The timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. The message is in-
tentionally triggered right after a successful exchange
of a keep-alive message and delayed until a timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal messages and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be verified by ran-
domly delaying a message and predicting/observing the time-
out behaviors. The parameters are considered to be correct
if the predicted timeout matches the real-world timeout.
In summary, the procedure for building the attack primi-

tives has the following steps. (1) Before launching the attacks
on the victim environment, an attacker selects popular IoT
devices as attack targets and profiles their timeout behaviors.
Note that the profiling is a one-time effort and the collected
knowledge can be shared among attackers. (2) The attacker

5

sniffs the network traffic in the victim’s network and uses
the collected knowledge in the previous step to recognize
the victim devices. (3) The attacker hijacks the victim IoT
devices’ traffic to delay IoT messages.

In Section VI-C, we conduct evaluation experiments to
measure delay times of 50 popular IoT devices. According
to our evaluation results (see Table I and Table II), both c-
Delay and e-Delay are feasible on measured devices and
allow a delay of dozens of seconds. For most of the devices, e-
Delay can be longer than 30 seconds. A straightforward way
to understand this is, for example, when a “smoke-detected”
event arises, our e-Delay attack primitive can delay it for
more than 30 seconds without raising any alarms on the
device’s or server’s side.

V. Exploiting IoT Timeout Behaviors
Although the adoption of TLS defeats event and command

spoofing attacks, IoT automation systems can still be manip-
ulated using our delay primitives. We propose three types
of attacks, based on c-Delay and e-Delay, that can delay
critical state updates and actions, override or disable smart
home automation, and even incur spurious actions.

A. State-Update Delay Attack

The attack utilizes the e-Delay primitive to delay critical
notifications, which defers users’ awareness of hazardous
situations. For instance, smart home safety monitoring sys-
tems have been used in millions of households for providing
alerts regarding safety-related incidents [14]. For such IoT
devices, timeliness is critical as a hazardous situation may
occur unexpectedly and develop very fast. Figure 3(a) shows
an example where a smart smoke detector is installed in the
kitchen. Normally, the “smoke-detected” alert is sent to users’
smartphones instantly. By applying e-Delay to the smoke
detector’s event, even for only dozens of seconds, serious
damage can be caused when users finally receive the delayed
smoke alert.

B. Action Delay Attack

Given an automation rule, by applying e-Delay to its
trigger event and/or c-Delay to its action command, the
action can be delayed. Some automation rules have critical
actions for IoT devices to respond to hazardous situations
automatically. For example, as illustrated in Figure 3(b), with
a water leak sensor installed in a bathroom, water leaking
can trigger the shut-off action of a smart valve. Normally, in
the case of a water leak, the valve can be shut off timely,
which prevents flooding. By delaying the water leak sensor’s
event and/or the shut-off command towards the valve, the
leaking water can cause severe damage.

In particular, if a device is controlled by two separate
automation rules that have opposite actions, delaying one
action can override the effect of the other, effectively dis-
ordering the two actions. For example, a smart lock that
is automatically unlocked when the user’s presence sensor
becomes on, and then is locked when the contact sensor on

the same door turns closed. When the user returns home,
by delaying the door-unlock action until after the door-lock
action is executed, the door stays unlocked overnight.

C. Erroneous Execution Attack

More than temporarily delaying the device’s state-update
and actions, the Erroneous Execution Attack imposes more
severe safety risks by maliciously invoking or disabling
automation rules. Exploiting the delay attack primitives,
attackers can selectively delay an IoT event while leaving
others untouched. As a result, the delayed event arrives at the
IoT server later than other events even if it actually happens
earlier in the physical world. The disordered events can be
used to launch erroneous automation attacks. We first give a
formal representation of automation rules that takes delays
into consideration, and then describe two types of erroneous
automation. Given an automation rule R = ⟨T,C,A⟩, where
T , C , and C represent the trigger, condition, and action of
the rule R. A trigger event instance is denoted as ET , an
event that changes the condition’s boolean value EC , and
the evaluation function of the condition C is f(C). The time
an event E is generated by an IoT device is denoted as I(E)
and the time it is received by the IoT server is denoted as
S(E). When there are no attacks, we assume all events from
home to the IoT server use the same transmission time. Thus,
if I(E1) < I(E2), then S(E1) < S(E2) without attacks. When
ET is received by the IoT server, if f(C) = true, the action
A is taken; otherwise, no action is taken. There are two kinds
of erroneous execution, discussed as follows.
1) Spurious Execution.: It means an automation rule’s con-

dition is falsely satisfied when the rule gets triggered, which
leads to an action that should not have been issued in the first
place. This can be conducted by applying e-Delay to either
the trigger or condition event. (1) Delaying the trigger event
Et. Assume I(Et) < I(Ec); due to the delay attack applied
to Et, S(Ec) < S(Et), and the arrival of Ec turns f(C) from
false to true. Then, the action of the rule will be spuriously
taken when the delayed event Et is received. (2) Delaying
the event Ec. Assume I(Ec) < I(Et). Due to the delay attack
applied to Ec, S(Et) < S(Ec); thus, the action of the rule will
be spuriously executed when Et is received, as the arrival of
Ec should have turned f(C) from true to false.
For example, in Figure 3(c), the automation rule is as

follows: when a user pulls the storm door, if the user is
home, the front door is automatically unlocked. When the
user leaves home, attackers can delay the condition event
presence-sensor off (Ec) while pull the storm door to generate
the trigger event storm-door pulled (Et). Because of the delay
(S(Et) < S(Ec)), f(C) remains true at the time of receiving
the trigger event, which causes the front door being unlocked
spuriously.
2) Disabled Execution.: Similarly, disabled execution can

be conducted by delaying trigger or condition events. For
example, as shown in Figure 3(d), the automation rules are as
follows: when the front door is closed, if the lock is unlocked,
the front door is locked automatically. When the user leaves

6

(a) State-Update
Delay Attack

(b) Action Delay Attack (c) Spurious Execution

Water
Detected

Trigger: waterleak detected
Action: close the water valve

Delay

Valve
Closed

Water
Detected

Trigger: storm door is opened
Condition: presence is on
Action: unlock the front door

Delay

Presence
Off

Storm Door
Opemed

Presence
Off

Front Door
Unlocked

Valve
ClosedDelay

t

Smoke
Raised

Smoke
Detected

Smoke
Detected

Smoke
Raised

Trigger: front door is closed
Condition: the lock is unlocked
Action: lock the front door

