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Abstract—Large-scale storage systems, a critical part of mod-
ern computing systems, are subject to various runtime bugs,
failures, and anomalies in production. Identifying their anoma-
lies at runtime is thus critical for users and administrators.
Since runtime logs record the important status of the systems,
log-based anomaly detection has been studied extensively for
timely identifying system malfunctions. However, existing log-
based anomaly detection solutions share common limitations
in representing log entries accurately and robustly, hence can
not effectively handle log entries that were not seen in the
historical logs, which is a common real-world scenario due to
logs’ inherent rarity and the continuous evolution of the systems.
To address the issues of existing methods, we propose Drill, a
new log pre-processing method to generate high-quality vector
representation of runtime logs by leveraging both storage system-
specific sentiment-classifying language models and log contexts
built from the source code. Through extensive evaluations of two
representative distributed storage systems (Apache HDFS and
Lustre), we show that Drill can achieve up to 41% improvement
when compared with state-of-the-art anomaly detection solutions,
showing it is a promising solution for general anomaly detection.

I. INTRODUCTION

Large-scale storage systems are a critical part of modern

computing infrastructure in both Cloud and High-Performance

Computing (HPC) environments [1], [2]. Due to increasing

scale and complexity, they are subject to various bugs, failures

and anomalies in production, which lead to data loss, service

outages and degradation of the quality of service [3], [4], [5],

[6]. It is thereby critical for anomaly detection mechanisms

deployed to accurately and swiftly detect malfunctions, so

that system operators can pinpoint the issues and resolve them

promptly to mitigate losses.

The runtime logs, which record the internal status of storage

systems, such as values of variables, function return values,

and performance statistics, are considered valuable sources for

detecting potential system anomalies. As a result, an extensive

amount of research on log-based anomaly detection tools has

been conducted recently [4], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19].

Log-based anomaly detection frameworks essentially in-

volve four key components: log collection, log pre-processing,

pattern learning, and the actual online detection [20]. The run-

time logs, which are generated by log statements in the source

code (using printf or logging libraries such as Log4J [21],

[22]), are collected periodically. For the collected runtime

logs, log pre-processing is applied to convert their free-form

texts into a more structured representation, such as id or

vector-based form [23], [24]. The pre-processing may further

group logs using different grouping techniques, such as fixed

windows, sliding windows, or session-based windows [17],

[18], [25] to form a sequence of closely related events for

the downstream machine learning models to learn the patterns.

Extensive manual efforts are often needed in this stage to label

each sequence of logs as normal or abnormal, for training the

supervised machine learning models. After training, the model

will be applied to future runtime logs in real-time to conduct

the actual online anomaly detection. As described here, among

these four components, log pre-processing turns chunks of

runtime logs into sequences of log representations for later

pattern learning, hence this step is critical for the accuracy of

the downstream machine learning models and the performance

of overall anomaly detection. How to generate accurate log

representations effectively has been studied extensively.

The ID-based representation was initially widely used due

to its simplicity. We can simply map each runtime log back

to its corresponding log statement in the source code and

assign a unique ID accordingly. However, this may generate

unnecessary IDs since many log statements are similar and

can be grouped. Researchers then leveraged the similarity

of text characters in logs to generate a more concise ID

representation [23], [24]. For instance, Spell used the longest

common sequence to calculate the similarity of different log

texts [24]. But these methods still share the same drawback of

ID-based representation: similar to the one-hot representation

of words in natural language processing, ID can not represent

the similarity between different logs. This creates issues when

a log ID does not exist in the training data but shows up later

in the runtime logs. The previously trained models can not

make accurate decisions on these unseen IDs.

Hence, vector-based representation has become popular

recently. Different pre-trained natural language (NLP) models,

such as BERT [26], have been applied to the raw runtime

logs to understand their semantics and generate vectorized

representation for each log. Because of their enhanced ability

to generalize, the vector representation-based approaches lead

to better training accuracy in downstream models, as well

as better performance in actual anomaly detection [15]. For

instance, NeuralLog uses the BERT model to encode logs and
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achieves state-of-the-art accuracy in anomaly detection [27].

However, there are still fundamental issues with existing

vector-based pre-processing methods. First, the pre-trained

natural language models (e.g., GLoVe [28], BERT [26]) used

in the existing studies are based on general human language.

Although log texts are also human-readable, they are written

differently and work in different contexts. Similar words in

human language may have different meanings in log texts. This

impacts the accuracy of the generated vector-based represen-

tations and the performance of the trained anomaly detection

models (as shown in our evaluations later). Second, the issues

created by unseen logs, although lightened, still exist. In the

real world, runtime logs observed in a given period are often

a small portion of the logs which could be triggered. For

instance, in HDFS v0.17, there are in total 956 distinct log

statements in the source code. However, the widely used HDFS

log trace collected from a 200-node cluster only covers 29
unique runtime logs [17]. Hence, it is challenging to train high-

quality downstream models by observing only such a limited

variety of runtime logs. The generated models still fall short at

handling unseen runtime logs (shown in later evaluations). Last

but not least, existing studies mainly focus on understanding

the contents of the runtime logs using NLP models but neglect

the contexts of a runtime log. Since logs are created by

developers to indicate the important status of the software,

context information in the source code, such as whether or

not a given log is in an if block, is highly relevant to the

purpose of the log and may accurately indicate the anomalies.

An effective log-based anomaly detection framework should

take the context into consideration.

