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Abstract—Similar to local file system checkers such as e2fsck
for Ext4, a parallel file system (PFS) checker ensures the file
system’s correctness. The basic idea of file system checkers is
straightforward: important metadata are stored redundantly in
separate places for cross-checking; inconsistent metadata will
be repaired or overwritten by its ‘more correct’ counterpart,
which is defined by the developers. Unfortunately, implementing
the idea for PFSes is non-trivial due to the system complexity.
Although many popular parallel file systems already contain
dedicated checkers (e.g., LFSCK for Lustre, BeeGFS-FSCK
for BeeGFS, mmfsck for GPFS), the existing checkers often
cannot detect or repair inconsistencies accurately due to one
fundamental limitation: they rely on a fixed set of consistency
rules predefined by developers, which cannot cover the various
failure scenarios that may occur in practice.

In this study, we propose a new graph-based method to build
PFS checkers. Specifically, we model important PFS metadata
into graphs, then generalize the logic of cross-checking and
repairing into graph analytic tasks. We design a new graph
algorithm, FaultyRank, to quantitatively calculate the correctness
of each metadata object. By leveraging the calculated correctness,
we are able to recommend the most promising repairs to users.
Based on the idea, we implement a prototype of FaultyRank on
Lustre, one of the most widely used parallel file systems, and
compare it with Lustre’s default file system checker LFSCK.
Our experiments show that FaultyRank can achieve the same
checking and repairing logic as LFSCK. Moreover, it is capable of
detecting and repairing complicated PFS consistency issues that
LFSCK can not handle. We also show the performance advantage
of FaultyRank compared with LFSCK. Through this study, we
believe FaultyRank opens a new opportunity for building PFS
checkers effectively and efficiently.

I. INTRODUCTION

To store and manage the massive data, HPC platforms heav-

ily rely upon parallel file systems (PFSes), such as Lustre [1],

GPFS [2], and PVFS [3], to serve data access requests from

scientific applications. Therefore, the reliability of parallel

file systems is critically important. However, as the scale

and complexity of HPC systems rapidly increase, even the

carefully-designed and well-maintained parallel file systems

may fail and run into inconsistent states due to various reasons

including hardware faults, software bugs, configuration errors,

human mistakes, etc [4].
When a file system is in an inconsistent state, a checking

and repairing program called file system checker is needed to

bring the file system back to a consistent state. Essentially,

file system checkers rely on the redundant metadata stored in

different places of the file systems to work. The checkers can

be either invoked explicitly or triggered implicitly to scan the

file systems and cross-check whether the redundant metadata

match with each other. If not, the checker may report and

attempt to repair the inconsistencies. File system checkers have

been widely used in local file systems, such as e2fsck [5] for

Ext2/3/4 and xfs_repair for XFS [6]. Similarly, parallel

file system checkers are also critically important for ensuring

the integrity of these PFSes. For instance, LFSCK is responsi-

ble for checking and repairing Lustre file system [7], BeeGFS-

FSCK is used for BeeGFS [8], and mmfsck is designed

for GPFS [9]. Although the importance of the parallel file

system checker has been well agreed upon, designing and

implementing an effective checker that can identify and repair

complicated inconsistencies under various failure scenarios is

still challenging based on recent studies [10, 11].
The main challenge comes from the vast amount of possible

failure scenarios that the PFSes may experience in practice.

These distinct scenarios lead to a variety of different incon-

sistency issues in the end and require different logic to detect

and repair them. Designing the complete set of logic for all

possible inconsistencies is notoriously complicated for the

developers. They often have to settle using a set of limited

and fixed rules. For example, in most cases, Lustre’s checker

LFSCK simply checks whether the metadata stored in data

object servers (OSS) matches its counterpart in the metadata

servers (MDS). If not, LFSCK will directly use MDS metadata

to overwrite the OSS metadata regardless of the root cause

of the inconsistency. Hence, it is not surprising that these

rule-based checkers may fail at repairing complicated PFS

inconsistencies as reported in previous studies [10, 11].
In this study, we take a different approach to building par-

allel file system checkers. Instead of relying on manual efforts

to specify fixed rules to check and repair inconsistencies, we

model the metadata of parallel file systems into a metadata

graph and leverage their point-to and point-back relationships

as graph edges to understand the correctness of metadata [12].