Delay
t

t

Door
Opened

Lock
Unlocked

Door
Closed

Lock
Locked

Lock
Unlocked

Lock
Locked

(d) Disabled Execution

W/O
A

W
A

Door
Opened

Door
Closed

t

t

t

t

t

W/O
A

W
A

W/O
A

W
A

W/O
A

W
A

Fig. 3: Example attacks. Two time axes show the sequence of events in the situations, “without attack” and “with attack”.

home, he first unlocks and opens the door. However, by
delaying the door-unlocked event Ec, when the door-closed
event Et is received, the condition evaluation f(c) is still
false; as a result, the lock-door action is not taken. We denote
E and Ê as the two opposite events for the same device.
This attack can be achieved by either delaying the trigger
event Et until f(c) is no longer true, i.e., I(Et) < I(Êc) and
S(Et) > S(Êc), or delaying the event Ec, which turns f(c)
as true, to be later than the trigger event (i.e., I(Et) > I(Ec)
and S(Et) < S(Ec)).

VI. Evaluation
In this section, we evaluate our attack primitives on 50 off-

the-shelf commercial IoT devices. For each device, we analyze
its timeout behavior and conduct 20-trial experiments to find
the range of delay on commands and events. We demonstrate
all three types of attacks in real-world testbeds. More details
of the attack can be found at our Github Repo [32].

A. Testbed Setup

In our experiment, we test 50 popular IoT devices of 8 types
as listed in Table I and Table II. The popularity of each device
is indicated by the number of downloads of its mobile app in
the Google Play store. All devices are connected to a home
Verizon G3100 WiFi 6 router. Low energy devices that do not
have WiFi communication capabilities are connected to the
router via their compatible hub/bridge devices. A Raspberry
Pi 3B is used to simulate an attacker who is in the same local
network as the IoT devices.

B. Device Behavior Measurement

First we measure all 50 devices to profile their message
characteristics and timeout behaviors. For each device, we
use the ARP spoofing to redirect its traffic to the Raspberry
Pi, which works as the TCP hijacker shown in Figure 2.

To identify the characteristics of packets that carry the
target event or command messages, we first use the server’s
domain name (for cloud IoT servers) or IP address (for Local
IoT servers) to localize the target TCP connection. Then, we
trigger events and commands and check the network packets
that are received by the raspberry pi. If packets of a certain
length can always be found right after the triggering of
events or commands, we record it as the length of the target
message. Then, we confirm this by repeating the procedure

while delaying packets of the same length on the target
connection for several seconds. The packet characteristics
identification is correct if the anticipated status updates or
actions are also delayed by the same amount of time. After
that, to verify that the delayed messages are accepted by
IoT servers or devices, we use the delayed event to trigger
automation rules that have visible actions on other devices
(e.g., turning on a light).
For each device, we first set the raspberry pi to the pass-

through mode that allows any packet to pass without delay
while keeping the device idle to observe its keep-alive period.
Then, we conduct a 20-trails experiments for delaying each
of the keep-alive, event, and command messages. We have
a two-minute interval between every two trials so that the
connection of the testing device can resume. We log all TCP
segments that flow through our raspberry pi, and analyze
them to get the delay behavior parameters by following the
procedure as described in Section IV-C.

C. Device Timeout Measurement Results

1) Results of Cloud-based IoT Devices: We first evaluate
delays in connections between IoT devices and cloud IoT
servers. As shown in Table I, we present their parameters of
timeout behavior, which include period and pattern of keep-
alive messages, and timeout thresholds for all types of mes-
sages. A cell marked as ‘∞’ means we only observe timeouts
caused by keep-alive messages among all experiment trials.
This indicates that the device does not have timeouts for
the event and command messages, and its timeout is solely
triggered by keep-alive messages.
From Table I, we can see event messages of all tested

devices can be delayed for longer than 30 seconds except the
SimpliSafe keypad (HS3), which is enough to cause severe
consequences if applied to safety-sensitive events such as
smoke alerts. In particular, some WiFi-enabled sensor devices
(e.g., M7 and C5) do not use long-live sessions and show
delay time windows longer than 2 minutes. Due to the lack
of keep-alive messages, a session timeout that is caused by
delaying event messages will not be noticed by the cloud
server because the session is never established. Even after the
session resumes, this anomaly is not reported to the cloud
server. Here, we use some example devices to illustrate the
procedure to measure the results in Table I.

7

TABLE I: Measurement results of devices with cloud IoT servers.

No. Device
Type Device Model App

Install
Long-live
Session

Keep-alive Messages Event Messages Command Messages
Period(s) Pattern Timeout(s) Timeout(s) Range(s) Timeout(s) Range(s)

L1 Smart
Light

Wyze White A19 1M+ Yes 62 fixed 60 60 [60, 60] 60 [60, 60]
L2 Philips Hue white A19 1M+ Yes 120 fixed 60 ∞ [60, 180] 21 [21, 21]
P1

Smart
Plug

Wyze Plug 1M+ Yes 62 fixed 60 60 [60, 60] 60 [60, 60]
P2 Amazon Plug 50M+ Yes 30 fixed 30 30 [30, 30] 30 [30, 30]
P3 SmartThings WiFi Plug 100M+ Yes 110 on-idle 110 ∞ [110, 220] ∞ [110, 220]
P4 SmartThings Zigbee Plug 100M+ Yes 31 on-idle 16 ∞ [16, 47] ∞ [16, 47]
P5 SmartLife Gosound Plug 5M+ Yes 60 on-idle 32 ∞ [32, 92] ∞ [32, 92]
P6 KASA HS103P2 Plug 1M+ Yes 150 fixed 15 55 [15, 55] 15 [15, 15]
P7 Cync 100K+ Yes 21 on-idle 84 ∞ [84, 105] ∞ [84, 105]
P8 iHome iSP6X Plug 100K+ Yes 30 fixed 18 32 [18, 32] 32 [18, 32]
P9 Aqara Plug 50K+ Yes 150 fixed 30 60 [30, 60] 30 [30, 30]
P10 Wemo Mini Plug 1M+ No - - - 52 [52, 52] 15 [15, 15]
P11 Geeni Plug 1M+ No - - - 90 [90, 90] 25 [25, 25]
M1