In this study, we propose and implement Drill1 to address

the aforementioned challenges. Drill essentially is a new

log pre-processing method to generate high-quality vector

representations of runtime logs by leveraging both storage

system-specific sentiment language models and log contexts

in the source code. Instead of naively applying existing NLP

language models on raw logs, Drill leverages the source code

of multiple large-scale distributed storage systems to re-train

a more specific and robust ‘sentiment’ language model, which

hints whether a runtime log entry is likely to be an anomaly or

not. We further conduct static analysis of the source code to

collect context-relevant features. By combining both of these

features, Drill generates accurate vector representations and

uses them to form sequences of logs for training a downstream

model, which is a bidirectional Long Short Term Memory

neural network, Bi-LSTM [29], [30]. Through extensive eval-

uations, we show that Drill can achieve better performance

compared with state-of-the-art log-based anomaly detection

methods on representative storage systems in both Cloud

(HDFS [1]) and HPC environments (Lustre [2]). We also

demonstrate how Drill performs when unseen logs continu-

ously arrive, simulating a real-world scenario, and show its

advantages. The contributions of this work are threefold:

• Different from previous work which considers only log

1https://github.com/DIR-LAB/DRILL

contents or sentiment, we combine the content-relevant

sentiment features and context-based features to better

represent runtime logs to achieve more accurate anomaly

detection, especially for cases with unseen logs.

• We propose to apply static program analysis on the source

code of storage system to extract accurate context features

for building accurate vector representations of logs.

• We conduct extensive evaluations to show the effective-

ness and performance of Drill in a variety of scenarios.

The remainder of this paper is organized as follows: In

§II we introduce the background about log-based anomaly

detection and discuss the key observations to motivate Drill.

In §III we present the overall design of Drill. We present the

main results in §IV. We compare with related work in §V, and

conclude this paper and discuss the future work in §VI.

II. DESIGN MOTIVATION

The runtime logs of large-scale storage systems play an

important role in understanding the runtime status of systems.

In Figure 1, we show a snippet of runtime logs generated

while running Lustre. As the example shows, each log is

a single line of free-form text containing multiple sections

of information, such as the runtime and content information.

The runtime information may include timestamp, PID, and

thread Id, which are often generated automatically. The

content information mostly originates from the developers,

and generally consists of a constant part, such as "connect
to ...", which corresponds to the texts written in the source

code, and a variable part, such as 10.0.0.8 and 4296114409,

which correspond to placeholders (e.g., %d, %s) in the source

code. The log levels, such as debug, info, warn, and error, are

often contained in the logs to denote the intention of the log,

but these are not necessarily accurate for detecting anomalies

due to the complexity of the runtime systems. This is also why

advanced log-based anomaly detection tools are needed.

00000004:00080000:0.0:1607450691.765123:0:3263:0:(osp_object.c:1517:o
sp_create()) lustre-OST0002-osc-MDT0000: Wrote last used FID: 
[0x100020000:0x316f:0x0], index 2: 0

00002000:00080000:0.0:1607317382.389082:0:6295:0:(ofd_dev.c:1752:ofd_
create_hdl()) lustre-OST0002: reserve 8 objects in group 0x0 at 10242

00080000:00020000:0.0:1607317006.208902:0:5057:0:(osd_handler.c:1588:
osd_trans_commit_cb()) transaction @0xffff9676bad55900 commit error: 
2 

00000004:00080000:0.0:1607448546.792679:0:2697:0:(osp_precreate.c:684
:osp_precreate_send()) lustre-OST0000-osc-MDT0000: current precreated 
pool: [0x100000000:0x7e24:0x0]-[0x100000000:0x7ee1:0x0]

Fig. 1: A runtime log example from Lustre.

Terminology In this study, we use some specific termi-

nology to refer to specific parts of the logging system for

simplicity. We use log statement to denote the source code

written by developers to produce the logs; runtime log to refer

to the collected logs at runtime; log template to refer to the

constant parts of the log content, such as ‘‘*: connect to
NID *@tcp last attempt *’’, whereas the wildcards (*)

can be replaced using variable parts such as 10.0.0.8. The

log templates can be identified by parsing the runtime logs
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using tools like Drain [23] or Spell [24]. Multiple log entries

can be gathered together into a session or sequence of logs,

which serve as the main inputs for the downstream anomaly

detection models.

A. Key Observations and Design Motivations

Drill is designed based on two key observations we made

from the file system source code and runtime logs. In this

subsection, we discuss these observations before introducing

Drill’s design in the next section.

1) Storage system-specific language model: As described

earlier, it is known that a simple index ID does not contain

enough information for logs. Hence, many recent studies have

focused on leveraging natural language models to turn each

runtime log into a vector with enriched features [15], [31],

[27]. For example, NeuralLog [27] uses BERT [26], which

was pre-trained on general human language texts to encode

logs. However, these methods are reliant upon the assumption

that storage system logs can be treated identically to natural

language, which may not be the case. In fact, although the log

content contains human-readable texts, they are noisy, brief,

and often do not strictly follow grammar rules, such as "%s
Route resolved: %d" in Fig. 2. We argue that the language

model used to vectorize logs should be storage system domain

specific. However, training a new or even fine-tuning an

existing language model is known to require a large amount of

training data. For example, BERT was trained on 3.2 billion

words [26]. In contrast, if we look at the unique lines of logs

in storage systems, such as Lustre, only thousands of unique

training data examples are available (detailed numbers are in

Table I), far less than what would be required to meet the

needs of re-training or even fine-tuning a language model.

...
CNETERR("Connection to %s at host %pI4h on port %d was "

"refused: check that Lustre is running on that node.\n",
libcfs_nid2str(peer_nid), &peer_ip, peer_port);

...
CDEBUG(D_HA, "recovery of %s on %s failed (%d)\n",

obd2cli_tgt(imp->imp_obd),
(char *)imp->imp_connection->c_remote_uuid.uuid, rc);

...
CDEBUG(D_HA, "%s: reserve %d objects in group %#llx"

" at %llu\n", ofd_name(ofd),
count, seq, next_id);

...
CDEBUG(D_HA, "%s: Wrote last used FID: "DFID", index %d: %d\n",

d->opd_obd->obd_name, PFID(fid), d->opd_index, rc);
...
CDEBUG(D_NET,"%s Route resolved: %d\n",

libcfs_nid2str(peer_ni->ibp_nid), event->status);
...
CDEBUG(D_HA, "%s: transno %lld is committed\n",

ccb->llcc_tgt->lut_obd->obd_name, ccb->llcc_transno);

1
2
3

1
2
3

1
2
3

1
2

1
2

1
2

Wrote 

reserve 

refused

failed 

resolved

committed\

Fig. 2: Example log statements from Lustre source code and

their sentiment indicators (colored).

