

VCSR: Mutable CSR Graph Format Using Vertex-Centric Packed Memory Array

<u>Abdullah Al Raqibul Islam</u>, Dong Dai {aislam6, ddai}@uncc.edu University of North Carolina at Charlotte Charlotte, NC, USA Dazhao Cheng dcheng@whu.edu.cn Wuhan University Wuhan, China

Background: Graph

Background: Dynamic Graph

Graphs are dynamic!

Background: Graph Processing Systems

• Dynamic graph storage data structures

Background: Graph Processing Systems

- Dynamic graph storage data structures
- Expectations
 - Expectation-1: Efficient graph construction
 - Expectation-2: Efficient graph analysis

Dynamic In-Memory Graph Storage Data Structures

CSR Variants for Dynamic Graphs

• Delta Map

- LLAMA [Macko et. al., ICDE'15]
- Graphchi [Kyrola et. al., OSDI'12]
- Log-Based
 - Grace [Vijayan et. al., ATC'12]
 - Connectivity Server [Bharat et. al., Elsevier'1998]
- Dynamic Block Linked Lists
 - PowerGraph [Gonzalez et. al., OSDI'12]
 - Graphlab [Low et. al., UAI'10]
- Packed Memory Array (PMA) Based Extensions
 - RMA [De Leo et. al., ICDE'19]
 - PCSR [Wheatman et. al., HPEC'18]
 - GPMA [Sha et. al., VLDB'17]
- Other Common Extensions
 - CSR++ [Firmli et. al., OPODIS'20]
 - Dynamic-CSR [King et. al., Springer'16]

o ...

CSR Variants for Dynamic Graphs

• Delta Map

- LLAMA [Macko et. al., ICDE'15]
- Graphchi [Kyrola et. al., OSDI'12]
- Log-Based
 - Grace [Vijayan et. al., ATC'12]
 - Connectivity Server [Bharat et. al., Elsevier'1998]
- Dynamic Block Linked Lists
 - PowerGraph [Gonzalez et. al., OSDI'12]
 - Graphlab [Low et. al., UAI'10]

Packed Memory Array (PMA) Based Extensions

- RMA [De Leo et. al., ICDE'19]
- PCSR [Wheatman et. al., HPEC'18]
- GPMA [Sha et. al., VLDB'17]

• Other Common Extensions

- CSR++ [Firmli et. al., OPODIS'20]
- Dynamic-CSR [King et. al., Springer'16]

o ...

• Proposed by Itai et. al. in "A sparse table implementation of priority queues" [ICALP'1981]

• Pro	posed by Itai et. al. in "A sparse table implementation of priority queues" [ICALP'1981]
• PM	A is an array data structure, size N
• Ins	ert N items
Array	
	 O(N)

- Proposed by Itai et. al. in "A sparse table implementation of priority queues" [ICALP'1981]
- PMA is an array data structure, size N
- Insert N items
- The array will be left sorted after each insertion

- Proposed by Itai et. al. in "A sparse table implementation of priority queues" [ICALP'1981]
- PMA is an array data structure, size N
- Insert N items
- The array will be left sorted after each insertion
- Asymptotic computational complexity of each insertion: O(log²n)

PMA-Based CSR Extension: PCSR

Figure: PMA-based CSR extension, PCSR.

Graph Skewness

Name: Orkut Graph Category: Online social network Number of nodes: 3,072,441 Number of edges: 117,184,899

Graph's Mutation Pattern

Figure: The relationship between vertex' base degree in both the 10% and 30% pre-initialization cases and their expected new edge insertions. x-axis is the degree; y-axis is the expected insertions; both are in log-scale.

Figure: PMA-based CSR extension, PCSR.

Wheatman, B., & Xu, H. (2018). Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018.

Figure: PMA-based CSR extension, PCSR.

Wheatman, B., & Xu, H. (2018). Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018.

Figure: PMA-based CSR extension, PCSR.

Figure: PMA-based CSR extension, PCSR.

Figure: PMA-based CSR extension, PCSR.

Wheatman, B., & Xu, H. (2018). Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018.

Figure: PMA-based CSR extension, PCSR.

Wheatman, B., & Xu, H. (2018). Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018.

Figure: PMA-based CSR extension, PCSR.

Figure: PMA-based CSR extension, PCSR.