Motion
Sensor

SmartThings Motion 100M+ Yes 31 on-idle 16 ∞ [16, 47] - -
M2 Philips Hue Motion 1M+ Yes 120 fixed 60 ∞ [60, 180] - -
M3 Wyze Motion 1M+ Yes 62 fixed 60 60 [60, 60] - -
M4 Ring Motion 5M+ Yes 30 fixed 35 ∞ [35, 65] - -
M5 Nest Motion 5M+ Yes 120 on-idle 60 ∞ [60, 180] - -
M6 Ecobee Smart Sensor 500K+ Yes 60 on-idle 30 ∞ [30, 90] - -
M7 SmartLife Sonew Motion 5M+ No - - - 260 [260, 260] - -
M8 iHome iSB01 Motion 100K+ No - - - 70 [70, 70] - -
M9 Aqara Motion 50K+ Yes 150 fixed 30 60 [30, 60] - -
M10 Govee Motion 50K+ Yes 90 fixed 35 55 [35, 55] - -
M11 Amazon Echo Flex 50M+ Yes 30 on-idle 30 60 [30, 60] - -
C1

Contact
Sensor

SmartThings multipurpose 100M+ Yes 31 on-idle 16 ∞ [16, 47] - -
C2 Wyze Contact 1M+ Yes 62 fixed 60 60 [60, 60] - -
C3 Nest Contact 5M+ Yes 120 on-idle 60 ∞ [60, 180] - -
C4 Ecobee Smartsensor 50K+ Yes 60 on-idle 30 ∞ [30, 90] - -
C5 SmartLife Towode Contact 5M+ No - - - 130 [130, 130] - -
C6 iHome iSB04 Contact 100K+ No - - - 70 [70, 70] - -
C7 Aqara Contact 50K+ Yes 150 fixed 30 60 [30, 60] - -
C8 Ring Contact 5M+ Yes 30 fixed 35 ∞ [35, 65] - -
C9 Geeni Door & Window 1M+ No - - - 90 [90, 90] - -
C10 Govee door 500K+ Yes 90 fixed 35 55 [35, 55] - -
HS1 Home

Security
Ring Keypad 5M+ Yes 30 fixed 35 ∞ [35, 65] - -

HS2 Nest Keypad 5M+ Yes 120 on-idle 60 ∞ [60, 180] - -
HS3 SimpliSafe Keypad 5M+ Yes 55 fixed 30 20 [20, 20] - -
S1

Smart
Switch

SmartThings button 100M+ Yes 31 on-idle 16 ∞ [16, 47] - -
S2 Philips Hue Dimmer 1M+ Yes 120 fixed 60 ∞ [60, 180] - -
S3 ThirdReality Switch 1K+ Yes 31 on-idle 16 ∞ [16, 47] ∞ [16, 47]
S4 Aqara Button 50K+ Yes 150 fixed 30 60 [30, 60] - -
CM1

Smart
Camera

Arlo Q 1M+ No - - - 60 [60, 60] - -
CM2 Wyze Cam Indoor 1M+ Yes 62 fixed 60 60 [60, 60] - -
CM3 Ring Doorbell 5M+ Yes 55 fixed 25 31 [29, 31] - -
CM4 Foscam R2C 1M+ Yes 150 fixed 45 30 [30, 30] - -
CM5 YiHome Cam Indoor 1M+ Yes 45 on-idle 30 ∞ [30, 74] - -
LC1 Smart

Lock
August Pro Gen2 500K+ Yes 70 on-idle 30 58 [30, 58] 58 [30, 58]

LC2 Kwikset Smartcode 913 50K+ Yes 31 on-idle 16 ∞ [16, 47] ∞ [16, 47]

For devices that are using the SmartThings hub, we start
monitoring the hub’s network traffic with no device attached.
From the long-live TLS session between the SmartThings
hub and the SmartThings cloud server, we find that they
exchange messages with fixed lengths of 40 bytes (hub to
cloud) and 42 bytes (cloud to hub) in every 31 seconds.
When an event or command message happens, the next keep-
alive messages will always occur 31 seconds later. When we
attempt to delay keep-alive messages, we observe a constant
timeout threshold of 16 seconds. After that, we trigger and
delay event and command messages right after keep-alive
messages and find the session timeout still happens 16
seconds after the next keep-alive message. This implies that
the SmartThings session timeout is solely triggered by keep-
alive messages. We confirm that by randomly triggering and
delaying event and command messages and confirmed that
timeouts always happen 16 seconds after the starting of delay
of a keep-alive message. For Philips Hue Light bulb (L2) and
dimmer switch (S2) that are using the Philips Hue bridge,
we observe a fixed keep-alive period of 120-second period,
which is independent of the event and command messages.

During the 20-trial experiment, delays of command messages
consistently cause session timeouts after 21 seconds. While,
in trials of event message delays, timeout always happens
60 seconds after a keep-alive message, which means there is
no dedicated timeout for event messages. In summary, event
messages of Philip Hue devices can be delayed in the range of
[60s, 180s], which depends on the interval between the event
message and the next keep-alive message, and their command
messages can be consistently delayed for 21 seconds.
To verify the collected parameters in Table I, we also

conduct a verification test. For each testing device, we ran-
domly trigger and delay its messages and predict the timeout
occurrence according to the collected parameters. We end the
delay and release the holding messages 2 seconds before the
predicted timeout. The results show that not only the timeout
is 100% avoided, but the delayed messages are also accepted
by the device or cloud server.
2) Results of Local-based IoT Devices: For measuring de-

vices’ delays with local IoT servers, we choose Apple’s Home-
Kit as the representative IoT server and connect compatible
devices, as listed in Table II, to a HomePod speaker using

8

TABLE II: Measurement results of devices with a local IoT
server (a HomePod).