Not only is it difficult to train a complete storage system-

specific language model, we further argue that it is actually not

necessary to do so. The complete language models are useful

in many NLP tasks such as machine translation and question
answering because these tasks require a deep understanding

of the sentences, including their word selection, grammar,

tense, and so on. However, in log-based anomaly detection,

we can generally disregard grammar and tense, and the key

information we need is simply whether logs indicate anomalies

or not. These simplifications should allow for the use of a far

less complicated language model.

If we take a closer look at the log statements in the source

code, as shown by Fig. 2, although logs texts are informal

and noisy, they do use different tones to describe abnormal

and normal system statuses, simply because code is written

by developers and developers in the same community likely

share common tones and vocabulary. For instance, developers

typically use negative tones such as ‘error’ or ‘exception’ for

anomalies and use neutral or positive tones such as ‘connection

successes’ for normal behaviors. We believe such sentimental

difference is generic across different software in the same

community and can be captured via sentiment analysis. For

example, in Figure 2, the first log statement expresses negative

sentiment as it describes the failure of a connection. The

second log statement shows a neutral sentiment as it just

reports routine updates of the system. The last log statement

seems to be positive as it contains words such as ‘resolved’

and ‘committed’.

Given this example, we believe the sentiment of the texts

could reflect the developers’ intentions and may be a strong

indicator of the system anomalies we are trying to detect.

Additionally, utilizing sentiment to encode the logs can be

more feasible due to lower training complexity, which makes

using the limited amount of training data feasible.

...
rc = ostid_set_id(&oa->o_oi, ostid_id(&oinfo->loi_oi));
if (rc) {

CERROR("Bad %llu to set " DOSTID " : rc %d\n",
(unsigned long long)ostid_id(&oinfo->loi_oi),
POSTID(&oa->o_oi), rc);

}
...

1
2
3
4
5
6

...
rc = kgnilnd_find_and_cancel_dgram(peer->gnp_net->gnn_dev,

peer->gnp_nid);
if (rc) {

LCONSOLE_INFO(“Received NAK from %s for %s errno %d; ”
“canceled pending connect request\n”,
libcfs_nid2str(connreq->gncr_srcnid),
libcfs_nid2str(connreq->gncr_dstnid), errno);

}
...

1
2
3
4
5
6
7
8

Fig. 3: Context feature of Lustre log statements.

2) Context of the source code: While previous studies have

focused on the contents or even the sentiment of logs for

anomaly detection, we argue that they neglect the valuable

information buried in the source code to denote whether an

actual anomaly may be captured by the log statements. For

instance, if developers check the return value of a function

call and further print some logs if the return value is not

expected, then such a log statement is more likely to indicate

a possible anomaly. These actions (e.g., assign function calls

return code to a variable, use if-statement to check the return

code) represent the contexts of a log statement, which can

be potential anomalies. For instance, Fig. 3 shows two ex-

amples of log contexts, which include both the log statement
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00000004:00080000:0.0:1607450691.76
5123:0:3263:0:(osp_object.c:1517:os
p_create()) lustre-OST0002-osc-
MDT0000: Wrote last used FID: 
[0x100020000:0x316f:0x0], index 2: 
0

00002000:00080000:0.0:1607317382.38
9082:0:6295:0:(ofd_dev.c:1752:ofd_c
reate_hdl()) lustre-OST0002: 
reserve 8 objects in group 0x0 at 
10242
...

Log Statement Vector Representation
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Anomaly 
Detection
(Training 

and 
Testing) Vector Sequences

Runtime Log Training and Testing

3

Sentiment
Feature 
Builder

Context Feature
Sentiment Feature…,…

Source
Code

Fig. 4: The overall architecture of Drill

and its surrounding code. Here, the top log statement uses

error log level (CERROR) to report if the previous operation

ostid set id fails (checking rc); the bottom one uses info

log level (LCONSOLE INFO) to report a similarly wrong rc
issue while transferring data between LNET network inter-

faces. Although these two log statements are in different log

levels, they actually both report system anomalies in Lustre.

This clearly shows that the context of log statement (i.e., after

‘if (rc)’) could be a strong feature to indicate the abnormal

states. On the other hand, developers may periodically print

logs for recording system status. Such logs are more likely

related to normal system status. Such actions, showing benign

condition, manifest in the context code as a log statement in a

for-loop or while-loop. Hence, the context of a log statement

in the source code could be a strong feature in understanding

the nature of the relevant logs, which motivates the design of

Drill.

III. DRILL DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation

details of Drill. We begin by showing its overall workflow in

Fig. 4. There are two fundamental components in Drill: Log
Statement Vector Representation and Runtime Log Training
and Testing.

First, the Log Statement Vector Representation component

takes charge of generating vector representation of logs. As

described earlier, Drill analyzes the source code to build

the vector representations. More specifically, it leverages the

Sentiment Feature Builder component ( 1 ) to build sentiment

features, and leverages Context Feature Builder component

( 2 ) to build context features. More details about these two

components will be explained in the later subsections. These

two sets of features will be combined together to form a

complete vector representation. We store the representation

in the Feature Vector Database, so that we can quickly query

the database to assign vectors for runtime logs. The Feature
Vector Database is a key-value store. During the log statement

vector generating phase, each log statement in the source code

DAOS
neural: "drain btree …
neural: ”write metadata …
...
D_ERROR("dkey can not be …
D_ERROR(”fail to drain …
...

BeeGFS
neural: "try to lock"
neural: "no owner node find …
...
negative: "fail write runtime …
negative: ”authentication for …
...

DAOS
Ceph

BeeGFS
Lustre Lustre

neural: "before portal …
neural: "invoke lnet debug …
...
negative: "error invoke lnet …
negative: "cfs fail timeout …
...

Sentiment Model
DAOS

BeeGFS

Lustre

Fig. 5: The workflow for sentiment model training

is processed. Its generated vector representation is stored in

the database using its string-based log statement as the key.

