
Cross-System Analysis of Job Characterization and
Scheduling in Large-Scale Computing Clusters

Di Zhang1, Monish Soundar Raj1, Bing Xie2, Sheng Di3, and Dong Dai1

1University of North Carolina at Charlotte, USA, {dzhang16, msoundar, ddai}@charlotte.edu
2Microsoft, USA, bingxie@microsoft.com

3Argonne National Laboratory, USA, sdi1@anl.gov

Abstract—Amid the growing prevalence of artificial intelligence
(AI) and deep learning (DL) across industries and science disci-
plines, high-performance computing (HPC) clusters are increas-
ingly used for DL tasks, in addition to their traditional role in nu-
merical simulations. This shared use of HPC systems for both DL
tasks and numerical codes is altering the characteristics of their
workloads, leaving many previously observed and well-accepted
workload characteristics unchecked, potentially outdated and
imprecise, for these new mixed workloads. Thus, to understand
these changes and their implications for job scheduling, we
conduct a cross-system analysis of job characterization and its
scheduling across a range of representative clusters, including
two classic HPC clusters (Mira, Theta), two classic DL clusters
(Philly, Helios), and a hybrid cluster (Blue Waters).

Our cross-system analyses focus on three key aspects: 1)
job geometries (job size, run time, arrival interval) and their
impacts on scheduling results, 2) job failure patterns and their
correlations to job geometries, 3) per-user behaviors and their
indication on job scheduling. Through these comparisons, we
confirm notable disparity and similarity among different systems
(summarized as 8 takeaways), which would help design more
efficient job schedulers for the future HPC systems. We further
introduce two use case studies (job runtime prediction and adaptive
relaxed backfilling) that leverage these new observations and show
the improved job scheduling results. In summary, we expect our
observations, insights, and systematic analysis approach can be
useful for the community in building efficient HPC scheduling
for the upcoming hybrid workloads.

I. INTRODUCTION

High-performance computing (HPC) systems were tradi-
tionally designed for rigid and long-term scientific simulations
and analyses. Recently, there has been a notable adoption of
deep learning (DL) across science domains, such as climate
modeling [22], molecular simulations [19], fusion simula-
tions [9]. Compared to traditional HPC workloads, these DL-
based applications are known to exhibit vastly different charac-
teristics, such as inherent heterogeneity (leveraging both CPUs
and GPUs) and feedback-driven exploration (high cancellation
rate) [17]. The increasing popularity of DL workloads in HPC
computing clusters is changing the workload characteristics,
potentially impacting their job scheduling designs.

Workload characterizations have been proven effective for
gaining insights into large-scale systems and their job schedul-
ing. There have been a large number of studies on character-
izing various HPC workloads [31], [29], [8], [44], [2], [20],
[32], [43], [33]. Unfortunately, existing studies do not consider

the characteristics of emerging DL workloads, simply because
the job traces they analyzed (typically before 2017) do not
contain the emerging DL workloads yet. Consequently, many
of their identified workload characteristics might not hold true
any more, while, important characteristics may preserve at the
same time. Understanding them will be critically important for
improving future job scheduling designs.

Similarly, there have been recent studies analyzing dedicated
DL workloads and proposing new job schedulers accordingly,
such as Tiresias, Gandiva, and Optimus [17], [23], [47],
[14], [30]. However, they target only industrial DL clusters,
providing minimal information to the HPC community and
offer limited insight for HPC job scheduling. In addition, none
of these works conducts a cross-system analysis to understand
how such new workloads could change HPC job characteristics
and impact its scheduling.

Different from existing studies, this paper conducts a cross-
system comparative study trying to understand the changed
and unchanged characteristics while DL workloads are emerg-
ing in traditional HPC computing clusters. Specifically, we rely
on public job traces collected from five distinct computing
clusters to conduct the cross-system analyses, including two
classic HPC clusters (Mira and Theta), two classic DL clusters
(Philly and Helios), and a hybrid cluster (Blue Waters). The
reason of selecting these job traces for analysis will be
discussed in §II.

Across target systems, we first study their key job geome-
tries, such as average job sizes, run time, submission interval,
and their impacts on scheduling results (e.g., waiting time,
system utilization). Next, we study the job failure patterns
across workloads and demonstrate the similarities on job
failures in both classic HPC and DL workloads. Thirdly, we
focus on per-user behaviors by profiling the user behaviors
across the target systems and identifying consistent patterns
and behaviors. Finally, built upon the observations derived
from our analyses, we introduce two case studies (job run time
prediction and relaxed backfilling) to improve the efficiency of
HPC job schedulers. We evaluate and verify the effectiveness
of the optimizations through extensive simulations. Our key
contributions of this study can be summarized below:

• To the best of our knowledge, we conduct the first
systematic job characteristic comparisons across HPC
and DL workloads based on job traces collected from

1



both leadership supercomputers and leading industry DL-
centric data centers. We accordingly derive eight major
takeaways regarding the job geometrics, job failure pat-
terns, and user behaviors, which will help optimize job
scheduling for hybrid workloads.

• To showcase the applicability of our key observations,
we conduct two use case studies to improve existing
HPC job scheduling mechanisms or components and
show their effectiveness. Specifically, we introduce 1)
elapse-time based job runtime prediction and 2) adaptive
relaxed backfilling. We conduct extensive simulation-
based evaluations and report up to 15% reduction in
bounded job slow down and 49% reduction in job delay,
showing the effectiveness of our observations.

Limitation. In addition to the new observations and findings,
we acknowledge the constraints inherent in this study. Despite
we conducted comparisons using the traces from multiple
state-of-the-art DL clusters, it is still possible that our ob-
servations may not entirely capture the nuances of the latest
DL workloads given the rapid evolution of DL models.

To address this issue, we summarize our analytic method-
ology as a software package1 and a website2 for others to
easily conduct similar analysis using their own job traces and
compare with the systems discussed in this study. We expect
our proposals of the systematic methodology and the metrics
can be applicable to any other job traces, hence generally
useful for the community.

This paper is organized as follows: In section §II we
introduce the job traces used in this study, how we process
them, and our analysis approaches. In sections §III, §IV, §V,
we present the cross-system analyses and comparisons from
three main aspects: job geometries, job failures behaviors, and
users’ behaviors. Based on these observations, we present two
use cases to improve HPC job schedulers in §VI. We compare
with related work in §VII, conclude this paper and discuss the
future work in §VIII.

II. DATA PREPARATION AND ANALYSIS METHODOLOGY

A. Job Traces Selection and System Descriptions

We collected 10 publicly available job traces from real-
world computing clusters for cross-system analysis, as summa-
rized in Table I. These traces include those from HPC clusters
operated in academic or national labs, such as Mira [5],
Theta [38], ThetaGPU [39], Blue Waters [27], and Super-
cloud [34], as well as traces from industry data centers such as
Philly [18], Elasticflow [13], Helios [17], and Alibaba Cluster
Trace [46]. Here, we focus only on job traces that are later
than 2017 to gain the latest trend.