Label Device
Model

Event Messages
Max (s) Min (s)

L2 Philips Hue white A19 420 223
L3 LIFX Mini White A19 412 179
P8 iHome iSP6X Plug 341 115
M2 Philips Hue Motion 290 67
M6 Ecobee Smart Sensor 679 337
M9 Aqara Motion 1310 421
C4 Ecobee Smartsensor 854 211
C7 Aqara Contact 1345 683
S2 Philips Hue Dimmer 275 170
S4 Aqara Button 1453 302
S5 Insignia Garage Controller 343 196
CM1 Arlo Q 200 129

the Home+ mobile application [13] from Apple’s App Store.
The measurement results show that the HomeKit platform
has a much more severer problem. Even though devices are
using long-live TCP connections to communicate with the
HomePod speaker, we could not find a single keep-alive
message when the connection is idle. Moreover, for each
event message sent by IoT devices, the local server (i.e., the
HomePod speaker) does not give any response, which means
that IoT devices have no way to know whether the event
messages are received by the server or not. Command and
status-polling messages that are issued by the local IoT server
have a fixed timeout of 10 seconds for the receiving device
to respond. All these findings are confirmed by descriptions
in the HomeKit Accessory Protocol (HAP) [15]. This means
that the event messages of HomeKit devices can be delayed
with a theoretical infinite upper bound. Even if the sporadic
command or status polling messages happen during event
message delay attacks, attackers can easily avoid timeout as
long as they end the delay by releasing all holding packets
within 10 seconds. In our 20-trial experiment, the maximum
event message delay is over 20 minutes. The delayed events
can always be accepted by the local IoT server as valid for
triggering the device’s state update and automation rules
execution, which provides attackers with much longer time
windows to launch erroneous execution attacks, and much
longer delay for type-I and type-II attacks.

3) Interesting Findings: We present several interesting find-
ings that reveal more design flaws of IoT timeout handling:
Finding 1: Lack of Device Offline Reporting. Although
we reasonably assume the “device offline” alarms can be
raised when a device’s connection with the IoT server is
terminated because of the timeout, it is not always the
case, according to our experiment. Some long-live connection
devices such as Nest security system (HS2), and most on-
demand devices (M7, C5, and C9) do not raise a “device
offline” alarm immediately after the connection timeout.
For the Nest security system, the base station will try to
reconnect the server; as long as the reconnecting is successful
within three attempts, no alert will be raised. Sensors with
on-demand connections (e.g., M7 and C9) do not have offline
detection. No matter how many times they are delayed to
timeout, these devices do not report the offline events.
Finding 2: Duplicated Connections. On delaying event

messages from devices, even after a timeout occurs and the
connection closes between a device and our Raspberry Pi,
the connection on the other side with the IoT cloud server
can remain active, which gives the server an illusion that the
device is still online and postpones the “device offline” alerts.
After that, the disconnected device will try to reconnect to
the server. Surprisingly, even after a new connection has been
established, cloud servers still maintain the duplicated half-
open connection and do not raise any alerts. Moreover, as
long as the new connection is established before closing the
half-open connection, the server will never raise the “device
offline” alarm. This implies that even timeout happens on
an IoT device, attackers can still avoid device-offline alarms
by maintaining the half-open connection until the device
reconnects to the IoT server. This flaw can be exploited to
further extend the length of the stealthy delay.
Finding 3: Unidirectional Liveness Checking. Although
most of the tested devices adopt long-live sessions with keep-
alive messages, keep-alive requests are always initiated by
IoT devices, while IoT servers only passively receive and
reply to the keep-alive messages. Even when a device’s events
are being delayed by attackers, from the perspective of an
IoT server, it seems as if the device is just idle. This offers
opportunities for attackers to make longer delays on events,
until the IoT server can proactively send command messages
toward the IoT device.

D. Proof-of-Concept Attacks

We conduct end-to-end experiments in real-world home
testbeds with automation rules that are collected from IoT
user forums (as listed in Table III). We simulate the attacking
device using a raspberry pi that is connected to the par-
ticipant’s home network. We obtained our university’s IRB
approval for the experiment involving human participants.
1) State-Update Delay Attack: State-update delay attacks

are applied to devices’ event messages. For Case 1 in Table III,
we deploy an Amazon Echo Speaker and a Ring security
base station with a contact sensor on the front door. We
add a routine that issues voice alerts when the front door
is opened. We use Nmap [43] to discover the Ring base
station and hijack its TCP connection using ARP spoofing.
We locate the target TCP connection with a cloud domain
at “*.prd.ring.solution” as carrying event messages. By refer-
ring to our measurement results, we can accurately identify
messages of keep-alive (48 bytes) and contact sensor (986
bytes), and delay them for up to 60 seconds. It is worth noting
that the Ring base station’s cellular connection, which could
defeat WiFi jamming attacks, is never activated during our
attack as the base station is not aware of the attack.
2) Action Delay Attack: We take Case 3 in Table III to

demonstrate the action delay attack. We install an August
Smart Lock along with the Ring security system into Ama-
zon’s Alexa platform and install an automation rule to lock
the front door upon door closing. Using a similar method as
the state-update delay attack demonstration, we identify the
August Lock’s connection and message packets. With only

9

one day’s event, we can reasonably infer this automation
rule by observing the behavior pattern between the lock’s
locking commands and the events of door closing. We can
proactively verify this hypothesis by adding small delays
of five seconds on events of front door closing, and check
whether the “door locking” actions are also delayed by five
seconds. After that, on detecting “door closed” events, we can
delay the following locking command for a period between
30 seconds to 58 seconds. By combining the e-Delay on the
contact sensor’s event, the length of the attacking window
can be extended to be at least 60 seconds, which is enough for
burglars to unhurriedly break into a victim’s house after the
victim leaves home. Moreover, for Case 4, we have another
interesting finding that the delayed event messages from the
Ring base station, even without causing the base station’s
disconnection, will be discarded by Alexa if the delay time
is longer than 30 seconds. No notification or alert are raised
about the lost event. This allows attackers to easily disable the
execution of safety-critical routines (e.g., turn off an electric
heater when users leave) forever.

3) Erroneous Execution Attack: For Erroneous Execution
Attacks, we collect seven real-world conditional automation
rules from the IoT user forum (Case 5 to Case 11 listed
in Table III), and reproduce them using our testing devices.
For the subtype attack of Spurious Execution, we reproduce
four cases that aim to make safety-critical actions such as
disarming a home security system and unlocking a front door.
For example, we reproduce the Case 8 on the SmartThings
platform with a SmartThings presence sensor, an August
Smart Lock, and a SmartLife contact sensor. Whenever the at-
tacker observes the sequential events of ‘storm door opened’,
‘interior door locked’, and ‘storm door closed’, he can delay
the following ‘presence off’ event by 40 seconds, during
which attackers can break in by pulling the storm door.