Based on the metadata graph model, we design an iterative

algorithm called FaultyRank to quantitatively calculate the

credibility score of each metadata field. The calculated scores

are then used to identify the root cause of the inconsistency

and determine the corresponding repair strategy.
We implement a prototype of FaultyRank1 in an offline

manner (detailed in Section IV) on the widely used Lustre

parallel file system and compare it with Lustre’s default

1https://github.com/DIR-LAB/FaultyRank
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checker (i.e., LFSCK). Our experiments show that FaultyRank

can achieve the functionality of LFSCK elegantly. Moreover,

we find that FaultyRank outperforms LFSCK in effectiveness

and efficiency: it can detect and repair various complicated

inconsistencies that LFSCK cannot handle, and it outperforms

LFSCK in terms of speed by up to 10x due to its holistic

design. In summary, the main contributions of this study

include the following:

• Designing a graph model to describe complicated PFS

checking-relevant metadata structures in a unified way.

To the best of our knowledge, this is the first graph model

to abstract PFSes metadata for checking.

• Developing an iterative algorithm FaultyRank to quantita-

tively calculate the correctness of different PFS metadata

to help detect the root causes of inconsistencies and

identify optimal repair strategies.

• Building a prototype of FaultyRank for the widely used

Lustre file system and demonstrating the improvement

over its own state-of-the-art checker in terms of both

effectiveness and efficiency.

The rest of this paper is organized as follows. In Section II,

we introduce background knowledge on the state-of-the-art

parallel file system checkers. We present the core design

of FaultyRank in Section III and its Lustre-based prototype

implementation in Section IV. We then evaluate FaultyRank

in Section V, and further discuss its generality and limitations

in Section VI. We discuss related work in Section VII and lay

out the future work in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the internal architecture

of parallel file systems and how the corresponding checkers

work. We then analyze the fundamental issues of existing PFS

checkers, which motivate our ideas. To make the discussion

concrete, we use Lustre and its checker LFSCK as one spe-

cific example. Other parallel file systems may have different

internal data structures and checker implementations but share

similar design principles and underlying limitations.

A. Lustre Architecture and Metadata

Fig. 1 shows a typical Lustre cluster, which includes three

types of servers: management server (MGS), metadata server

(MDS), and object storage server (OSS). The management

server (MGS) and metadata servers (MDSes) are often com-

bined to store the configuration information and the namespace

metadata of the file system. The object storage servers (OSSes)

store the actual data of the file system. Files are stripped into

fixed-size chunks and stored as data objects on OSSes. On both

MDS and OSS servers, Lustre leverages the local file system,

such as Ext4-based ldiskfs [13] and ZFS [14], to store the data

and metadata.

There are essentially two categories of metadata in Lustre:

the namespace and data layout metadata. The namespace

metadata maintains the directory tree of the Lustre file system,

such as the directory and its files. The data layout metadata

maintains the relationships between the Lustre file and its
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Fig. 1: The architecture of a Lustre cluster and the key

metadata structures on both MDS and OSS.

stripes stored on different object storage servers. Lustre stores

both metadata on the local file system.

Specifically, each Lustre file, directory, or data object cor-

responds to a file in the local file system. Their metadata

are embedded into the Extended Attribute (EA) field of the

inode of the corresponding local file. For instance, on MDS,

each local file inode’s extended attributes store the FID of

the corresponding Lustre file, the LinkEA field pointing to

its parent directory, and the LOVEA field pointing to all its

stripe objects stored on OSS servers. On OSS, each local file’s

inode’s extended attributes store the FID of the corresponding

Lustre stripe object and the LinkEA field pointing to the file

that the stripe belongs to, as shown in Fig. 1. To maintain

the Lustre namespace metadata, the directory entry still exists

and is extended to point to the child files or directories by

storing both their local inode id and Lustre FIDs. The FID

will point to the child file/directory in that directory. The child

file or directory will use its LinkEA to point back to its parent

directory by storing the parent’s FID.