Among them, we have to exclude traces that are not
suitable for our analysis. For example, ThetaGPU only has
24 nodes, so it does not represent a large cluster. Elasticflow
and Alibaba Cluster Trace were also left out because they
have too few jobs, affecting analysis conclusions. Some of

1https://github.com/DIR-LAB/lumos
2https://lumos-job-traces.streamlit.app/

them even miss key metadata such as user information or job
status information. Supercloud met these requirements, but we
noticed some inconsistent information while analyzing it. For
instance, it reported a total node count of 704, but the trace
showed many jobs with requested nodes exceeding 704 being
successfully scheduled. Therefore, we decided not to include it
until gaining more accurate understanding of its information.

The selected target systems include Mira, Theta, Blue
Waters, Philly, and Helios. Among them, Mira and Theta are
supercomputer housed at the Argonne Leadership Computing
Facility (ALCF) [5], [37]. Mira consists of 49,152 compute
nodes, each equipped with 16 CPUs. At one point, Mira
held the 3rd place on the TOP500 list of HPC clusters.
Theta comprises 4,392 compute nodes, each equipped with
64 CPUs. Theta ranked 94th on the most recent Top500
list. ALCF periodically released its job traces, which had
inspired numerous studies on workload characterization and
scheduling [29], [8], [1], [48]. Since Mira and Theta mainly
consist of CPUs to run traditional HPC applications, such as
HOOMD simulation from materials science [6], we consider
Mira and Theta represent traditional HPC workloads.

Comparatively, housed at the National Center for Super-
computing Applications (NCSA) [27], Blue Waters represents
a hybrid architecture, which consists of 22,636 CPU nodes
and 4,228 GPU nodes to support both traditional HPC and
new machine learning applications. It is likely that future
HPC clusters will adopt a similar heterogeneous architecture
with both CPUs and GPUs to support various applications.
As evidence, four out of the top five HPC systems currently
employ a substantial number of GPUs to accelerate tasks
related to AI and DL workloads [40].

Philly and Helios are clusters specifically designed for run-
ning industrial DL workloads, providing meaningful insights
regarding DL workloads. In particular, Philly [18] is a Mi-
crosoft data center built explicitly for DL training around 2017
Helios [17] is a newer data center operated by SenseTime. It
began operations in 2020. It was designed for the development
of deep learning models for both research and production
purposes. Compared with Philly, Helios jobs focus on larger
scales: they required over twice the GPUs than that of Phillys.
Its maximum number of requested GPUs is 2048, which is an
order of magnitude higher than Philly. We include both traces
to thoroughly understand various DL workloads.

B. Dataset Alignment

All job traces used in this study are publicly available, but
with varying levels of details. For example, the Blue Waters
trace includes job scheduling statistics, I/O data, memory
allocation states, CPU and GPU usage, and data usage, etc.
Philly trace, on the other hand, only includes CPU/GPU
utilization, job failures, and the root causes. In this study, we
focus on job geometries, job failures, and user behaviors. To
conduct cross-system comparisons, we focus on the common
attributes and eliminate those specific for certain systems.

In addition to leveraging the aforementioned features, we
also align the timeframes among these datasets. As shown

2



Dataset Affliation Years Job Count Nodes Cores GPUs Large
Scale

User
Info.

Job
Status

Info
Consis.

Mira [5] ALCF 2013∼2019 750,000 49,152 786,432 NA ✓ ✓ ✓ ✓
Theta [38] ALCF 2017∼2023 522,858 4,392 281,088 NA ✓ ✓ ✓ ✓
Blue Waters [27] NCSA 2013∼2019 10.5 M 26,864 396,000 4,228 ✓ ✓ ✓ ✓
ThetaGPU [39] ALCF 2020∼2023 135,975 24 NA 192 ✗ (Cluster Size) ✓ ✓ ✓
Supercloud [34] MIT 2021-01∼2021-10 395,914 704 32,000 448 ✓ ✓ ✓ ✗

Philly [18] Microsoft 2017-08∼2017-12 117,325 552 NA 2,490 ✓ ✓ ✓ ✓
Helios [17] Sensetime 2020-04∼2020-09 3.3 M 802 NA 6,416 ✓ ✓ ✓ ✓
Elasticflow [13] Microsoft 2021-03∼2021-05 69,351 NA NA NA ✗ (Job Count) ✗ ✗ ✓
Alibaba Cluster Trace [46] Alibaba 2023 8,152 1,523 107,018 6,212 ✗ (Job Count) ✓ ✓ ✓

TABLE I: Overview of available and selected public job traces of large-scale computing systems. N/A indicates no corresponding information.

in Table I, some traces, such as Mira and Theta, cover a
long time period, spanning from 2013 to 2019. While, other
traces, such as Philly and Helios only obtain the trace data
for several months in 2017 and 2020 respectively. It is hard to
obtain a fair comparison between the workloads of ten years
and those covering about four months. To address this issue
and conduct a meaningful cross-system analysis and future
workloads projection, we choose to analyze the latest four-
months traces from Blue Waters (2019-08∼2019-12), Theta
(2022-12∼2023-05), and Mira (2019-08∼2019-12).

C. Terminology and Analysis Approaches

In the context of job scheduling, Users submit Jobs to
computing systems and clusters, where each job is a single
execution instance that utilizes one or more compute nodes
(Job Size) and executes for a period of time (Run Time). A Job
Scheduler, such as SLURM [49] or YARN [42], determines
which jobs to be scheduled next from a set of jobs in the
waiting queue. The time duration each job spends in the
waiting queue is referred to as Waiting Time.

HPC job schedulers make scheduling decisions with various
strategies, such as First-Come-First-Serve (FCFS) or Shortest
Job First (SJF). To improve scheduling effectiveness, these
schedulers often leverage the Backfilling mechanism [26],
[24], which opportunistically fills idle resources even when
they are reserved for another job. The performance of job
scheduling is evaluated by metrics such as System Utilization
(util), which calculates the ratio between utilized core hours
v.s the total core hours of the system, Average Waiting Time
(wait), which calculates the average job waiting time in the
queue, or Slowdown which means the ratio of job turnaround
time over its execution time. The Average Bounded Slowdown
(bsld) [12] measures job slowdown relative to given “interac-
tive thresholds” (e.g., 10 seconds).

In addition to statistical analyses, we also leverage a widely
used HPC job scheduling simulator named SchedGym [50],
[51], [21] to schedule the exact job traces using different
scheduling strategies and optimizations to examine how job
characteristics impact scheduling strategies,

III. JOB GEOMETRIES AND SCHEDULING

The first set of comparative studies focus on job geometries
and their connections with job scheduling results.

A. Job Geometries Comparisons

we first analyze the following three geometries: 1) Job Run
Time, 2) Job Arrival Patterns, 3) Job Resource Allocation. To
drive a set of systematic comparisons on the similarities and
differences, we conduct the same analysis across all job traces.
The overall results are summarized in Fig 1.
Job Runtime. Figure 1(a) upper presents the Cumulative
Distribution Functions (CDFs) of the job runtime of the target
systems. The plot illustrates the disparity among them: the
jobs in Mira, Blue Waters, and Theta run longer than those
in the deep learning (DL) systems (Philly and Helios) do.
For instance, the median runtime on Blue Waters and Mira
are approximately 1.5 hours, while the median run times on
Helios and Philly are 90 seconds and 12 minutes, respectively.
we would expect the schedulers to focus more on minimizing
job waiting times while more DL workloads are emerging.