For the disabled execution attack (Case 9 to Case 11), we
take Case 10 as an example. We produce it with an August
Smart Lock and a SmartThings contact sensor, which are
installed on the same door. When the user leaves home,
there should be a clear event sequence of “door unlocked”,
“door opened”, “door closed”, and “door locked”. Whenever
we receive the event of “door unlocked” from the August
Connect bridge to the August server, we hold it until the
following event of “door closed” is passed to the SmartThings
cloud server by the SmartThings hub. According to our
measurement, the presence sensor event can be delayed for at
least 16 seconds, which is long enough to cover the interval
between the door unlocking and closing. We confirm that
the door has been left unlocked for the entire day while the
participant is away.

VII. Potential Countermeasures

A. Requiring Message ACK and Shortening ACK Timeout

As analyzed in Section IV, the delay time range is closely
related to the timeout configuration for application layer
acknowledgements. The measurement results in Table I also

indicate that a shorter message timeout value can effec-
tively reduce the length of the attack window. According
to our measurement, existing IoT devices have an overlong
timeout for event message acknowledgement; we suggest
shortening it significantly. The HomeKit Accessory protocol
does not require acknowledgement of IoT event messages,
which leaves an almost unbounded window for our attacks,
showing a serious design flaw that should be fixed. The
current MQTT protocol does not mandate timeout for an
acknowledgement (PUBACK message), but we consider it to
be a critical requirement for a secure MQTT implementation.
Limitation: Shortening the keep-alive interval and timeout

threshold comes with the cost of increasing device’s network
traffic. For example, the LIFX light bulb has the keep-alive
interval set to less than 2 seconds, which causes more than
150 MB traffic per hour. This could cause heavy burdens
for a home WiFi network with multiple LIFX bulbs and has
been complained by LIFX users [11]. Moreover, for battery-
based devices, this countermeasure is not practical. Finally,
the application layer timeout threshold needs to take into
consideration scheduling, automation processing, and slow
devices; thus, it may cause other issues by simply shortening
the threshold.

B. Timestamp Checking

Currently, commands and events are accepted if they are
generated a long time ago, which shows another critical
design flaw of existing IoT protocol stack. We suggest it
should be enforced in standard protocols (such as MQTT)
by adding timestamps as message fields and checking them
at the receiver’s side. There should be a mechanism that
allows devices and servers to determine whether the received
messages are outdated or not.
Limitation: This countermeasure is effective in preventing

erroneous execution due to delayed trigger events. However,
this solution cannot stop state-update/action delay attacks
and erroneous execution attacks due to condition events be-
ing delayed. For example, for the attacking Case 8 in Table III,
the automation server issues the command according to the
automation rule to unlock the door at the time it receives the
event of ‘storm door opened’. Even if the server is aware that
the latter event of ‘presence away’ actually happens earlier
than the previous one of ‘storm door opened’ and takes the
remedial action by relocking the smart lock, the burglar could
have already entered the victim’s house.

VIII. Related Work
a) Disrupting IoT Message Transmission: There have

been many attacks that exploit IoT vulnerabilities [27], [28],
[30], [53], [62], [63]. The attacks presented by Hariri et al. [35]
discard IoT event messages. They discover implementation
vulnerabilities of certain IoT devices that allow messages
to be intercepted without raising any alarms. OConnor et
al. [48] explore the possibility of blocking an IoT device’s
events that are transmitted through on-demand connections.
They find that, by blocking the device’s event message, the

10

TABLE III: Cases of event delay attacks. Rules used in these cases are collected from smart home user forums as referred in
the last column. In each case, the event being delayed is highlighted in italic font.

Case Type Trigger Condition Action Consequence Reference
Case 1 State-Update

Delay
Front door opened - Voice notification late burglary alerts [16]

Case 2 Motion active - Mobile notification late burglary alerts [6]
Case 3 Action

Delay
Front door closed - Lock the door door not locked in time [12]

Case 4 Home security system armed - Turn off heater heater not turned off [12]
Case 5

Erroneous
Execution

Front door unlocked Entrance motion inactive Disarm security system security system disarmed [7]
Case 6 Bedroom motion active Bedroom door closed Turn on bedroom heater heater maliciously turned on [5]
Case 7 Study motion active Study door closed Open the study window window maliciously opened [2]
Case 8 Storm door opened Presence on Unlock the interior door door maliciously unlocked [3]
Case 9 Presence away Front door open Send text message door open notification muted [4]
Case 10 Front door closed Front door unlocked Lock the front door door not locked [1]
Case 11 Presence away Heater is on Turn off Heater heater not turn off [10]

event gets lost permanently. However, attacks proposed by
these works are only applicable to certain devices that have
specific implementation vulnerabilities. Attacks in [35] are
only applicable to devices with defective TLS implementa-
tions that do not take the TLS record sequence number into
consideration. As admitted by the authors, on devices with a
secure implementation, their attacks will result in connection
termination and device-offline alarms immediately. Attacks in
[48] only work on devices that use on-demand connections or
have their heartbeat and event messages transmitted through
different sessions. According to our evaluation, most IoT
devices use long-live connections and have their heartbeat
and normal event messages transmitted through the same
TCP session. Both attacks may be detected as IoT anomalies
of missing IoT messages [33]. Unlike these works, our attacks
do not depend on any implementation vulnerabilities and are
widely applicable to existing WiFi IoT devices.

b) WiFi Jamming Attacks.: Traditional jamming attacks
block the radio frequency channel (by sending strong noise
signals) or send certain packets to cause disconnections.
This usually raises alarms due to disconnections. Reactive
jamming attacks generate radio bursts to reactively suppress
the transmission of interested packets [40], [46], [47], [61].
Reactive jamming attacks are more stealthy, but are dif-
ficult to launch due to the strict requirement that target
frame detection and jamming be finished within hundreds
of nanoseconds. As a result, the attacks usually require
special hardware [50]. While jamming may also be used
to implement phantom-delay attacks, we present a more
stealthy attack method that can be launched from an ordinary
WiFi device.

c) Delay Attacks: Delay attacks have been well-
explored in distributed systems and wireless sensor networks.
Bianchin et al. [26] model and analyze the relationship
between the distribution degree of a distributed system
and its robustness against delay attacks. Ranganathan et
al. [51] survey a list of time-delay attacks in wireless sensor
networks. These works focus on theoretical modeling of
the effect of message delay attacks in a distributed system.
However, they do not discuss how to stealthily launch the
attack in real systems. In comparison, our phantom-delay
attack is based on a thorough study of timeout behaviors of
IoT devices, and our work is able to stealthily delay messages
in real IoT systems, without triggering any timeout alerts.