As we can see from Fig. 1, each metadata stored in Lustre

has a redundant counterpart for cross-checking. For instance,

if a directory entry of a directory points to a sub-file, then that

sub-file will have its LinkEA field point back to the directory.

If the bi-directional mapping is violated, it implies that Lustre

is in an inconsistent state.

B. Parallel File System Checker and LFSCK

The goal of a parallel file system checker (e.g., LFSCK for

Lustre) is to ensure that the metadata of the parallel file system

is correct, i.e., the redundant metadata is consistent.

Fig. 2 shows a simplified example of metadata consistency.

It contains two metadata objects a and b, where a has a

property pointing to b; while b has a property pointing back to

a. In Lustre, such a model can be mapped to many checking

cases. For instance, a can be the MDS file object and b can be
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Types of Inconsistency Potential Root Causes LFSCK Behaviors

a’s property can not locate b

(Dangling Reference)

a’s property is wrong; b’s id is correct or wrong. Ignore and can not identify/repair.
a’s property is correct; b’s id is wrong. Identify but do not repair b’s id, put b in “lost+found”.

No object refers to b.

(Unreferenced Object)
b’s id is correct, but all its neighbors’ properties are wrong. Ignore and can not identify/repair.
b’s id is wrong; a’s property could be correct or wrong. Identify but do not repair b’s id, put b in “lost+found”.

More than one objects refer to b

(Double Reference)

a’s property duplicates c; both point to b. Ignore and can not identify/repair.
b’s id duplicates c; a points to both b and c. Identify but do not repair b’s id, put b in ”lost+found”.

Mismatch between a and b
(Mismatch)

a’s property and b’s id are both correct; b’s property is wrong. Identify and correctly use a’s id to repair b’s property.
a’s property and b’s id are both correct; a’s id is wrong. Ignore and can not identify/repair.

TABLE I: Four categories of inconsistency, the potential root causes, and the corresponding behaviors of LFSCK.

b

a
id = a
property = b

id = b
property = a

Fig. 2: A simplified example of metadata consistency.

its OSS stripe object, where a’s property is LOVEA, pointing

to an OSS stripe object, while b’s property is LinkEA, pointing

back to the MDS object.

Fig. 2 represents a consistent state where the two metadata

objects point to each other correctly. In practice, however, a

parallel file system may run into various inconsistent states.

Table I lists four major types of metadata inconsistencies,

their potential root causes, and the corresponding behaviors

of LFSCK, based on the LFSCK design documents [15]. For

clarity, we use Fig. 2 as a simplified scenario to illustrate the

four different inconsistency cases below.

Specifically, the first type is Dangling Reference, which

means a’s metadata property should refer to b, but could not.

There are two potential root causes for this inconsistency: 1)

a’s property is wrong, or 2) b’s id is wrong. For instance,

the MDS object uses the LOVEA property to refer to its

OSS objects. So each LOVEA of an MDS object should

contain a valid FID to locate an OSS object. But the LOVEA

property could be wrong and refer to non-exist OSS objects,

or the LOVEA is correct, but the OSS object’s ID is wrongly

assigned. Both of them may lead to the dangling reference

issue. To handle such a case, LFSCK simply assumes whatever

is stored in MDS or parent directory to be correct and should

overwrite the counterpart. As a result, it cannot identify the

potential root cause 1 and only puts b into ‘lost+found’ based

on the assumption of root cause 2.

The Unreferenced Object case means an object b exists, but

no other objects could reference it. For instance, an OSS stripe

object exists, but there is no MDS file claiming the OSS stripe

as part of it. Similarly, there are two possible root causes: 1) b’s
id is correct, then all its neighbors’ properties must be wrong

so that they can not refer it; 2) b’s id is wrong, then a can not

refer it. Similar to the Dangling Reference case, LFSCK does

not identify a being wrong. It always assumes b is in trouble

and fixes it by placing b in ‘lost+found’.