We further plot the violin distributions of job runtime of
different systems in Figure 1(a) bottom to help understand
their detailed differences. One key observation here is that
the traditional HPC clusters, such as Mira and Theta, have
relatively stable job run times, while DL clusters (Philly,
Helios) have more diverse job run times. Their longest job
runtime could be significantly longer than that of traditional
HPC systems. Their shortest job runtime is also much shorter.
Blue Waters, as a hybrid system, exhibits a middle ground
between these two extremes. We suspect these extremely long
jobs from Philly and Helios would be DL training workloads
that could take weeks and months to finish [7], [3], [35].

Takeaway 1:

The shorter and more diverse job run time in DL clusters
suggests that the future job scheduling might need to rethink
their key designs relevant to job run time. For example,
many studies use average bounded job slow down [12] to
measure the scheduling policies. It sets the lower bound at
10 seconds with the expectation that such short jobs are
unlikely. However, looking ahead, these short jobs might be
more common, prompting the need for a reconsideration of
such an important metric.

Job Arrival Patterns. Figure 1(b) upper presents the job
arrival patterns of different systems, which have a profound
impact on job scheduling [36]. We can observe that the job

3



(a) Job Runtime (b) Job Arrival Pattern (c) Job Resource Allocation

BW Mira PhillyTheta Helios

Fig. 1: Job geometries (job runtime, job arrival interval, and job resource allocation) characterization of multiple workloads.

arrival intervals are much smaller in the hybrid or DL-based
clusters, such as Philly, Helios, and Blue Waters. In fact, over
50% of their jobs arrive within 5-10 seconds after the previous
jobs. For traditional HPC clusters and workloads, such as
Mira and Theta, this number is 10 times larger (100 seconds),
demonstrating a much lower frequency. We will discuss how
this would impact the job scheduling in later subsections.

In addition to job arrival frequency, we further show the
cyclic patterns of job arrivals in Figure 1(b) bottom, which
plots the job arrival counts for each hour of the day (hour
from 0 to 23). Theoretically, job arrival is often considered
as a Poisson process. However, in practice, it often exhibits
periodic patterns. We examine whether these periodic patterns
are consistent across different workloads and clusters. Note
that, since different clusters may be in different time zones
(e.g., Mira and Theta are in Central Time and Philly is in
Pacific Time), we always use their local time in this plot.

From these results, we first observe an increase in the
number of submitted jobs from 8am to 5pm in many of
the systems. This is often summarized as the ’peak hours’
pattern and leveraged to autoscale the system in many existing
studies [25]. However, such a pattern does not exist in Mira,
Theta, and Philly. First, in these workloads and throughout the
day, there is no notable favorable time for job submissions. For
instance, the lowest number of job submissions in an hour in
Philly is around 40, and comparatively the maximum is less
than 100 (2.5x difference), which is much smaller than the
same max-min ratio of Helios (10 and 110, 10x difference).
Secondly, these workloads follow a different time pattern,
where Mira and Theta receives slightly more jobs after 12pm,
while Philly receives fewer jobs during the ’peak hours’. These
differences could originate from diverse users working with
different habits or simply from different time zones.

Takeaway 2:

These observations show that although the periodic patterns
still exist in many workloads, its generality is not certain,
i.e., the intensity and time can be vastly different, suggesting
that job scheduling should be cautious about leveraging the
periodic patterns for general purpose. The periodic pattern
should be identified per system and used only for that system.

Job Resource Allocation. Figure 1(c) upper shows the job
resources requirements. It plots the CDF of requested cores per
job. Here, for Philly and Helios, the requested cores are GPUs;
for Mira and Theta, the requested cores are CPUs; for Blue
Waters, they are hybrid. From the plot, we can clearly observe
the divided nature of the target systems: Philly and Helios
belong to one category; Mira and Theta belong to another
category; Blue Waters is in the middle. Specifically, we can
observe that about 80% of GPU-based DL workloads (Philly,
Helios) require only a single GPU core, significantly smaller
than the number of CPU cores a traditional HPC job requests.
In fact, more than 50% of Mira jobs request more than
1,000 cores, substantially larger than DL-based GPU systems.
Blue Waters takes a middle ground. The median number of
requested nodes for Blue Waters is merely 32, which is still
larger than classic DL workloads. In fact, around 90% of
Blue Waters jobs request more than 10 cores. In addition to
show the absolute value of allocated cores, we further plot the
percentage in Figure 1(c) bottom. The results follow similar
divided patterns across systems. The only difference is the
percentage of Blue Waters is much smaller.

4



(a) Core Hours w.r.t Job Size (b) Core Hours w.r.t Job Run Time

Fig. 2: Core hour domination of different types of jobs.

Takeaway 3:

Looking ahead, more small (and short) jobs are expected
in computational clusters, which may impact job scheduling
optimizations. In fact, leveraging this new job characteristic,
we identify opportunities to improve job scheduling efficiency
with relaxed backfilling. We visit this topic in Section VI.

Resources Usage v.s. Job Size and Run Time. We further
study how resources are used by different types of jobs. In
particular, we categorize jobs into three sizes (small, middle,
and large) based on the job size (number of cores they use)
and three lengths (short, middle, long) based on job runtime
(how long they run) and study the core hours they use.

For Mira and Blue Waters, we define small, middle and
large by following the conventional numbers used in previous
studies [29], where small represents a job allocates less than
10% of total cores, middle means the job size is in the range
of 10% - 30%, and large means the job size is >30%. For DL
workloads, we define job sizes differently as the majority of
them request less than 10% of the total GPUs. Following the
conventional numbers used in the DL workload studies [17],
we define a job as small if 1 GPU in use, middle if 1 to 8 GPUs
in use, and large when >8 GPUs in use. For job runtime. We
follow the same categorization rule [31] for all four traces:
short (<1 hour), middle (1 hour to 1 day), and long (>1 day).

Figure 2 plots the results. We can observe that the dom-
inating groups of jobs change across different systems. For
example, small jobs in Blue Waters account for more than
85% of the total core hours, while small jobs in Mira, Theta,
Philly, and Helios consume less than 35%, 16%, 19%, and 5%
of total core hours, respectively. Their dominating job sizes are
different as well. For job runtime, surprisingly, different from
the intuitive thought that long-running jobs would consume the
largest percentage of core hours, we observe that Blue Waters,
Mira, and Theta are dominated by middle length jobs. Philly
and Helios are dominated by long jobs. It is interesting to see
that classic HPC workloads exhibit a clear bias toward middle
length jobs, but DL workloads exhibit a greater bias towards
long jobs, indicating a strong shift.

Takeaway 4:

Across systems, dominating job groups (taking more than
50% of the whole system core hours) widely exist but shift.
It is then critical to identify these groups and optimize the
scheduling policies accordingly, instead of only focusing on
large jobs as traditional HPC schedulers did [1].