IX. Vulnerability Disclosure

We have filed vulnerability disclosure reports to security
teams of Apple HomeKit, Samsung SmartThings, Google
Nest, Amazon Ring, and SimpliSafe, ensuring that the disclo-
sure is at least 90 days before the publication. In these reports,
we explain the risk of long timeout and keep-alive periods
and provide a detailed description and code for reproducing
the message delay attacks. Google, Ring, and SimpliSafe have
acknowledged our reported vulnerability and made plans to
mitigate the problem. Our request of CVEs is being processed
and the update will be posted at our GitHub repo [32].

X. Conclusion

This work studies an important but largely omitted topic—
IoT timeout behaviors. We have proposed novel attack prim-
itives: an attacker who leverages mature attack methods,
such as sniffing and ARP spoofing, can delay IoT messages
significantly without triggering alarms in any layers of the
IoT network protocol stack. With the attack primitives, we
constructed attacks that can delay critical state updates
or maliciously disable/enable/delay/override automation ac-
tions. The evaluation of 50 popular IoT devices shows that
the attacks are widely applicable to IoT devices, and we
demonstrated a variety of PoC attacks. Our future work
will investigate exploitable timeout behaviors in other IoT
protocols and propose defenses against the delay attacks.
This study reveals a critical design flaw in many WiFi-

based IoT devices: the network-delay detection in the TCP
layer is decoupled from the data protection in the TLS layer.
Moreover, as the application layer timeout threshold needs
to take into consideration scheduling, automation processing,
and constrained devices, simply shortening the threshold may
cause other issues. Given the design flaw and the dilemma in
the application-layer timeout design, we thus raise a bigger
question: Is TCP+TLS, despite being a cornerstone of Internet
security nowadays, really suitable for IoT devices?

Acknowledgment

This work was supported in part by the US National
Science Foundation (NSF) under grants CNS-1828363, CNS-
2204785, CNS-2205868, CNS-1856380, CNS-2016415, CNS-
2107093, and CNS-2144669. The authors would like to thank
anonymous reviewers and our shepherd, Dr. Haining Wang.

11

References
[1] “Automation: Front door lock locking when its not supposed to,” https:

//community.smartthings.com/t/automation-front-door-lock-locking-
when-its-not-supposed-to, 2013.

[2] “Climate control guru,” https://community.smartthings.com/t/climate-c
ontrol-guru-beta, 2017.

[3] “Door unlock automation? how do you reduce security risks?” https:
//community.smartthings.com/t/door-unlock-automation-how-do-you
-reduce-security-risks, 2018.

[4] “Opening door lock with mobile presence: good idea or not?” https:
//community.smartthings.com/t/opening-door-lock-with-mobile-prese
nce-good-idea-or-not/, 2018.

[5] “Piston in a stuck state,” https://community.webcore.co/t/piston-in-a-s
tuck-state/, 2018.

[6] “Receiving notifications of motion while home and disarmed,” 2018.
[Online]. Available: https://community.smartthings.com/t/problem-rec
eiving-notifications-of-motion-while-home-and-disarmed/120905

[7] “Routine to arm monitor based on lock and presence?” https://comm
unity.smartthings.com/t/routine-to-arm-monitor-based-on-lock-and-
presence/, 2018.

[8] “Create your own if this then that rule on IFTTT,” https://ifttt.com/c
reate, 2019.

[9] “Google cloud iot protocols,” 2019. [Online]. Available: https:
//cloud.google.com/iot/docs/concepts/protocols

[10] “Have i done it? - thermostat/motion for space heater,” https://commun
ity.webcore.co/t/have-i-done-it-thermostat-motion-for-space-heater/,
2019.

[11] “Lifx bulb uploading a lot of data,” 2019. [Online]. Available:
https://community.lifx.com/t/lifx-bulb-uploading-a-lot-of-data/6081

[12] “Arming or disarming your ring alarm with your smart lock,” 2020.
[Online]. Available: https://support.ring.com/hc/en-us/articles/3600223
50352-Arming-or-Disarming-Your-Ring-Alarm-with-your-Smart-Lo
ck-

[13] “Home+ 4,” 2020. [Online]. Available: https://apps.apple.com/us/app/
home-4/id995994352

[14] “Home security systems market by home type, security, systems,
services, region - global forecast 2025,” 2020. [Online]. Available:
https://www.reportlinker.com/p05495954/Home-Security-System-Ma
rket-by-Home-Type-System-Type-Offering-And-Geography-Global-
Forecast-to.html?utm source=GNW

[15] “Homekit,” 2020. [Online]. Available: https://developer.apple.com/ho
mekit/specification/

[16] “Ring security system integration with echo devices,” 2020. [Online].
Available: https://www.reddit.com/r/Ring/comments/dw6eoo/ring sec
urity system integration with echo devices/

[17] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your smart
home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2020, pp. 207–218.

[18] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in 2019 IEEE symposium
on security and privacy (sp). IEEE, 2019, pp. 1362–1380.

[19] N. Apthorpe, D. Y. Huang, and D. Reisman, “Keeping the smart home
private with smart (er) iot traffic shaping,” Proceedings on Privacy
Enhancing Technologies, vol. 2019, no. 3, pp. 128–148, 2019.

[20] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster,
“Keeping the smart home private with smart (er) iot traffic shaping,”
arXiv preprint arXiv:1812.00955, 2018.

[21] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no
castle: Privacy vulnerabilities of encrypted iot traffic,” arXiv preprint
arXiv:1705.06805, 2017.

[22] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster, “Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic,” arXiv preprint arXiv:1708.05044, 2017.

[23] E. Aras, N. Small, G. S. Ramachandran, S. Delbruel, W. Joosen, and
D. Hughes, “Selective jamming of lorawan using commodity hardware,”
in Proceedings of the 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2017, pp. 363–
372.

[24] J. Bae, H. Bae, S.-H. Kang, and Y. Kim, “Automatic control of workflow
processes using ECA rules,” IEEE transactions on knowledge and data
engineering, vol. 16, no. 8, pp. 1010–1023, 2004.

[25] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Controlling
flows in iot apps,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1102–1119.

[26] G. Bianchin and F. Pasqualetti, “Time-delay attacks in network sys-
tems,” in Cyber-Physical Systems Security. Springer, 2018, pp. 157–174.

[27] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app threats in
smart homes: Categorization, detection and handling,” arXiv preprint
arXiv:1808.02125, 2018.