The Double Reference case means more than one object

claims the same relationship with b. It typically involves a

third object c, whose property is replicated by a, hence both of

them point to b; or whose id is replicated by b, hence a points

to both objects b and c. The duplication case is difficult for

LFSCK to handle as the sequential scanning in LFSCK does

not identify duplication. Most of the time, LFSCK will simply

treat such cases as Dangling Reference or Inconsistency.

The Mismatch case indicates scenarios where a can suc-

cessfully refer b, but object b can not point back. This might

be because b’s property is wrong or a’s id is wrong. Again,

LFSCK will not consider a’s id as being wrong and will simply

overwrite b’s property. So, it repairs the system based on the

assumption of root cause 1, ignoring root cause 2.

Limitations of Existing PFS Checkers. Based on the dis-

cussions above, we can see that even state-of-the-art PFS

checkers like LFSCK suffer from key limitations. First, they

are designed and implemented using fixed rules predefined

by developers, such as “metadata stored in MDS should

overwrite its counterpart stored in OSS”. Although these rules

are designed based on the domain knowledge, real-world

inconsistency scenarios could easily be more complicated,

making these fixed rules inadequate and inaccurate. Addition-

ally, due to the complexity of inconsistent scenarios, even

PFS developers may not be able to design strategies optimally

beforehand. They often have to play safe by placing files or

their stripes into ‘lost+found’ and rely on users to manually

fix it later, which is increasingly difficult and inconvenient for

end users as the scale of HPC storage grows.

C. Our Observations & Key Idea

Despite the complexity of building PFS checkers, we ob-

serve that it is possible to identify the actual root cause for

inconsistency by checking the file system more “intelligently.”

For example, if MDS object a can not refer to its OSS child b,
we can check if a can refer to its other OSS children, as most

files will contain multiple stripes. If a can not refer to any of

them, then the a’s property may be wrong instead of naively

assuming b’s id is wrong. Similarly, for namespace metadata, if

the parent directory contains multiple sub-directories and files

and all of their LinkEAs point to the same ‘wrong’ FID, then

the parent directory’s FID may be wrong instead of assuming

all LinkEAs are wrong.

The key to achieving intelligence is to comprehensively

check more relevant relationships to identify the root cause

of inconsistency accurately. To this end, we observe that
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the relationships among PFS metadata are similar to those

of web pages: a web page with more incoming links may

be considered more authentic than others; web pages that

are linked by important pages will also be more authentic.

Inspired by how web pages are modeled and ranked in search

engines [16], we propose to model the PFS metadata into

a graph structure and quantitatively calculate the credibility

score of each metadata field, such as a’s property or b’ id, in a

global way, based on the point-to and point-back links between

graph vertices. We then leverage the calculated credibility

scores to determine the accurate root cause of inconsistency.

To be more specific, the point-to and point-back links

between metadata in PFSes, such as the edges in Figure 2,

work similarly as hyperlinks between web pages contributing

credibility to each other. For example, if object a points to

object b by correctly having its property refer to b’s id, then

the credibility of b’s id is reinforced by such a link. Further,

if there are lots of objects pointing to object b, then b’s id

is highly possible to be correct as it is unlikely that other

objects’ properties are all wrong but point to the same b.
Additionally, such credibility is reversible. The credibility

of b’s id also contributes back to object a’s property if a
successfully pairs with b. Following such an idea, in this

study, we propose FaultyRank, a PageRank-like algorithm,

to calculate the credibility score of metadata for parallel file

system checking. We describe the detailed algorithm design

and implementation in the next section. Note that there are

still important differences between FaultyRank’s calculation of

metadata credibility and PageRank’s ranking of web pages. For

example, in file system checking, we focus on the extremely

low credibility scores for locating inconsistencies, not the rank

values of different objects. The low-degree nodes in our system

may have smaller credibility scores due to low connectivity,

but they will still be considered correct as long as their links

are consistent and receive enough credits from neighbors.

III. DESIGN OF FAULTYRANK

In this section, we first introduce the design of the pro-

posed FaultyRank algorithm assuming the metadata graph has

been built. We then introduce a prototype implementation of

FaultyRank on the Lustre file system in the next section to

explain how to build the graph and run FaultyRank in real-

world settings.