B. Job Scheduling Results Analysis

We then see how these job geometries would impact the
final job scheduling results across systems. We analyze two
key job scheduling metrics: System Utilization and Average
Job Waiting Time, which were discussed in Section II.
System Utilization. Fig 3 displays the system utilization of
the target systems. Since Blue Waters obtains both CPUs
and GPUs, we plot the CPU and GPU utilization separately.
Although Philly and Helios obtain both CPUs and GPUs, their
CPUs primarily serve as auxiliary resources. The traces do not
mention the scale of CPUs either. Therefore, for Philly and
Helios, we only plot GPU utilization.

(a) Blue Waters CPU (b) Blue Waters GPU (c) Mira CPU

(e) Philly GPU (f) Helios GPU (d) Theta CPU

Fig. 3: The system utilization across multiple systems.

From the results, we observe that both Philly and Helios
exhibit much lower system utilization than the other systems.
Most of the time, less than 80% of the GPUs are used, even
when there are jobs waiting in the queue (see the later job
waiting time analysis). Given most of the jobs in these systems
request a small number of GPUs (as shown in Fig. 1(c)), it is
counter-intuitive to see these many idle GPUs while there are
jobs waiting in the queue. Looking deeper into the job traces,
we noticed one of the major reason would be the isolated
virtual clusters created in DL clusters for resource sharing
among users and groups. For example, there are 14 virtual
clusters in Philly. Then, a job will be queued in each virtual
cluster until its requested GPUs are available in the same
virtual cluster. This isolation mechanism is designed to avoid
interference among jobs from different users and groups, but
leads to extra waiting even when there are available resources
in the system. Note that, the extremely low system utilization
in Philly (43% average utilization) might be relevant with
the long vacancy period at the beginning phase of the Philly
trace. But, even without considering this beginning phase, its
utilization is still low and barely over 80%.

5



Takeaway 5:

The low utilization in DL clusters highlights their issues
and opportunities of job scheduling policies when facing the
short but high variance workloads, possibly created by deep
learning long training tasks and short inference tasks.

Job Waiting Time. Figure 4 compares the CDF of job waiting
time and job turnaround time across target systems. From these
results, we have several observations. First, among all systems,
Helios shows the minimal job waiting time: about 80% of the
jobs wait less than 10 seconds. In contrast, for the same DL-
based Philly, the number is much larger: over 50% of the jobs
need to wait at least 10 minutes to start. Considering the low
system utilization of the Philly cluster discussed earlier, the
scheduling policy used in Philly clearly encountered issues.
Its fair-sharing scheduling policy is not working optimally
when dealing with isolated virtual clusters and unbalanced
job submissions from different users. Looking into the actual
scheduling trace, we do often find jobs are waiting on one
virtual cluster while other virtual clusters are idle.

(a) CDF of Wait Time (b) CDF of Turnaround Time

Fig. 4: Comparisons of waiting time and turnaround time.

Second, it is interesting to observe that Blue Waters has
the longest average job waiting time: over 50% of the jobs
need to wait more than 1.5 hours, which is roughly equal to
its own average job runtime (1.5 hours). Looking at the job
geometries of Blue Waters in Figure 1, we can see such a
long waiting time should result from its long average job run
time and small (frequent) job arrival interval requested by each
job. Across target systems, Mira shares similar job geometries
with Blue Waters, but its average job waiting time is obviously
shorter. We believe it is the hybrid workloads of Blue Waters,
a mix of extremely long and short jobs (as shown in Fig. 1(a))
that create significant challenges for its scheduler. This also
calls for substantial improvements over HPC job schedulers
to prepare for future workloads. Similarly, we also show the
CDF of job turnaround time, which is the sum of job waiting
time and job runtime, in Figure 4(b). The results follow similar
patterns as the waiting time.

Figure 5 further shows the relationship between the ob-
served job waiting time and job geometries across different
systems. We use the same way (described previously) to group
jobs into ‘small’, ‘middle’, and ‘large’ based on job size, and
‘short’, ‘middle’, and ‘long’ based on the job run time.

There are several interesting observations. First, surpris-
ingly, across most of the systems (except Theta), the middle

(a) Average Waiting Time w.r.t Job Size (b) Average Waiting Time w.r.t Job Run Time

Fig. 5: Correlation between job waiting time and two other geome-
tries: job size and job run time.

size jobs, instead of the largest jobs, wait the longest time in
queue. This counters the intuitive that larger jobs will always
wait longer [31], but actually makes sense: in many production
systems, large jobs are often the special-purpose jobs and
hence treated specially in schedulers. They often enjoy higher
priority and hence less waiting time. Second, unsurprisingly,
across all the systems, the long jobs seem to wait the longest
time in queue. Echoing findings from studies [10], [1]. We
believe this is mostly due to the use of Backfilling that favors
shorter jobs during scheduling [24], [26], [41].

Takeaway 6:

The different job waiting time of Philly and Helios shows the
importance of cluster management and scheduling. The long
waiting time of Blue Waters further highlights the challenges
of scheduling hybrid workloads. All motivate the need for
better scheduling policies for future workloads in HPC.

IV. JOB FAILURE CHARACTERIZATION AND SCHEDULING

It is often a myth that HPC jobs appear to be more stable
and less likely to fail, while DL jobs exhibit a higher failure
rate. It is commonly believed the higher failure rate of DL
workloads comes from the higher cancellation rate due to
model and hyper-parameters explorations. In this section, we
systematically examine these assumptions and how they may
impact HPC job scheduling.

A. Job Failures Distribution

We define Job Status based on its final exit status printed
in job traces. We focus on three possible statuses: Passed
(job finishes normally), Failed (job fails in the middle due to
technical issues), and Killed (job is killed by external factors
before finishes). These three statuses are originally provided in
Philly and Helios traces, but not given in other traces. In these
systems, detailed job exit information, such as SIGTERM,
SIGKILL, and SIGABRT, is provided, which can be used
to classify jobs into one of these three statuses. Specifically,
since SIGTERM is to politely ask a program to terminate and
SIGKILL is to ask to terminate a program, both of them are
considered as “Killed”. SIGABRT is due to abort assertion or
double-free of memory and SIGSEGV is segmentation fault,
we classified them as “Failed”.

Based on these definitions, we show job counts percentages
and consumed core hours percentages of different jobs statuses

6



(a) Job Counts w.r.t Job Status (b) Core Hours w.r.t Job Status

Fig. 6: The distribution of different job statuses.