Figure: PMA-based CSR extension, PCSR.

Wheatman, B., & Xu, H. (2018). Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018.

Figure: PMA-based CSR extension, PCSR.

Wheatman, B., & Xu, H. (2018). Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018.

Figure: PMA-based CSR extension, PCSR.

Our Contributions

- Design a novel vertex-centric CSR extension, VCSR, to solve the fundamental limitations in handling graph imbalances
- 1.41x-3.81x better performance in graph insertions
- 1.22x-2.05x better performance in running typical graph analytic algorithms

• We release our code at github

Search or jump to	Pull requests Issues Marketplace	Explore	¢ +- ∰•
		⊙ Unwatch 2 ▼	양 Fork 0 ☆ Star 0 ▾
<> Code () Issues 11 Pull requests	🕥 Actions 🗄 Projects 🖽 Wiki	③ Security 🗠 Insights	
🤔 main 👻 🕻 1 branch 📀 0 tags		Go to file Add file - Code - About	
DIR-LAB Initial commit		667adc3 on Mar 10 🕲 1 commit	repo adme
🗅 .gitignore	Initial commit	2 months ago 최초 MI	T License
	Initial commit	2 months ago ☆ 0 s	tars
C README.md	Initial commit	2 months ago	vatching orks

Outlines

Novel Mutable CSR Design

Evaluation and Results

Outlines

Novel Mutable CSR Design

Evaluation and Results

Evaluation: Platform

- Dell R740 rack server with two sockets
- Each socket installs a 2nd generation Intel Xeon Scalable Processor (Gold 6254 @ 3.10G) with 18 physical (36 virtual) cores
- Ubuntu 18.04, Linux kernel version 4.15.0
- 6 DRAM DIMMS with 32GB each (192GB in total)

Evaluation: System Implementation

- Compressed Sparse Row (CSR)
- Blocked Adjacency-List (BAL)
- PMA-based CSR extension, PCSR
- Proposed vertex-centric PMA-based CSR extension, VCSR

Evaluation: System Implementation

- Compressed Sparse Row (CSR)
- Blocked Adjacency-List (BAL)
- PMA-based CSR extension, PCSR
- Proposed vertex-centric PMA-based CSR extension, VCSR

□ sbeamer / gapbs Public		C	Search or jump to	/ Pull requests Issues Marketplace Ex	plore	¢ +- ¢₹
<> Code 📀 Issues 1 Pull requests 1 💿 Actions 🖽 Projects ① Security 🗠 Insights		Ë	sbeamer / gapbs Public	c)	⊙ Watch 13	▼ 🤔 Fork 92 🔶 Starred 209 ▼
		<>	Code 🕑 Issues 🏦 P	Pull requests 1 💿 Actions 🗄 Projects 🕕 Securit	y 🗠 Insights	
¹ / ₂ master → ¹ / ₂ 1 branch © 10 tags ¹ / ₂ master → ¹ / ₂ 1 branch © 10 tags ¹ / ₂ Mouth		3	, master - 1 branch	🖏 10 tags Go to file Add file	▼ Code -	About
VVE USEU GAP DS	• We used GAPDS		ahn9807 [tc] fix _GLIBCXX	C_PARALLEL with SERIAL=1 (✓ 0fb6a47 on Jul 5, 2021	0163 commits	CAP Benchmark Suite
for benchmark github/workflows [core] use GitHub actions for Cl 14 months ago	for benchmark		.github/workflows	[core] use GitHub actions for Cl	14 months ago	benchmark graph-algorithms openmp
benchmark [bench] update twitter graph URL (#30) 11 months ago		1	benchmark	[bench] update twitter graph URL (#30)	11 months ago	bfs
tc] fix_GLIBCXX_PARALLEL with SERIAL=1 (#31) 10 months ago			src src	[tc] fix _GLIBCXX_PARALLEL with SERIAL=1 (#31)	10 months ago	🛱 Readme
test [test] bugfix: add a missing dependency to allow paralle 3 years ago			test	[test] bugfix: add a missing dependency to allow paralle	3 years ago	 む View license
□ gitignore [pr] tidy switch to gauss-seidel 12 months ago □ 12 months ago 12 months ago		C] .gitignore	[pr] tidy switch to gauss-seidel	12 months ago	☆ 209 stars
CONTRIBUTING.md [core] create CONTRIBUTING file 4 years ago \$ 92 forks		C	CONTRIBUTING.md	[core] create CONTRIBUTING file	4 years ago	 * 13 watching ジ 92 forks
LICENSE [core] correct bsd 3-clause license 5 years ago		C	LICENSE	[core] correct bsd 3-clause license	5 years ago	