Later, when runtime logs arrive (in Runtime Log Training and
Testing phase), we first use Drain [23] to pre-process them to

retrieve their string-based log templates. We then use each log

template to match the closet log statement key in the database

to retrieve the vector representation. In this way, querying the

database should always return a vector representation.

Second, the Runtime Log Training and Testing component

works on actual runtime logs for both training and testing.

When a runtime log arrives, Drill queries the Feature Vector
Database for its vector representation as described earlier. For

a sequence of log events, we will build a sequence of vectors,

which are later fit into the same bidirectional LSTM (BiLSTM)

model for both training and testing ( 3 ). The training is done

based on a set of labeled historical logs. The testing is done by

applying the trained model upon current runtime logs, which

may include log entries that were never seen in the training

dataset. More details regarding the bidirectional LSTM models

will be discussed in Section III-C.

A. Sentiment Feature Builder

In the Drill workflow, building a high quality storage

system-specific language model to generate the sentiment

feature is the key to obtaining accurate vector representations

for the logs. Building such a model is the core task of the

Sentiment Feature Builder.

One key challenge when training the sentiment model for

log statements is obtaining the labeled training data. Given

a log statement, we do not know the common ‘tone’ or

‘intention’ shared by the community. To address this issue,

we directly use the log level of each log statement as a

natural label to train the model. For example, CERROR indicates

abnormal and CDEBUG indicates normal. These labels are easy

to obtain from the source code, addressing the training data

issue. However, intuitively there is an accuracy problem as

log levels are not considered to be accurate as developers may

not always be consistent in using the correct log level. For

instance, BeeGFS [32] may use Log ERR to log an event

which in fact is not related to any anomaly [31].

To address this accuracy issue, we propose to train the

sentiment language model using source code of multiple open-

source distributed storage systems. Doing so allows us to

capture the developers’ general consensus in the community

and to avoid bias from a particular developer or software

implementation. Additionally, it allows us to train a generic

model in the system logs domain, which may be applied to
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TABLE I: Training dataset for sentiment model

Log Level Log Mechanism

Debug Error

OrangeFS [33] 1058 1202 gossip debug, gossip err,...

Ceph [34] 15459 2726 dout, derr,...

DAOS [35] 1549 3444 D DEBUG, D ERROR,...

GlusterFS [36] 2460 5260 gf msg, gf log,...

a wide variety of storage systems. Here, we selected a set of

widely used open source distributed storage systems to train

the model, which are listed in Table I. We briefly list the

logging mechanisms used by each system and the total number

of training samples collected from each system. The Debug
logs are labeled as neutral and Error logs as negative. Note

that, the similar idea was cursorily examined in our previous

work SentiLog [31]. The major difference here is Drill not only

trains the sentiment model but also extracts the context-based

features and combines both features to form more accurate

representations of logs. In this way, the representations that

Drill builds can be used in downstream models to achieve

better anomaly detection for sequences of logs, while SentiLog

only predicts the abnormality of every single log entry via the

trained sentiment model.

The actual training workflow is shown in Fig. 5. During

training, the pre-processed logging statements from various

storage systems are fed into the model trainer. We use the same

bidirectional LSTM (BiLSTM) to conduct sentiment analysis.

The network contains two layers, 100 neurons in each layer,

and in total has 789K parameters. The model is trained in batch

size 64 and using Adam as optimizer with learning rate 0.01.

Since the BiLSTM network takes word vectors as the inputs,

we tokenize each single word of the logging statements using

the pre-trained GLoVe Embedding [28].

Drill pre-processes the raw logging statement before send-

ing it to the BiLSTM network for training because the log

statements contain information which is useless for senti-

ment analysis. For example, a logging statement from Lustre

may look like this: ‘Error %d invoking LNET debug log
upcall %s %s;’. The format strings (‘%s’) are clearly not

useful as they will be later substituted by the actual strings. In

NLP, text pre-processing is a typical step to obtain consistent

training results. Drill follows similar pre-processing on the

log statements [37], which includes the following steps: 1)

lowercasing all the texts; 2) stemming words to their root

form (e.g., invoking → invoke); 3) removing the stopwords

(e.g., ’this’,’that’,’and’,’a’,’we’); 4) normalizing a text into a

standard form; 5) removing noises such as the format strings

(e.g., %) and punctuation. The ultimate goal of these steps is

to bring the log statements closer to natural language, in order

to reduce the training time and maximize the accuracy.

As opposed to training a sentiment language model, it is

also theoretically possible to train a domain-specific language

model or fine-tune general language model on domain-specific

data. However, to obtain a decent rendition of such a model

typically requires a much larger volume of training data due to

the increased complexity of the task. Given the small volume

of log statements in source code, it is unrealistic to train this

kind of model. Instead, the simpler sentiment analysis task

does not require the same volume of data, which properly fits

in our scenarios. In fact, we evaluated the use of more general

language models and our sentiment model in Drill, and the

results show that sentiment model does in fact have better

performance. More details and results can be found in §IV-B.

B. Context Feature Builder

The Context Feature Builder takes the source code of the

target storage system and the log statement information as

input. Its goal is to output the context feature of the log

statement. The context of a log statements can be described

as the surrounding code of the log statement, which provides

information about the execution context of the log statement.

As Figure 6 shows, we consider the context by systematically

checking the code from before, after, within and around the

log statement.

...

rc = mdt_attr_get_complex(info, mo, ma);

if (rc) {

CERROR(“file attribute read error for ”DFID“: %d.\n”,

PFID(mdt_object_fid(mo)), rc);

RETURN(rc);

}

...

1

2

3

4

5

6

rc = mdt_attr_get_complex(info, mo, ma);

if (rc) {

PFID(mdt_object_fid(mo)), rc);

RETURN(rc);

Fig. 6: Example Lustre code snippet showing log statement context.

To retrieve the contexts of log statements, based on their

location, Drill generates an Intermediate Representation (IR)

[38] of the relevant source code first and applies classic

static analysis on the IR to extract the context features. We

summarize the key steps of the context feature builder in

Algorithm 1 and describe it in more detail below.