BW Mira Theta Philly Helios BW Mira Theta Philly Helios

(a) Job Status w.r.t Job Size (b) Job Status w.r.t Job Run Time

S
m

al
l

S
m

al
l

S
m

al
l

M
id

dl
e

S
m

al
l

La
rg

e

S
m

al
l

M
id

dl
e

M
id

dl
e

M
id

dl
e

M
id

dl
e

La
rg

e

La
rg

e

La
rg

e

La
rg

e

M
id

dl
e

M
id

dl
e

M
id

dl
e

M
id

dl
e

M
id

dl
e

S
ho

rt

Lo
ng

S
ho

rt

S
ho

rt

S
ho

rt

S
ho

rt

Lo
ng

Lo
ng

Lo
ng

Lo
ng

Fig. 7: Job failure v.s job runtime and job requested resources.

in Figure 6. From these results, we have several interesting
observations. First, the percentages of ‘Passed jobs’ are less
than 70% across all the systems. Even in Mira, a mature HPC
system, the failed or killed jobs still take around 30% of
the total number of jobs. There is no significant difference
between classic HPC and new DL workloads in terms of
job failure rate: Philly has the highest failure rate at 40%
v.s the lowest failure rate at 30% in Mira. Second, the core
hours consumed by the killed jobs take significantly higher
percentages compared with their job numbers, indicating that
‘unfinished’ jobs actually waste more resources. For instance,
in Philly, nearly 60% of the jobs are passed, but they only
consume 34% of the GPU resources. The rest 66% of the GPU
resources are wasted on either Failed or Killed jobs. Third, in
most of the systems, there are more number of ‘Failed’ jobs
than their corresponding consumed core hours (e.g., 7.3% v.
4.9% in Blue Waters), indicating these jobs cost less. One
explanation is that Failed jobs are often caused by software
bugs or wrong configuration settings, hence likely ‘fail’ at a
very early stage of their executions. From these observations,
it is not hard to conclude that the ‘Killed’ jobs are an important
issue to address in large-scale computing clusters, as they
widely exist and consume a significant amount of resources.

B. Correlation between Job Failure and Job Geometries

We take a closer look at the correlation between job failures
and job geometries, particularly job run time and requested
resources. We follow the same way to categorize jobs into
small, middle, and large jobs based on job sizes; short, middle,
and long jobs based on job runtime.

Figure 7(a) shows how is the job failure rate correlated
with job sizes. In each bar, we show the percentages taken by
Passed, Failed, and Killed jobs within that job size category.
It is interesting to see the percentages of Passed jobs in Philly
and Helios reduces significantly as job size increases. But,
such an observation does not hold in Blue Waters, Theta, or
Mira, where the job size seems irrelevant with the job statuses.

Figure 7(b) plots how is the job failure rate correlated with
job run time. It is obvious that the job run time impacts the
distributions of the job statuses significantly in all systems. The
number of Passed jobs decreases as the jobs become longer. In
some extreme cases, such as Mira, almost 99% of the Long
job will be killed eventually. The reduction of Passed jobs
mostly comes from more Killed jobs.

Takeaway 7:

The consistent high job failure rate and high costs of failed or
killed jobs across systems suggest a great need to manage job
failures proactively in job scheduling. Many of the previous
fault-aware schedulers [28], [52], [37] should be revisited
in the new hybrid workload setting.

V. USER BEHAVIORS AND SCHEDULING

In this subsection, we further extend our characterization to
more users’ behaviors with the goal of identifying common
patterns that can be effectively leveraged in job scheduling.

A. Users’ Repeated Behaviors

It is previously identified that HPC users will likely re-
peatedly submit jobs needing similar resources and executing
similar amount of time [29]. To verify whether this also applies
to DL-mixed workloads, we follow the same approach of the
previous work to analyze the ”resource-configurations” metric
of jobs [29]. The resource-configurations metric is a pair of
“[cores, run time]”. We first calculate the paired values for
each job, then group all the jobs that have “similar” job
resource-configuration. For two jobs from a user to belong to
the same group, they have to have exactly the same number
of nodes and run times within 10% of their mean run time.

(a) Blue Waters (b) Mira (c) Theta

(d) Philly (e) Helios

Fig. 8: The resource-configuration group per user.

Figure 8 shows the percentage of jobs that are in the top
10 largest group per user among all the submitted jobs from

7



that user. These are averages across representative users. We
incrementally plot the percentage, meaning group 2 includes
jobs from both groups 1 and 2. The results shows, across all
systems, the jobs are highly repeated per user. Nearly 90% of
the jobs submitted by the users belong to the first 10 groups
(among over hundreds of possible groups). There are still small
differences though. if we only focus on the first 3 groups,
we will find DL workloads (Philly and Helios) barely reach
60%, while Blue Waters, Mira, and Theta already pass 80%,
showing less repeated patterns for DL workloads.

B. Users’ Submission Behaviors

The rational behind the users’ repeated behaviors is that
each user has a set of applications to run, so these submitted
jobs follow certain patterns statistically. However, in a fine-
grained aspect, users do have flexibility each time when they
submit the job. For example, they may determine how many
resources to request based on the system’s availability. Or they
may change their work schedules, so that they can submit large
jobs when the cluster is less busy. We consider such users’
behaviors important to examine whether they are consistent
across systems.

(a) Blue Waters (b) Mira (c) Theta (d) Philly (e) Helios

S - 
Qu

eu
e

S 
- Q

ue
ue

S - 
Qu

eu
e

S 
- Q

ue
ue

L -
 Q

ue
ue

M - 
Qu

eu
e

S 
- Q

ue
ue

M - 
Qu

eu
e

M - 
Qu

eu
e

M - 
Qu

eu
e

M - 
Qu

eu
e

L 
- Q

ue
ue

L 
- Q

ue
ue

L 
- Q

ue
ue

L 
- Q

ue
ue

Fig. 9: Submitted jobs’ sizes impacted by queue length.

First, we show how users might change their behaviors
in requesting resources facing different job queue length of
the system. Specifically, we iterate each job submission event
and record the requested resources of the job and the queue
length at that time. We consider three different queue lengths
(short, middle, and long) for each system as Fig. 9 shows.
For each system, we consider the maximal queue length as
Q, then define ‘short’ queue as cases whose queue length
is less than 1/3*Q, ‘middle’ between 1/3 and 2/3*Q, and
‘long’ longer than 2/3*Q. We tried different fine-grained queue
classifications and observed similar results. Then, each bar in
Fig. 9 represents one queue length. We show the percentage
of jobs requesting ‘small’, ‘middle’, and ‘large’ resources
within each bar. The classification is the same as previous
sections. We do add one ‘Minimal’ category which means
only requesting one CPU or GPU. Having this category helps
showcase the trend in traces like Blue Waters and Mira, where
99% of the jobs are already ‘small’ regardless of queue length.

The results show a clear trend across most of the system:
as queue length increases, users tend to submit jobs needing
less resources. For instance, in Philly, when the queue length is
longer than 3,000 jobs, almost 100% of the jobs are requesting

(a) Blue Waters (b) Mira (c) Theta (d) Philly (e) Helios

S - 
Qu

eu
e

S 
- Q

ue
ue

S - 
Qu

eu
e

S 
- Q

ue
ue

L -
 Q

ue
ue

M - 
Qu

eu
e

S 
- Q

ue
ue

M - 
Qu

eu
e

M - 
Qu

eu
e

M - 
Qu

eu
e

M - 
Qu

eu
e

L 
- Q

ue
ue

L 
- Q

ue
ue

L 
- Q

ue
ue

L 
- Q

ue
ue

Fig. 10: Submitted jobs’ runtime impacted by queue length.

only 1 GPU. But when queue length is smaller than 1,000, the
ratio drops to less than 80%. Similar behaviors can be observed
in other three systems as well. This is reasonable as when a
queue experiences congestion, individuals tend to submit jobs
with less resource requirements to prioritize their executions.