[28] ——, “Cross-app interference threats in smart homes: Categorization,
detection and handling,” in 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2020,
pp. 411–423.

[29] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is anybody home?
inferring activity from smart home network traffic,” in 2016 IEEE
Security and Privacy Workshops (SPW). IEEE, 2016, pp. 245–251.

[30] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in 2016 IEEE symposium on security and
privacy (SP). IEEE, 2016, pp. 636–654.

[31] R. Fielding and J. Reschke, “Rfc 7231-hypertext transfer protocol
(http/1.1): Semantics and content,” Internet Engineering Task Force
(IETF), 2014.

[32] C. Fu, Q. Zeng, H. Chi, X. Du, and S. L. Valluru, “IoT-Phantom-Delay-
Attack,” 2022, https://github.com/infinitywings/IoT-Phantom-Delay-A
ttack.

[33] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-Aware Anomaly
Detection for Appified Smart Homes,” in 30th USENIX Security Sympo-
sium (USENIX Security 21), 2021, pp. 4223–4240.

[34] Gigamon, “Understanding network taps – the first step to visibility,”
2016. [Online]. Available: https://www.gigamon.com/resources/resour
ce-library/white-paper/understanding-network-taps-first-step-to-visib
ility.html

[35] A. Hariri, N. Giannelos, and B. Arief, “Selective forwarding attack on
iot home security kits,” in Computer Security. Springer, 2019, pp. 360–
373.

[36] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “Iot inspector:
Crowdsourcing labeled network traffic from smart home devices at
scale,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 4, no. 2, pp. 1–21, 2020.

[37] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and Y. Zhang,
“Burglars’ iot paradise: Understanding and mitigating security risks of
general messaging protocols on iot clouds,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 465–481.

[38] G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and the iot
zombie armies,” in MILCOM 2017-2017 IEEE Military Communications
Conference (MILCOM). IEEE, 2017, pp. 267–272.

[39] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All things considered: an analysis of
iot devices on home networks,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1169–1185.

[40] M. Li, I. Koutsopoulos, and R. Poovendran, “Optimal jamming attacks
and network defense policies in wireless sensor networks,” in IEEE
INFOCOM 2007-26th IEEE International Conference on Computer Com-
munications. IEEE, 2007, pp. 1307–1315.

[41] X. Liu, Q. Zeng, X. Du, S. L. Valluru, C. Fu, X. Fu, and B. Luo,
“Sniffmislead: Non-intrusive privacy protection against wireless packet
sniffers in smart homes,” in 24th International Symposium on Research
in Attacks, Intrusions and Defenses, 2021, pp. 33–47.

[42] Y. Luo, L. Cheng, H. Hu, G. Peng, and D. Yao, “Context-rich privacy
leakage analysis through inferring apps in smart home iot,” IEEE
Internet of Things Journal, 2020.

[43] G. F. Lyon, Nmap network scanning: The official Nmap project guide to
network discovery and security scanning. Insecure, 2009.

[44] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2177–2184.

[45] J. Narcotta and B. Ablondi, “Strategy analytics: Amazon’s ring claimed
top spot in global home security camera market in 2020,” 2021.
[Online]. Available: https://www.businesswire.com/news/home/20210
505005395/en/Strategy-Analytics-Amazons-Ring-Claimed-Top-Spot-
in-Global-Home-Security-Camera-Market-in-2020

[46] R. Negi and A. Rajeswaran, “Dos analysis of reservation based mac
protocols,” in IEEE International Conference on Communications, 2005.
ICC 2005. 2005, vol. 5. IEEE, 2005, pp. 3632–3636.

12

https://community.smartthings.com/t/automation-front-door-lock-locking-when-its-not-supposed-to
https://community.smartthings.com/t/automation-front-door-lock-locking-when-its-not-supposed-to
https://community.smartthings.com/t/automation-front-door-lock-locking-when-its-not-supposed-to
https://community.smartthings.com/t/climate-control-guru-beta
https://community.smartthings.com/t/climate-control-guru-beta
https://community.smartthings.com/t/door-unlock-automation-how-do-you-reduce-security-risks
https://community.smartthings.com/t/door-unlock-automation-how-do-you-reduce-security-risks
https://community.smartthings.com/t/door-unlock-automation-how-do-you-reduce-security-risks
https://community.smartthings.com/t/opening-door-lock-with-mobile-presence-good-idea-or-not/
https://community.smartthings.com/t/opening-door-lock-with-mobile-presence-good-idea-or-not/
https://community.smartthings.com/t/opening-door-lock-with-mobile-presence-good-idea-or-not/
https://community.webcore.co/t/piston-in-a-stuck-state/
https://community.webcore.co/t/piston-in-a-stuck-state/
https://community.smartthings.com/t/problem-receiving-notifications-of-motion-while-home-and-disarmed/120905
https://community.smartthings.com/t/problem-receiving-notifications-of-motion-while-home-and-disarmed/120905
https://community.smartthings.com/t/routine-to-arm-monitor-based-on-lock-and-presence/
https://community.smartthings.com/t/routine-to-arm-monitor-based-on-lock-and-presence/
https://community.smartthings.com/t/routine-to-arm-monitor-based-on-lock-and-presence/
https://ifttt.com/create
https://ifttt.com/create
https://cloud.google.com/iot/docs/concepts/protocols
https://cloud.google.com/iot/docs/concepts/protocols
https://community.webcore.co/t/have-i-done-it-thermostat-motion-for-space-heater/
https://community.webcore.co/t/have-i-done-it-thermostat-motion-for-space-heater/
https://community.lifx.com/t/lifx-bulb-uploading-a-lot-of-data/6081
https://support.ring.com/hc/en-us/articles/360022350352-Arming-or-Disarming-Your-Ring-Alarm-with-your-Smart-Lock-
https://support.ring.com/hc/en-us/articles/360022350352-Arming-or-Disarming-Your-Ring-Alarm-with-your-Smart-Lock-
https://support.ring.com/hc/en-us/articles/360022350352-Arming-or-Disarming-Your-Ring-Alarm-with-your-Smart-Lock-
https://apps.apple.com/us/app/home-4/id995994352
https://apps.apple.com/us/app/home-4/id995994352
https://www.reportlinker.com/p05495954/Home-Security-System-Market-by-Home-Type-System-Type-Offering-And-Geography-Global-Forecast-to.html?utm_source=GNW
https://www.reportlinker.com/p05495954/Home-Security-System-Market-by-Home-Type-System-Type-Offering-And-Geography-Global-Forecast-to.html?utm_source=GNW
https://www.reportlinker.com/p05495954/Home-Security-System-Market-by-Home-Type-System-Type-Offering-And-Geography-Global-Forecast-to.html?utm_source=GNW
https://developer.apple.com/homekit/specification/
https://developer.apple.com/homekit/specification/
https://www.reddit.com/r/Ring/comments/dw6eoo/ring_security_system_integration_with_echo_devices/
https://www.reddit.com/r/Ring/comments/dw6eoo/ring_security_system_integration_with_echo_devices/
https://github.com/infinitywings/IoT-Phantom-Delay-Attack
https://github.com/infinitywings/IoT-Phantom-Delay-Attack
https://www.gigamon.com/resources/resource-library/white-paper/understanding-network-taps-first-step-to-visibility.html
https://www.gigamon.com/resources/resource-library/white-paper/understanding-network-taps-first-step-to-visibility.html
https://www.gigamon.com/resources/resource-library/white-paper/understanding-network-taps-first-step-to-visibility.html
https://www.businesswire.com/news/home/20210505005395/en/Strategy-Analytics-Amazons-Ring-Claimed-Top-Spot-in-Global-Home-Security-Camera-Market-in-2020
https://www.businesswire.com/news/home/20210505005395/en/Strategy-Analytics-Amazons-Ring-Claimed-Top-Spot-in-Global-Home-Security-Camera-Market-in-2020
https://www.businesswire.com/news/home/20210505005395/en/Strategy-Analytics-Amazons-Ring-Claimed-Top-Spot-in-Global-Home-Security-Camera-Market-in-2020