First, similar to [39], based on the IR, we create a control

flow graph (CFG) of only the calling functions that contain

log statements. Here, each node represents a basic block

(i.e., a continuous sequence of non-branch statements [38])

and the edges represent possible transfers of control between

basic blocks. Next, based on the CFG, we iterate through

each instruction (I) in each basic block (BB) of the calling

function (F) to identify the log statement as well as its context

features. We consider four types of features among them. Since

Drill features may be combinations of classic static analysis

features, such as sequences of certain statements before or

after the log statements, we define four new terms to refer to

these features and explain how to retrieve them using standard

terms below.

• ControlType indicates the type of flow-of-control state-

ments (e.g. if, while) surrounding the log statement. It helps

measure the structural similarity among log statements in

Drill. The function CheckControlType in Alg. 1 (Line
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10-19) calculates this feature. The implementation is fairly

straightforward in static program analysis. For example, we

check the conditional jump to the basic block to determine

whether it is conditional Block.

• MessageType indicates the type of the message included in

the log statement, which may indicate the purpose of the log.

According to our observation, if the log statement only con-

tains string literals (e.g., CERROR("libcfs ioctl: user
buffer too small for ioctl\n");), it implies the gen-

erated log are the same, which typically serves the purpose

of monitoring the current system status. If the log statement

further includes non-string variables (e.g., CDEBUG ("...
%d\n", lov connects)), it often serves the purpose of

checking certain variables. These different purposes lead

to different features in Drill. The CheckMessageType in

Alg. 1 shows how we calculate this feature. Specifically,

we infer the message type based on the number of operands

in the log statement: a statement with only one operand

implies a string-only message, while additional operands in

the IR implies that additional variables in the message. In

this way, we can determine if a log statement is only for

status monitoring or for variable checking.

• ReturnTypeI and ReturnTypeII catpure the potential rela-

tionship between the log statement and the return statements

around it. For example, a log statement may be relevant to

an if statement which checks the return value of another

function, we call this a log–after–return type (ReturnTypeI).

If a log statement is immediately followed by a return

statement, we call it a return–after–log type (ReturnTypeII).

Since the return statements typically imply major transitions

in the program flow, their relative positions to log statements

help capture the characteristics of the logs. To check these

two return types, we leverage the log statement’s basic
block and next instruction as shown in Alg. 1 (Line 25-

33). Specifically, for ReturnTypeI, we check if there is a

conditional jump to the current BB that contains the log

statement. If yes, we then extract the condition and inspect

if it is a return value from another function, which can be

done by back-tracing the condition of the last instruction

and checking if it is a return value of a call instruction
to another function. Similarly, for ReturnTypeII, we extract

the next instruction of the log statement within the current

BB and check if it is a return instruction, which may imply

whether there is an immediate return after the log statement.

C. Anomaly Detection Model

After mapping runtime logs to feature vectors, we use the

grouped, sequences of relevant logs and their labels to train the

anomaly detection model. Here, grouping runtime logs may

vary across different systems. For instance, in many distributed

file systems, some global IDs may exist to denote a sequence

of relevant operations, which can be leveraged to build ses-

sions. For instance, Hadoop HDFS has block id [1], Apache

HTTP server has cache key [40], and Hadoop MapReduce

has task id [41]. Alternatively, other systems, such as Lustre

Algorithm 1: Context Feature Extraction
Input: IR, F
Output: Context Features

1 Function ExtractContextFeature(IR, F)
2 CreateCFG(IR, F )

3 foreach BB ∈ F do
4 foreach I ∈ BB do
5 if log statement

(CERROR ‖ CDEBUG) then
6 CheckControlType(BB)

7 CheckMessageType(I)

8 CheckReturnTypeI(BB)

9 CheckReturnTypeII(I)

10 Function CheckControlType(BB)
11 // implemented by checking conditional jump

12 if is conditional Block(BB) then
13 control type ← ”if”

14 else
15 // detecting cycle using depth-first-search

16 if is loop Block(BB) then
17 control type ← ”loop”

18 else
19 control type ← ”null”

20 Function CheckMessageType(I)
21 if num of operands(I) > 1 then
22 message type ← ”variable check”

23 else
24 message type ← ”status monitor”

25 Function CheckReturnTypeI(BB)
26 if is conditional Block(BB) then
27 condition ← jump condition

28 // back-trace the condition

29 if is function return value(condition)
then

30 log-after-return ← ”yes”

31 Function CheckReturnTypeII(I)
32 if is return statement(next instruction(I)) then
33 return-after-log ← ”yes”

and BeeGFS, do not have these global Ids. For these systems,

we still build sessions for training, except each session now

only contains one log entry. Note that we do not construct the

sessions by grouping logs within a designated time window

mostly because the size of the time window greatly impacts

the results. Also, due to the irregularity of log generation,

a fixed time window may contain thousands of logs or only

several logs, making the training extremely difficult. To ensure

reliable results, we will check each log entry in systems that

do not have reference IDs to build meaningful sessions.

Drill uses a BiLSTM model which takes sequences as inputs

and outputs a probability of abnormality. Each time, the input

is a vector representation of the runtime log. Each vector is re-

currently forwarded to the BiLSTM Model. The output of each

LSTM Cell will be concatenated and flattened, then passed

194



to a dense network, turning into a two-dimensional vector

as the logit. Finally, a softmax layer is applied to calculate

the probability of normal and abnormal. If the probability of

abnormality is higher than 0.5, the model will report there

is an anomaly in the session. The BiLSTM network contains

two layers, 20 neurons in each layer, and has a total of 17K

parameters. The model is trained using a batch size of 64

sessions, along with the Adam optimizer and a learning rate

of 0.01. Once trained, the detection model is used to take

runtime logs and make predictions regarding the presence of

anomalies in the system. For unseen logs, the feature vector

database will still provide vectors, which will be fed to the

BiLSTM model to make a decision. Note that Drill provides

a general interface for sequence-based classification models

(e.g., GRU [42], Transformer [43]). In this prototype, we chose

BiLSTM mainly for two reasons. First, BiLSTM stacks two

layers of LSTM with one layer in a forward pass and the other

in a backward pass, capturing more sequential information of

logs in bi-direction. Second, it has been used in state-of-the-art

anomaly detection research, which performs well in real-world

systems [44]. We take on the comparisons of different models

as one of our future investigations.