We further examine whether the system queue length would
impact the run time of requested jobs, i.e., whether users will
submit shorter jobs when the system is busy and overloaded.
Note that, although users may not know the exact runtime of
their jobs when submitting them, they do have an estimation
of the execution time, which could be a factor impacting their
submission behaviors. We define the queue length and job run
time the same way as the previous experiments. We also add
a ‘Minimal’ category for job run time to indicate jobs finished
within 60 seconds, to better show the trends for traces whose
run times are mostly small.

Fig. 10 shows the results. We can observe a consistent trend
in DL workloads: users indeed submit shorter jobs when the
system is busy. However, such an observation is not true for
Mira, Theta, and Blue Waters. In these systems, the job run
time is barely impacted by the queue length. We believe this
might be because in these systems, the job run time is not a
direct factor in determining the probability of its execution.
So, users do not consider it during job submissions.

C. Users’ Job Failure Behaviors

The previous per-user consistent behaviors inspire us to
further investigate the per-user job failure behaviors. Specifi-
cally, we are particularly interested in how job runtime might
be relevant with different job statuses, such as Pass, Failed,
or Killed. Such a relationship may help us more accurately
predict job statuses based on current runtime.

In this study, we report the top 3 users, who submit the
most number of jobs in each system due to space limits. We
examined the top 10 users and observed similar results. We
plot the violin distribution of job run time for each user and
each job status in Figure 11. The Theta results are similar to
Mira’s, hence eliminated to save space.

From the figure, we can see that, for different users, the
job run time distribution shifts among different job statues
significantly. For instance, users U1, U2, U3 in Blue Waters
all experience a much higher run time for Failed and Killed
jobs than that of Passed jobs: their widest (high density) parts
depart significantly. Such distribution differences could be very

8



(a) Blue Waters (b) Mira

(c) Philly (d) Helios

Fig. 11: Per user Job Runtime Distribution v.s. Job Status.

helpful to predict the job status. For instance, for U1 in Philly,
if a job running longer than 104 minutes, then it is highly
likely to be killed, simply because the possibility for Passed
jobs continuing to run over that time is close to 0. Also, if
a job runs past 102 seconds, then it is likely not gonna Fail.
Leveraging such information, schedulers may reversely predict
job run time, which is helpful in making effective scheduling
decisions. In the next sections, we will show how this can be
used to improve the job scheduling performance.

Takeaway 8:

Across systems, we observe consistent per-user patterns in
job submissions and job failures, such as when the system
is busy, users tend to submit shorter and smaller jobs. It
becomes extremely promising to track and analyze users
(especially the heavy users) periodically and leverage their
behaviors to achieve better scheduling.

VI. CASE STUDIES

In this section, we will showcase two use cases to demon-
strate the usefulness of our observations.

A. Use Case 1: Improve Job Run Time Prediction.

In the first use case, we leverage two previous observations:
• The high job failure rate on both HPC and DL workloads

means job failures are common and should be effectively
considered during scheduling;

• For many users, the job run times are not evenly dis-
tributed across job statuses (i.e., Passed, Failed, Killed),
resulting in a consistent correlation between them.

We propose to use the elapsed time of a job, i.e., time that has
already been consumed, to predict the remaining job runtime.

Specifically, from Fig. 11, we can see that, once a job
execution time (from a given user) has surpassed a threshold,
then it is highly likely to reach the next threshold rather than
complete in the middle of the two consecutive thresholds. To
elaborate further, assuming the scenario where for a user, most
of the failed jobs are ≤10 seconds, and most of its normal jobs
execute around an hour. Thus, if a new job from the user has

already executed for >10 seconds, then with high chances
it will successfully complete about an hour later, rather than
completing or failing in 30 minutes. It is intuitive that, for a
user, when we predict a job completion in consideration of
a job’s current elapsed time, the prediction accuracy can be
significantly improved.

To examine the effectiveness of this simple idea, we in-
corporate a job’s current elapsed time into the state-of-the-art
runtime prediction models, such as Last2 [41], Tobit [11], XG-
Boost [4], Linear Regression (LR) [15], multilayer perceptron
(MLP) [16], and compared the prediction accuracy before and
after integrating this feature.

We use two popular metrics to measure the improvements
in run time predictions [41]. First, we compare the Prediction
Accuracy, calculated as min(runtime,predict)

max(runtime,predict) , to understand
how closely is the predicted job run time compared with the
actual run time. Higher prediction accuracy is better. Second,
we compare Underestimation Rate, which represents the ratio
of the number of underestimated job run times to the total
number of jobs in a trace. A smaller value is better. The Un-
derestimation Rate is often a more important metric in runtime
prediction, simply because underestimating job run time can
have worse consequences [11]. It may cause schedulers to
backfill inappropriate jobs, resulting in significant delays. Or
the job may be terminated if its actual execution time surpasses
the predicted runtime.

In our comparisons, the baseline is the prediction made by
the existing method without considering elapsed time, labeled
as ‘Without Elapsed Time’. We then enhance the baseline
methods by incorporating elapsed time to make predictions. To
include elapsed time, we must make predictions after the job
has run for a certain duration, say 20 seconds. However, if we
do this plainly, the baseline methods are not treated fairly, as
they may make incorrect predictions on jobs running less than
20 seconds, whereas the ‘With Elapsed Time’ methods will
never make mistakes on jobs running less than 20 seconds. To
make a fair comparison, we let all methods make predictions
only towards jobs that have been running for a fixed time
period, say 20 seconds. The only difference is that ‘Without

9



(a) Blue Waters (b) Mira (d) Philly (e) Helios

Underestimate
Rate

Average
Accuracy

(c) Theta

Fig. 12: Job runtime prediction with/without elapsed time. For Underestimate Rate, smaller is better; for Average Accuracy, higher is better.

Elapsed Time’ methods do not consider elapsed time, while
our methods consider that as one input feature of the model.

The results are shown in Figure 12. We report the compar-
ative results about Underestimate Rate at the top and Average
Accuracy at the bottom. Each predictive model has multiple
values corresponding to the baseline and the corresponding,
improved methods. To understand how the elapsed time helps
prediction, we examined the prediction at elapsed time of 1/8,
1/4, and 1/2 of the average job run time. From these results,
we can clearly observe that with the elapsed time, almost all
predictive models achieve significantly smaller Underestimate
Rate and comparable or slightly better Average Accuracy. With
more elapsed time, the improvements are increasing as well.

B. Use Case 2: Improve Relaxed Backfilling.

In the second use case, we leverage another observation
about per-user behaviors: users tend to submit jobs with fewer
resource requirements and shorter run times when the system
is busy (i.e., with a long waiting queue).

We leverage this observation to improve a particular job
scheduling mechanism called relaxed backfilling. First, back-
filling is a widely used method to improve HPC job schedul-
ing. It allows to schedule low priority jobs ahead of high
priority jobs, as long as such actions do not delay the starting
times of high priority jobs. In reality, the constraint of not
affecting the starting of high priority jobs might be too strict
and lead to much less backfilling opportunities. Thus, relaxed
backfilling was proposed to alleviate such constraints [45].
It allows to delay the starting times of waiting jobs with a
threshold, such as 10% or 20% of the expected job waiting
time. Relaxed backfilling could lead to an 87% reduction in
monthly waiting time [45]. However, the main drawback of
relax backfilling is its additional delay of many high-priority
jobs. Can we maintain the same job waiting time reduction
while significantly reducing the job delay?