[47] D. Nguyen, C. Sahin, B. Shishkin, N. Kandasamy, and K. R. Dandekar,
“A real-time and protocol-aware reactive jamming framework built on
software-defined radios,” in Proceedings of the 2014 ACM workshop on
Software radio implementation forum, 2014, pp. 15–22.

[48] T. OConnor, W. Enck, and B. Reaves, “Blinded and confused: uncov-
ering systemic flaws in device telemetry for smart-home internet of
things,” in Proceedings of the 12th Conference on Security and Privacy
in Wireless and Mobile Networks, 2019, pp. 140–150.

[49] Onelink, “Onelink smoke detector and co alarm,” 2021, https://onelin
k.firstalert.com/.

[50] H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming strate-
gies in wireless networks: A comprehensive survey,” arXiv preprint
arXiv:2101.00292, 2021.

[51] P. Ranganathan and K. Nygard, “Time synchronization in wireless
sensor networks: A survey,” Int. J. UbiComp, vol. 1, no. 2, pp. 92–102,
2010.

[52] I. RFC793, “Transmission control protocol,” IETF, September, 1981.
[53] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes

nuclear: Creating a zigbee chain reaction,” in IEEE Symposium on
Security and Privacy (SP), 2017.

[54] O. Standard, “Mqtt version 3.1. 1,” URL http://docs. oasis-open.
org/mqtt/mqtt/v3, vol. 1, 2014.

[55] G. Store, “Nest protect smoke and co alarm,” 2021, https://store.google
.com/product/nest protect 2nd gen?hl=en-US.

[56] A. Subahi and G. Theodorakopoulos, “Detecting iot user behavior and
sensitive information in encrypted iot-app traffic,” Sensors, vol. 19,
no. 21, p. 4777, 2019.

[57] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-level signatures for smart home devices,” Signature, vol. 10,
no. 13, p. 54, 2020.

[58] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical
trigger-action programming in the smart home,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2014, pp.
803–812.

[59] Verified Market Research , “Internet of things (iot) market worth
$1319.08 billion, globally, by 2026 at 25.68% cagr: Verified market
research,” https://www.prnewswire.com/news-releases/internet-of
-things-iot-market-worth-1319-08-billion-globally-by-2026-at-25-68-c
agr-verified-market-research-301092982.html, 2020.

[60] S. Whalen, “An introduction to arp spoofing,” Node99 [Online Docu-
ment], April, 2001.

[61] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper:
Reactive jamming in wireless networks: How realistic is the threat?” in
Proceedings of the fourth ACM conference on Wireless network security,
2011, pp. 47–52.

[62] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit:
Monitoring smart home apps from encrypted traffic,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1074–1088.

[63] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and
Y. Zhang, “Discovering and understanding the security hazards in the
interactions between iot devices, mobile apps, and clouds on smart
home platforms,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1133–1150.

13

https://onelink.firstalert.com/
https://onelink.firstalert.com/
https://store.google.com/product/nest_protect_2nd_gen?hl=en-US
https://store.google.com/product/nest_protect_2nd_gen?hl=en-US
https://www.prnewswire.com/news-releases/internet-of-things-iot-market-worth-1319-08-billion-globally-by-2026-at-25-68-cagr-verified-market-research-301092982.html
https://www.prnewswire.com/news-releases/internet-of-things-iot-market-worth-1319-08-billion-globally-by-2026-at-25-68-cagr-verified-market-research-301092982.html
https://www.prnewswire.com/news-releases/internet-of-things-iot-market-worth-1319-08-billion-globally-by-2026-at-25-68-cagr-verified-market-research-301092982.html

	Introduction
	Background
	IoT Servers
	Automation Rules
	IoT Sniffing Based Side Channel Attacks

	System Model and Attack Model
	System Model
	Attack Model

	Demystifying IoT Timeout Behaviors
	IoT Network Protocol Analysis
	Transport Layer Protocols
	Transport Layer Security Protocol
	Application Layer Protocols

	Description of Device Timeout Behaviors
	Attack Primitives

	Exploiting IoT Timeout Behaviors
	State-Update Delay Attack
	Action Delay Attack
	Erroneous Execution Attack
	Spurious Execution.
	Disabled Execution.

	Evaluation
	Testbed Setup
	Device Behavior Measurement
	Device Timeout Measurement Results
	Results of Cloud-based IoT Devices
	Results of Local-based IoT Devices
	Interesting Findings

	Proof-of-Concept Attacks
	State-Update Delay Attack
	Action Delay Attack
	Erroneous Execution Attack

	Potential Countermeasures
	Requiring Message ACK and Shortening ACK Timeout
	Timestamp Checking

	Related Work
	Vulnerability Disclosure
	Conclusion
	References