IV. EVALUATION

A. Datasets and Evaluation Setup

1) Datasets: To evaluate Drill, we conducted evaluations on

two different distributed storage systems: Apache HDFS and

Lustre. Here, HDFS is written in Java and Lustre is written

in C, which demonstrates the generality of Drill. We collected

datasets from both systems to conduct the evaluation. Details

about these datasets are discussed below.

TABLE II: Description of datasets

HDFS 11,175,629 575,061 29 16,838
HDFS-Upcoming 104,634 4841 35 2277
Lustre 157,874 157,874 73 7,401

Datasets # of
log entries

# of
sessions

# of
log index

# of
anomalies

Table II shows all the datasets used in these evaluations.

First, the HDFS dataset is a publicly available set of run-

time logs collected from a 200-node cluster running Hadoop

0.17 [17]. There are ∼11 million logs in total, which form

575,061 pre-built sessions in the dataset. Among them, 2.9%

are anomalies which were labeled by domain experts. There

are 29 unique log templates detected among these 11 million

runtime logs.

To evaluate how anomaly detection tools will perform in a

real-world setting, facing continuously arriving new and prob-

ably unseen logs, we further generated the HDFS-Upcoming
dataset. This dataset was collected using a 4-node Cloud-

Lab [45] cluster running the same Hadoop 0.17 version. We

ran the built-in benchmark application (i.e. TestDFSIO), which

continuously generated logs (some are new compared with the

original HDFS dataset). We manually labeled each session as

normal or abnormal following the same protocol discussed in

the paper that originally introduced HDFS dataset [17].

We also generated the Lustre dataset to evaluate Drill perfor-

mance on different storage systems. We generated this set of

Lustre logs by running the IO500 [46] benchmark on a Lustre

cluster built in CloudLab. To accurately label the logs, we

leveraged an open-source fault injection tool called PFault [3]

which injects faults into Lustre and recorded the generated

logs. We considered logs generated before the injected faults

as normal. For logs generated after the fault injections, the

domain experts labeled each log entry depending on whether

or not it was relevant to the injected faults. Specifically, our

labeling criteria leveraged standard Linux error numbers (or

equivalent customized error numbers), as Lustre utilizes these

extensively while logging. Logs with a standard or equivalent

error number were considered to be abnormal. In addition, we

pruned any potential noise by examining the log descriptions

further. For example, logs related to transient network issues

are exempted from the abnormal logs as such transient issues

are common in pre-fault logs as well. In total, the numbers

of normal and abnormal log entries are 150,473 and 7,401,

respectively. Since it is hard to build sessions in Lustre logs,

we treat each log as a session. Note that, for both the HDFS

and Lustre log datasets, 1% of logs are chosen as the training

data and the remaining 99% serve as testing data. We used this

specific training and testing data partition for a fair comparison

with previous work [14] which used the same data partitioning.

2) Performance Metrics: To compare the performance of

different anomaly detection methods, we use four metrics:

Accuracy, Precision, Recall, F-measure defined as follows:

• Accuracy: measures the percentage of correct predictions

(both normal and abnormal) over all predictions.

• Precision: measures the percentage of the reported

anomalies which are actually anomalies.

• Recall: measures the percentage of total actual anomalies

which are reported.

• F-measure: the harmonic mean of Precision and Recall,

which often indicates the quality of the model.

B. Impacts of Sentiment Language Model

As discussed earlier, we argue that re-training or fine-tuning

complicated language models to work on storage system logs

is inefficient and unnecessary. Drill uses multiple open-source

storage systems’ source code to fine-tune a sentiment language

model using limited training data. To show that this design

decision makes sense, we compared different ways of lever-

aging the language models while keeping other components

of Drill unchanged. The results are reported in Figure 7(a).

Here, Drill-PretrainedLM indicates the direct use of the pre-

trained language model from natural language to encode the

logs; Drill-LogDomainLM uses the source code of multiple

storage systems to fine-tune an existing language model (i.e.

GLoVe) and uses that to encode the log; Drill is our sentiment

model-based design.

It can be seen that although Drill-PretrainedLM achieves

a precision of 1.0, it has considerably worse recall (i.e. 0.47)

and hence worse F-measure (i.e. 0.64) compared to Drill. We

consider two major reasons contributing to such a result: a)
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(a) Sentiment (b) Context

Fig. 7: (a) Performance comparison among Drill using pre-trained
language model, Drill using fine-tuned storage system-specific lan-
guage model, and Drill using our sentiment language model on
HDFS dataset; (b) The impact of context features on HDFS dataset.
Drill-C, Drill-R1, Drill-R2, and Drill-M mean Drill without different
context features, such as ControlType, ReturnTypeI, ReturnTypeII, and
MessageType.

the pre-trained language model used in Drill-PretrainedLM is

not effective for log analysis; b) Compared to the embedding

of raw content, sentiment is more effective. As for Drill-
LogDomainLM, it shows even worse performance than Drill-

PretrainedLM, which obviously means it is worse than Drill.
Note that, even though this is a domain-specific fine-tuned

model, we believe the poor result can be attributed to the

volume of domain-specific data, which is not enough to fine-

tune a workable language model, resulting in one which is not

as effective as the sentiment model.

C. Impacts of Context Features

One of the new designs of Drill is its integration of both

sentiment-based and context-based features. In this section,

we further explore how the context features contribute to the

performance of Drill. More specifically, we present our evalu-

ation of the effect of each context feature introduced in Drill,

such as ControlType and MessageType. In this evaluation, we

used the evaluation results of Drill on the HDFS dataset as

the baseline. Then we conducted multiple experiments with

one feature deliberately disabled each time. The results are

reported in Figure 7(b). Here, we only report the results of

F-measure due to limited space. On one hand, F-measure is a

reliable metric to indicate the quality of a model. Additionally,

the respective precision values of different evaluations showed

little variation, hence the recall shared the same trend as

the F-measure. From these results, we can see that disabling

any one feature leads to a tangible reduction in performance.