https://github.com/sbeamer/gapbs

Datasets	Domain	V	E	E / V
Amazon	purchase	403393	4886816	12
Orkut	social	3072626	234370166	76
Live-journal	social	4847570	85702474	18
Cit-Patents	citation	6009554	33037894	6
Road	geo	1971280	5533214	3
as-Skitter	network	1696414	22190596	13
sx-stackoverflow	temporal	6024270	57724802	10
enron	temporal	87273	594912	7
sx-mathoverflow	temporal	88580	375972	4
fb-wall	temporal	63891	366824	6

Datasets	Domain	V	E	E / V
Amazon	purchase	403393	4886816	12
Orkut	social	3072626	234370166	76
Live-journal	social	4847570	85702474	18
Cit-Patents	citation	6009554	33037894	6
Road	geo	1971280	5533214	3
as-Skitter	network	1696414	22190596	13
sx-stackoverflow	temporal	6024270	57724802	10
enron	temporal	87273	594912	7
sx-mathoverflow	temporal	88580	375972	4
fb-wall	temporal	63891	366824	6

Datasets	Domain	V	E	E / V	
Amazon Orkut Live-journal Cit-Patents Road as-Skitter	purchase social social citation geo network	403393 3072626 4847570 6009554 1971280 1696414	4886816 234370166 85702474 33037894 5533214 22190596	12 76 18 6 3 13	Random Workload
sx-stackoverflow enron sx-mathoverflow fb-wall	temporal temporal temporal temporal	6024270 87273 88580 63891	57724802 594912 375972 366824	10 7 4 6	

Datasets	Domain	V	E	E / V	
Amazon Orkut Live-journal Cit-Patents Road as-Skitter	purchase social social citation geo network	403393 3072626 4847570 6009554 1971280 1696414	4886816 234370166 85702474 33037894 5533214 22190596	12 76 18 6 3 13	Random Workload Hammer Workload
sx-stackoverflow enron sx-mathoverflow fb-wall	temporal temporal temporal temporal	6024270 87273 88580 63891	57724802 594912 375972 366824	10 7 4 6	

Datasets	Domain	V	E	E / V
Amazon	purchase	403393	4886816	12
Orkut	social	3072626	234370166	76
Live-journal	social	4847570	85702474	18
Cit-Patents	citation	6009554	33037894	6
Road	geo	1971280	5533214	3
as-Skitter	network	1696414	22190596	13
sx-stackoverflow	temporal	6024270	57724802	10
enron	temporal	87273	594912	7
sx-mathoverflow	temporal	88580	375972	4
fb-wall	temporal	63891	366824	6

Evaluation: Graph Algorithm Kernels

Graph kernel	Kernel Type	Input	Output	Notes
PageRank (PR) Breadth-First Search (BFS) Single-Source Shortest Paths (SSSP) Connected Components (CC)	Link Analysis Graph Traversal Shortest Path Connectivity	Source vertex Source vertex	V -sized array of ranks V -sized array of parent IDs V -sized array of distances V -sized array of component labels	Fixed number (20) of iterations Direction-Optimizing approach [27] δ -stepping [28] Afforest subgraph sampling [29, 30]

Table: A list of graph kernels and inputs and outputs used to evaluate graph data-structures.

Figure: Comparing VCSR's dynamic graph insertion performance (in seconds) for 10% pre-initialization.

Figure: Comparing VCSR's dynamic graph insertion performance (in seconds) for 10% pre-initialization.

Figure: Comparing VCSR's dynamic graph insertion performance (in seconds) for 10% pre-initialization.