10% ∗ current queue length

max queue length
(1)

We believe the observed user behaviors can help here. Essen-
tially, backfilling favors smaller and shorter jobs in order to

efficiently utilize fragmented resources. Our previous obser-
vation suggests: when waiting queue grows, users will submit
smaller jobs, indicating a higher likelihood of successful
backfilling. To better capitalize on this, we can proportionally
enable the relaxed backfilling as the queue grows instead
of fixing it. For instance, if the original factor is 10%, we
will assign such factor as formula (1) to adaptively relax the
backfilling. In this way, we maximize the chance of backfilling
when it is more favorable, and reduce the chance and avoid
the delay when it is less favorable.

Traces Metrics Baseline Adaptive Improved

Blue Waters

wait 7513.02 7520.38 <1%
bsld 39.02 38.99 <1%
util 0.7164 0.7165 <1%

violation 1258.35 1200.81 5%

Mira

wait 34199.90 36210.37 -6%
bsld 37.81 39.40 -4%
util 0.8792 0.8805 <1%

violation 670.31 344.89 49%

Theta

wait 51558.62 50732.92 2%
bsld 96.93 94.61 2%
util 0.8708 0.8712 <1%

violation 3911.23 3413.56 13%

TABLE II: Job scheduling performance with adaptive relaxing.

We applied the adaptive mechanism to the existing relaxed
backfilling mechanism and compared the performance using
SchedGym. Since DL workloads do not include Wall Time for
backfilling, we only include results on Blue Waters, Mira, and
Theta in Table II. We can observe the adaptive mechanism is
able to effectively reduce the delay of high priority jobs by
(violation) 5% on Blue Waters, 49% on Mira, and 13% on
Theta. More importantly, we show that the adaptive mech-
anism, although significantly reduces the delay on waiting
jobs and violations, it does not impact the effectiveness of
relax backfilling itself. The impacts on various scheduling
metrics, such as waiting time, bounded job slowdown, and
utilization, are relatively small or even rather slightly positive.
For example, it improves original relax backfilling less than
1% on Blue Waters and 2% in Theta. In 6% larger job waiting
time case on Mira, the adaptive relaxed backfilling reduces the

10



violations by 49%.

VII. RELATED WORK

Various job characterizations have been done to understand
HPC jobs [8], [29], [31], [44], [2], [20], [32], [43]. Patel et
al. [29] analyzed a decade of HPC jobs to support several long-
standing traditional knowledge and identify many previously
unknown trends and their consequences. Di et al. [8] study
the impact of the system’s events on the jobs’ execution
to understand failures and enhance the system’s reliability.
There are also studies on investigating the characteristics
of DL workloads in large-scale clusters [18], [17]. Jeon et
al. [18] examined DL job traces from a Microsoft cluster to
support the influence of DL training job locality on GPU
usage and identify the reasons behind job failures. Hu et
al. [17] characterized DL jobs from SenseTime for better
designs of efficient GPU schedulers. In contrast to previous
research, our study performs a comparative analysis across
different system types, elucidating the fundamental similarities
and disparities between HPC and DL workloads. We offer a
thorough examination of job geometries, failure statuses, and
user behavior patterns within the context of diverse systems.
Moreover, we leverage these shared traits to enhance job
runtime prediction performance and bolster job scheduling
efficiency. Our findings demonstrate that these insights can
inform future resource management strategies for HPC clus-
ters, particularly in light of the escalating prominence of DL
workloads.

VIII. CONCLUSION

In this paper, we perform a cross-system analysis of job
characterization for five representative real-world clusters, cov-
ering a classic HPC, classic Deep Learning, and hybrid cluster
setups, aiming to better understand how the emerging DL
workloads would impact HPC systems scheduling. Our eight
takeaways highlight interesting differences and similarities
among these systems, guiding us to design more efficient job
schedulers for the future HPC systems. Based on these ob-
servations, we further introduce two use case studies (job run
time prediction and adaptive relaxed backfilling) to effectively
improve existing job scheduling. All our data processing logic
and simulator are publicly available at [omitted]. We expect
they can benefit researchers in designing more efficient HPC
schedulers for the future.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their
valuable feedback. This work was supported in part by Na-
tional Science Foundation (NSF) under grants CNS-2008265
and U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computing Research (ASCR), under contract
DE-AC02-06CH11357. We acknowledge Argonne Leadership
Computing Facility for providing the Mira System Log.

REFERENCES

[1] William Allcock, Paul Rich, Yuping Fan, and Zhiling Lan. Experience
and practice of batch scheduling on leadership supercomputers at
argonne. In Job Scheduling Strategies for Parallel Processing: 21st
International Workshop, JSSPP 2017, Orlando, FL, USA, June 2, 2017,
Revised Selected Papers 21, pages 1–24. Springer, 2018.

[2] George Amvrosiadis, Jun Woo Park, Gregory R Ganger, Garth A Gibson,
Elisabeth Baseman, and Nathan DeBardeleben. On the diversity of
cluster workloads and its impact on research results. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), pages 533–546,
2018.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[4] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, pages 785–794, 2016.

[5] Jim Collins. Passing the torch from intrepid to mira.
https://www.alcf.anl.gov/news/passing-torch-intrepid-mira, 2023.

[6] HPC community code. https://bluewaters.ncsa.illinois.edu/community-
codes, 2023.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[8] Sheng Di, Hanqi Guo, Eric Pershey, Marc Snir, and Franck Cappello.
Characterizing and understanding hpc job failures over the 2k-day life of
ibm bluegene/q system. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 473–
484. IEEE, 2019.

[9] National Ignition Facility. National ignition facility
achieves fusion ignition. https://www.llnl.gov/news/
national-ignition-facility-achieves-fusion-ignition, 2022.

[10] Yuping Fan, Zhiling Lan, Paul Rich, William E Allcock, Michael E
Papka, Brian Austin, and David Paul. Scheduling beyond cpus for
hpc. In Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, pages 97–108, 2019.

[11] Yuping Fan, Paul Rich, William E Allcock, Michael E Papka, and
Zhiling Lan. Trade-off between prediction accuracy and underestimation
rate in job runtime estimates. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pages 530–540. IEEE, 2017.

[12] Dror G Feitelson. Metrics for parallel job scheduling and their
convergence. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 188–205. Springer, 2001.

[13] Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong, Zhenhua Han,
Peng Cheng, Fan Yang, Gang Huang, Xin Jin, and Xuanzhe Liu.
Elasticflow: An elastic serverless training platform for distributed deep
learning. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, pages 266–280, 2023.

[14] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo.
Tiresias: A gpu cluster manager for distributed deep learning. In NSDI,
volume 19, pages 485–500, 2019.

[15] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: data mining, inference,
and prediction, volume 2. Springer, 2009.

[16] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[17] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei
Zhang. Characterization and prediction of deep learning workloads
in large-scale gpu datacenters. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15, 2021.