Especially when disabling MessageType, the F-measure was

reduced from 0.83 to 0.78. These results prove that the context-

based features are necessary and contribute to Drill’s overall

performance significantly.

D. Drill on Logs of Different Systems

In this evaluation, we compared Drill with several index-

based and content-based anomaly detection solutions, includ-

ing two traditional machine learning models, (i.e., Decision

Fig. 8: Performance comparison on HDFS and Lustre datasets.

Tree and SVM [20], [12], [13]), two deep learning, (i.e.,

DeepLog [14] and LogAnomaly [15]), and a state-of-the-art

solution NeuralLog [27] in statistical analysis.

The experimental results on the HDFS dataset are reported

in Figure 8. Among the three reported metrics, we again focus

on the F-measure metric since it is the harmonic mean of

precision and recall and often indicates the overall quality

of the model more accurately. From the results, we observe

that Drill achieves the best performance among all the six ap-

proaches (i.e., 0.83) on F-measure, presenting its effectiveness.

The F-measure of the Decision Tree and SVM are relatively

close, with 0.60 and 0.58 respectively. It is noticeable that even

though the overall performance of DeepLog and LogAnomaly

is not good, they have very high recall, which means that they

report more true anomalies. However, they suffer from low

precision, which means that only a small number of reported

anomalies are true anomalies. Such a high false positive rate

is not surprising as both DeepLog and LogAnomaly simply

consider all unseen log indices to be anomalies due to their

unexpected variation in log patterns when compared to the

seen logs. When these unseen logs are actually normal, both

of them will have a high false positive ratio. Oppositely,

the Decision Tree and SVM methods have high precision

(1.00) but low recall (0.43 and 0.41). This means that the

anomalies they reported are most likely true anomalies but

only cover a very small sets of the total anomalies. This

represents another extreme case for handling unseen logs:

simply consider them as normal. Both of these approaches

let the anomalies in unseen logs slip through, which may put

the systems which produce these logs at risk. NeuralLog has a

good overall performance due to its improved log vectorization

technique. However, its lack of context-based features makes

it less suitable to handle some anomalies which have no

obvious alarm in their log content but can be inferred through

consideration of code context.

The experimental results of the Lustre dataset are reported

in Figure 8. Drill still achieves the best performance when

compared with other baselines (i.e., 0.97 on F-measure).

Deeplog and LogAnomaly suffer from a similar issue on

the Lustre dataset as they did on HDFS: they achieve high

Recall but low Precision, leading to low F-measure. The
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TABLE III: Performance of log-anomaly detection methods for realistic streaming analytics Case 1 and Case 2.

Case1 Hist.(4k)+Upcom.(1k) Hist.(3k)+Upcom.(2k) Hist.(2k)+Upcom.(3k) Hist.(1k)+Upcom.(4k) Upcom.(5k)
Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Decision Tree 0.90 0.67 0.80 0.67 0.70 0.67 0.60 0.67 0.88 0.89
SVM 0.90 0.01 0.80 0.01 0.70 0.01 0.60 0.01 0.53 0.01
DeepLog 0.89 0.66 0.79 0.66 0.70 0.66 0.60 0.67 0.54 0.66
LogAnomaly 0.88 0.55 0.76 0.56 0.64 0.57 0.53 0.56 0.40 0.55
NeuralLog 0.97 0.74 0.96 0.65 0.96 0.60 0.96 0.56 0.95 0.49
Drill 0.99 0.95 0.99 0.97 0.99 0.98 0.99 0.99 0.95 0.95
Case2 Upcom.(5k) Hist.(4k)+Upcom.(5k) Hist.(8k)+Upcom.(5k) Hist.(12k)+Upcom.(5k) Hist.(16k)+Upcom.(5k)

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure
Decision Tree 0.88 0.89 0.76 0.68 0.84 0.68 0.88 0.68 0.90 0.68
SVM 0.53 0.01 0.74 0.01 0.82 0.01 0.87 0.01 0.89 0.01
DeepLog 0.54 0.66 0.75 0.66 0.82 0.65 0.86 0.65 0.89 0.65
LogAnomaly 0.40 0.55 0.67 0.55 0.77 0.55 0.83 0.55 0.86 0.55
NeuralLog 0.95 0.49 0.97 0.72 0.97 0.77 0.97 0.77 0.97 0.79
Drill 0.95 0.95 0.97 0.95 0.97 0.92 0.95 0.80 0.97 0.89

reason is the same as before: DeepLog and LogAnomaly

assume the unseen log indices are anomalies. Decision Tree

and SVM perform much worse on the Lustre dataset, with

precision of 0.35, recall of 0.01, and F-measure of 0.01.

Compared to the performance on the HDFS dataset, apart

from the low recall, the precision of both approaches decreased

significantly. This means that they report many false positives

in the Lustre dataset. Conservatively predicting the unseen logs

as normal can give good precision, but if this leads to the

misclassification of some normal unseen logs as anomalies it

will incur low precision. Interestingly, NeuralLog has worse

performance on the Lustre dataset. We consider this is due to

the dissimilarity between the Lustre logs and natural language

which may confuse the language model which NeuralLog

relies on.

E. Drill on Logs in Streaming Analytic Patterns
In this section, we show how Drill and other anomaly

detection solutions will perform when they are applied to a

more realistic streaming scenario. Specifically, we used the

training data in the original HDFS log dataset to train Drill

and other systems. Then, we fixed the model and used it

to monitor the system where the new HDFS-Upcoming log

entries will continuously arrive. The HDFS-Upcoming dataset

includes approximately 5K logs in total with 12 new unseen

log indices. The HDFS-Historical dataset is the original HDFS

testing data. The goal of this evaluation is to compare the

effectiveness of different solutions when they were trained

using limited historical log data and then applied to process the

real-world stream of new logs online. Although computational

cost could be an important factor in this online setting, it is not

a bottleneck for any of the evaluated solutions. For instance,

Drill needs only 0.25 milliseconds to process a new session.