Dataset	Tree Levels	VCSR (Mem. Acc.)	PCSR (Mem. Acc.)
Amazon (shuffled)	[1-3) [3-7) ≥ 7	710 (0.84 M) 4 (0.02 M) 0 (0.00 M)	251077 (35.50 M) 12964 (8.49 M) 45 (0.41 M)
sx-Stack overflow	$[1-3) [3-7) [7-15) \geq 15$	904363 (457.23 M) 357575 (1056.19 M) 26530 (1594.56 M) 21 (438.37 M)	13876752 (2262.72 M) 3053307 (2720.56 M) 70307 (1704.70 M) 288 (2531.68 M)

Table: Number of re-balancing operations triggered by edge insertions in VCSR and PCSR on two graphs.

Dataset	Tree Levels	VCSR (Mem. Acc.)	PCSR (Mem. Acc.)
Amazon (shuffled)	[1-3) [3-7) ≥ 7	710 (0.84 M) 4 (0.02 M) 0 (0.00 M)	251077 (35.50 M) 12964 (8.49 M) 45 (0.41 M)
sx-Stack overflow	$[1-3) \\ [3-7) \\ [7-15) \\ \ge 15$	904363 (457.23 M) 357575 (1056.19 M) 26530 (1594.56 M) 21 (438.37 M)	13876752 (2262.72 M) 3053307 (2720.56 M) 70307 (1704.70 M) 288 (2531.68 M)

Table: Number of re-balancing operations triggered by edge insertions in VCSR and PCSR on two graphs.

Dataset	Tree Levels	VCSR (Mem. Acc.)	PCSR (Mem. Acc.)
Amazon (shuffled)	[1-3] [3-7) ≥ 7	710 (0.84 M) 4 (0.02 M) 0 (0.00 M)	251077 (35.50 M) 12964 (8.49 M) 45 (0.41 M)
sx-Stack overflow	$[1-3) [3-7) [7-15) \geq 15$	904363 (457.23 M) 357575 (1056.19 M) 26530 (1594.56 M) 21 (438.37 M)	13876752 (2262.72 M) 3053307 (2720.56 M) 70307 (1704.70 M) 288 (2531.68 M)

Dataset	Tree Levels	VCSR (Mem. Acc.)	PCSR (Mem. Acc.)
Amazon (shuffled)	[1-3] [3-7) ≥ 7	710 0.84 M 4 (0.02 M) 0 (0.00 M)	251077 35.50 M 12964 (8.49 M) 45 (0.41 M)
sx-Stack overflow	$[1-3) [3-7) [7-15) \geq 15$	904363 (457.23 M) 357575 (1056.19 M) 26530 (1594.56 M) 21 (438.37 M)	13876752 (2262.72 M) 3053307 (2720.56 M) 70307 (1704.70 M) 288 (2531.68 M)

Dataset	Tree Levels	VCSR (Mem. Acc.)	PCSR (Mem. Acc.)
Amazon (shuffled)	[1-3] [3-7) ≥ 7	710 0.84 M) 4 (0.02 M) 0 (0.00 M)	251077 35.50 M 12964 (8.49 M) 45 (0.41 M)
sx-Stack overflow	$[1-3) [3-7) [7-15) \geq 15$	904363 (457.23 M) 357575 (1056.19 M) 26530 (1594.56 M) 21 (438.37 M)	13876752 (2262.72 M) 3053307 (2720.56 M) 70307 (1704.70 M) 288 (2531.68 M)

Dataset	Tree Levels	VCSR (Mem. Acc.)	PCSR (Mem. Acc.)
Amazon (shuffled)	[1-3) [3-7) ≥ 7	710 0.84 M 4 0.02 M 0 0.00 M	251077 35.50 M 12964 8.49 M 45 0.41 M
sx-Stack overflow	$[1-3) \\ [3-7) \\ [7-15) \\ \ge 15$	904363 [457.23 M] 357575 [1056.19 M] 26530 [1594.56 M] 21 [438.37 M]	13876752 2262.72 M 3053307 2720.56 M 70307 1704.70 M 288 2531.68 M

Figure: Comparing VCSR's dynamic graph insertion performance (in seconds) for 10% pre-initialization.

Summary

- Identify fundamental limitations in existing PMA based mutable CSR extension
- Demonstrate graph's power-law also exist while it evolves
- Design a novel vertex-centric CSR extension: VCSR
 - Solves the fundamental limitations in handling graph imbalances
- Evaluation results
 - 1.41x-3.81x better performance in graph insertions
 - 1.22x-2.05x better performance in running typical graph analytic algorithms

Thank You

Question?