[18] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. Analysis of {Large-Scale}{Multi-
Tenant}{GPU} clusters for {DNN} training workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[19] Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car,
E Weinan, and Linfeng Zhang. Pushing the limit of molecular dynamics
with ab initio accuracy to 100 million atoms with machine learning.

11



In SC20: International conference for high performance computing,
networking, storage and analysis, pages 1–14. IEEE, 2020.

[20] Wayne Joubert and Shi-Quan Su. An analysis of computational work-
loads for the ornl jaguar system. In Proceedings of the 26th ACM
international conference on Supercomputing, pages 247–256, 2012.

[21] Elliot Kolker-Hicks, Di Zhang, and Dong Dai. A reinforcement learning
based backfilling strategy for hpc batch jobs. In Proceedings of the
SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, pages 1316–1323, 2023.

[22] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda,
Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack
Deslippe, Massimiliano Fatica, et al. Exascale deep learning for climate
analytics. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 649–660. IEEE,
2018.

[23] Baolin Li, Rohin Arora, Siddharth Samsi, Tirthak Patel, William Arcand,
David Bestor, Chansup Byun, Rohan Basu Roy, Bill Bergeron, John
Holodnak, et al. Ai-enabling workloads on large-scale gpu-accelerated
system: Characterization, opportunities, and implications. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 1224–1237. IEEE, 2022.

[24] David A Lifka. The anl/ibm sp scheduling system. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 295–303. Springer,
1995.

[25] Uri Lublin and Dror G Feitelson. The workload on parallel supercom-
puters: modeling the characteristics of rigid jobs. Journal of Parallel
and Distributed Computing, 63(11):1105–1122, 2003.

[26] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2 with
backfilling. IEEE transactions on parallel and distributed systems,
12(6):529–543, 2001.

[27] NCSA. Blue waters data sets. https://bluewaters.ncsa.illinois.edu/data-
sets, 2023.

[28] Adam J Oliner, Ramendra K Sahoo, José E Moreira, Manish Gupta,
and Anand Sivasubramaniam. Fault-aware job scheduling for bluegene/l
systems. In 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings., page 64. IEEE, 2004.

[29] Tirthak Patel, Zhengchun Liu, Raj Kettimuthu, Paul Rich, William
Allcock, and Devesh Tiwari. Job characteristics on large-scale systems:
long-term analysis, quantification, and implications. In SC20: Interna-
tional conference for high performance computing, networking, storage
and analysis, pages 1–17. IEEE, 2020.

[30] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: an efficient dynamic resource scheduler for deep learning
clusters. In Proceedings of the Thirteenth EuroSys Conference, pages
1–14, 2018.

[31] Gonzalo P Rodrigo, P-O Östberg, Erik Elmroth, Katie Antypas, Richard
Gerber, and Lavanya Ramakrishnan. Towards understanding hpc users
and systems: a nersc case study. Journal of Parallel and Distributed
Computing, 111:206–221, 2018.

[32] Gonzalo Pedro Rodrigo Álvarez, Per-Olov Östberg, Erik Elmroth, Katie
Antypas, Richard Gerber, and Lavanya Ramakrishnan. Hpc system
lifetime story: Workload characterization and evolutionary analyses on
nersc systems. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, pages 57–60,
2015.

[33] Li Ruan, Xiangrong Xu, Limin Xiao, Feng Yuan, Yin Li, and Dong
Dai. A comparative study of large-scale cluster workload traces via
multiview analysis. In 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pages 397–404. IEEE,
2019.

[34] Siddharth Samsi, Matthew L Weiss, David Bestor, Baolin Li, Michael
Jones, Albert Reuther, Daniel Edelman, William Arcand, Chansup Byun,
John Holodnack, et al. The mit supercloud dataset. In 2021 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–8. IEEE,
2021.

[35] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[36] Mark S Squillante, David D Yao, and Li Zhang. The impact of job
arrival patterns on parallel scheduling. ACM SIGMETRICS Performance
Evaluation Review, 26(4):52–59, 1999.

[37] Wei Tang, Zhiling Lan, Narayan Desai, and Daniel Buettner. Fault-
aware, utility-based job scheduling on blue, gene/p systems. In 2009
IEEE International Conference on Cluster Computing and Workshops,
pages 1–10. IEEE, 2009.

[38] Theta. Theta. https://reports.alcf.anl.gov/data/theta.html, 2023.
[39] ThetaGPU. Thetagpu. https://reports.alcf.anl.gov/data/thetagpu.html,

2023.
[40] TOP500. Top500. https://www.top500.org/, 2023.
[41] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Backfilling using

system-generated predictions rather than user runtime estimates. IEEE
Transactions on Parallel and Distributed Systems, 18(6):789–803, 2007.

[42] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing, pages 1–16, 2013.

[43] Laurens Versluis, Roland Mathá, Sacheendra Talluri, Tim Hegeman,
Radu Prodan, Ewa Deelman, and Alexandru Iosup. The workflow
trace archive: Open-access data from public and private computing
infrastructures. IEEE Transactions on Parallel and Distributed Systems,
31(9):2170–2184, 2020.

[44] Feiyi Wang, Sarp Oral, Satyabrata Sen, and Neena Imam. Learning
from five-year resource-utilization data of titan system. In 2019 IEEE
International Conference on Cluster Computing (CLUSTER), pages 1–6.
IEEE, 2019.

[45] William A Ward Jr, Carrie L Mahood, and John E West. Scheduling jobs
on parallel systems using a relaxed backfill strategy. In Job Scheduling
Strategies for Parallel Processing: 8th International Workshop, JSSPP
2002 Edinburgh, Scotland, UK, July 24, 2002 Revised Papers, pages
88–102. Springer, 2002.

[46] Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang, Xiaochuan Tang,
Guodong Yang, and Liping Zhang. Beware of fragmentation: Scheduling
{GPU-Sharing} workloads with fragmentation gradient descent. In 2023
USENIX Annual Technical Conference (USENIX ATC 23), pages 995–
1008, 2023.

[47] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective cluster
scheduling for deep learning. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), pages
595–610, 2018.

[48] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Su-
san Coghlan, and Michael E Papka. Integrating dynamic pricing of
electricity into energy aware scheduling for hpc systems. In SC’13:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2013.

[49] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple
linux utility for resource management. In Job Scheduling Strategies for
Parallel Processing: 9th International Workshop, JSSPP 2003, Seattle,
WA, USA, June 24, 2003. Revised Paper 9, pages 44–60. Springer, 2003.

[50] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie.
Rlscheduler: an automated hpc batch job scheduler using reinforcement
learning. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–15. IEEE, 2020.

[51] Di Zhang, Dong Dai, and Bing Xie. Schedinspector: A batch job
scheduling inspector using reinforcement learning. In Proceedings of
the 31st International Symposium on High-Performance Parallel and
Distributed Computing, pages 97–109, 2022.

[52] Yanyong Zhang, Mark S Squillante, Anand Sivasubramaniam, and
Ramendra K Sahoo. Performance implications of failures in large-scale
cluster scheduling. In Job Scheduling Strategies for Parallel Processing:
10th International Workshop, JSSPP 2004, New York, NY, USA, June 13,
2004. Revised Selected Papers 10, pages 233–252. Springer, 2005.

12