Other solutions run at a similar speed.
We simulate two separate cases for handling the streaming

new logs. Both cases are shown in Figure 9. In the first

case, we assume the anomaly detection tools will fix the

size of a monitoring window, and slide it towards up-to-date

logs (the HDFS-Upcoming log dataset) gradually. With each

measurement, we move forward by approximately 1K new

(a) Case 1 (b) Case 2

Fig. 9: Streaming of logs in realistic log anomaly detection.

log entries and re-evaluate the performance. Note that there

are roughly 5K log entries in HDFS-Upcoming dataset so,

after sliding four times, the model will only see the HDFS-

Upcoming dataset. In the second case, we assume that the

anomaly detection tools will keep searching back for more

logs to analyze after up-to-date logs arrive. Specifically, we

grow the window size from 5K to 21K logs as Figure 9(b)

shows.

The evaluation results are reported in Table III. In case 1, we

have two major observations. First, Drill has the best perfor-

mance with regard to both Accuracy and F-measure among all

the six methods for every sliding monitoring window. Second,

for Accuracy, the other methods have a decreasing trend as

more unseen logs arrive, while Drill consistently maintains

a stable performance. These results show that Drill remains

stable while handling streaming logs. In case 2, the two metrics

have a similar trend to case 1. For example, the accuracy of

other methods decreases as the size of the monitoring window

decreases, while the accuracy of Drill remains the highest

throughout the experiment and does not seem to be influenced

by changes in the size of the window. Combining the results

of case 1 and case 2, we conclude that Drill is the preferred

method to be used in a realistic streaming analytic scenario.

F. Robustness of Drill on Partial Training Data

Finally, we evaluate the robustness of Drill. Specifically, we

evaluated three settings on the HDFS dataset. In each setting,

the training dataset contained only a portion of the total log

indices while the testing dataset maintained all of the log
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TABLE IV: The impact of different unseen log percentage on different solutions applied to HDFS dataset.

Settings Full Training Logs Most Training Logs Half Training Logs
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Decision Tree 0.89 1.0 0.94 1.0 0.45 0.62 1.0 0.43 0.60
SVM 0.98 0.95 0.97 1.0 0.42 0.60 1.0 0.41 0.58
DeepLog 0.82 0.94 0.87 0.17 0.98 0.29 0.24 0.76 0.37
LogAnomaly 0.95 0.90 0.93 0.12 0.99 0.21 0.17 0.99 0.29
NeuralLog 0.94 0.93 0.94 0.96 0.81 0.87 0.49 0.50 0.49
Drill 1.0 0.96 0.98 0.89 0.81 0.85 1.0 0.71 0.83

indices, so that a variable percentage of partial training data

is used to evaluate the overall robustness of the models. The

settings are listed below. 1) Full Training Logs: the original

HDFS training dataset without removing any log indices . 2)

Most Training Logs: based on Full Training Logs, we remove

6 log indices from the training data. 3) Half Training Logs:
based on Most Training Logs, we further remove another 6

log indices from the training data.

For each setting, we generate the corresponding training

data, train the four models, and compare them. The testing

data is fixed as described in IV-A1, making all of the results

comparable across different percentages of unseen log indices.

The results are reported in Table IV. It can be seen that

for each percentage of unseen log indices, Drill has either

the best or second best F-measure among all the approaches

we considered. Additionally, as the percentage of unseen log

indices increases, Drill has a stable overall performance while

the performance of other approaches declines abruptly. The

presented robustness of Drill is primarily due to the fact that

it leverages the learned differences between seen and unseen

logs using feature vectors which effectively encapsulate vital

source code context and log content information.

V. RELATED WORK

Log-based anomaly detection has been extensively studied

recently. Generally, existing methods can be classified into

three categories. The rule-based methods leverage expert-

defined rules to assign unmatched log entries as anomalies [7],

[8], [9], [11]. For example, LogLens [11] predefined a series

of patterns that represent normal logs and considers logs that

do not match such patterns as anomalies. Rule-based methods

rely on expert knowledge and regularity in the logs, hence are

limited in handling unseen logs.

Index-based methods [16], [17], [18], [19], [14] treat the

runtime logs as independent entities encoded using index num-

bers. Once an index sequence is built, various methods ranging

from statistical analysis [18] to deep learning models [14]

can be applied to learn the patterns. DeepLog [14] utilizes an

LSTM neural network to learn the pattern of seen normal log

indices and treats unseen logs as anomalies. The index-based

methods share this potential problem when applied to unseen

logs. Drill is proposed to address such an issue. Specifically,

Drill extracts sentiment-based and context-based features for

log statements and constructs feature vectors to represent each

runtime log, which allows the model to extend learned patterns

to unseen logs.

Log content-based methods include static analysis [47]

and natural language processing strategies [15], [44], [48],

[31], [27], [49]. Among them, the NLP-based strategies offer

advanced models to understand the log contents. For exam-

ple, Meng et al. [15] extend DeepLog by considering the

synonyms and antonyms in the log content. Le et al. [27]

utilize BERT [26] to extract the semantic information of raw

log content. Particularly, Zhang et al. [31] train sentiment

analysis from the source code to directly predict the anomaly

of each single runtime log. Compared with these studies, Drill

takes advantage of both the sentiment model and context-based

features from source code analysis to generate more accurate

representations of logs, which leads to more robust results as

our evaluation results have shown.

VI. CONCLUSION AND FUTURE WORK

This paper presents Drill, a new log-based anomaly detec-

tion solution based on source code analysis. Drill introduces

two new designs for generating more accurate and robust vec-

tor representations of logs: a storage system-specific sentiment

language model and context-based feature extraction. Our

evaluations show Drill outperforms state-of-the-art approaches

on two representative large-scale storage systems, HDFS and

Lustre. In the future, we plan to further investigate more

features or even automated features. Additionally, we plan to

apply more sophisticated language models, such as BERT [26]

for sentiment analysis.
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