A. Metadata Graph

To run FaultyRank, we assume the metadata graph has

been built. The metadata graph is essentially a directed graph

to represent the PFS-level metadata. For example, the graph

vertices can represent the PFS directories, files, and stripe

objects. The directed edges show the point-to and point-back

relationships between these metadata objects. The left part of

Figure 3 shows an example of the metadata graph built from

the Lustre file system. It contains two Lustre files: b and c
under the same Lustre directory a. As part of the namespace

metadata, their metadata are stored on Lustre MDS server. The

file b further contains multiple stripes, and object d is one

of them, stored on one OSS server. The edges connect these

vertices through corresponding properties of the vertices. For

instance, a’s DIRENT property identifies all the subdirectories

and files; d’s LinkEA property points to its file b. In the next

section, we will discuss how the metadata graph was built.
Normally, there should always be paired edges between

objects, for instance, directory a has its DIRENT property

pointing to files c and b, each of which will have LinkEA

property pointing back to a. In Fig. 3, we can see c’s LinkEA

property is missing, introducing an inconsistency. Similarly, b’s
LOVEA property is also missing to point to object d, whose

LinkEA property points back to b correctly. We will show how

FaultyRank can identify these inconsistencies later.

Fig. 3: FaultyRank iterative algorithm workflow.

B. ID Rank and Property Rank
In FaultyRank, we consider two ranks to calculate for each

vertex as there are two major metadata fields for each object

in the parallel file systems: its unique ID which is pointed

back by other vertices, and its Properties which point to other

vertices. Since these two fields are often updated in different

file system operations, such as FID for file/directory creation

and Properties for sub-directory creation, we consider their

correctness to be independent and calculate them separately

in FaultyRank.
Specifically, we define two credibility scores for each ob-

ject: ID Rank (idrank) and Property Rank (proprank), which

correspond to the credibility score of ID and Properties,

respectively. Note that we do not further differentiate the

possible multiple properties of an object as we consider it

unlikely that one of the extended attributes is wrong but others

are correct. We plan to investigate how FaultyRank would

work in this scenario in the future work.

C. Iterative Algorithm
The key idea of FaultyRank is to leverage the point-to and

point-back edges between metadata objects to calculate their

credibility. We summarize the core iterative algorithm in Alg. 1

and discuss it in detail below.
First, we assume each object has an initial ID Rank

(id0rank = 1) and Property Rank (prop0rank = 1). The
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superscript 0 means iteration 0. Then, for each object, we

can calculate its new ID Rank (id1rank) by aggregating the

current Property Ranks (prop0rank) of all its neighbors who

point to it. The intuition is very simple: the credibility of an

object’s ID Rank can be calculated by: 1) how many other

neighboring objects point to it, and 2) how credible these

neighbors’ properties are. Such a calculation will be done for

all metadata objects in the graph.

After obtaining the new ID Rank for each object (id1rank),

the next step is to obtain the new Property Rank (prop1rank)

for each object. As we discussed earlier, to update the credi-

bility of the properties, we just need to check whether these

properties correctly point to some credible IDs. The more

correct IDs they point to, the higher the possibility is that these

properties are correct. As we consider the direction of an edge

means the credibility will be contributed from the source to

the destination vertex, we can simply reverse (logically) all the

edges from objects’ Properties to IDs to do the calculation.

With the reversed graph, we can calculate its new Property

Rank (prop1rank) by aggregating the ID Ranks (id1rank) of all

its neighbors, similar to the previous calculation.

We then repeat these two steps in multiple iterations until

it converges: the diff value of idrank in two consecutive

iterations is smaller than ε. We use ε = 0.1 in our experiments,

which typically leads to less than 20 iterations. The final

[idrank, proprank] value for each object simply indicates the

credibility of its ID and Property.

Algorithm 1 FaultyRank Iterative Algorithm

1: � Metadata graph G and reversed graph GR

2: � Initial ranks: id rank[G.v]=1 and prop rank[G.v] = 1
3: while diff > ε do � loop until converged
4: for v ∈ G do � calculate ID rank
5: sink nodes handling
6: s = prop rank[v]/outdegree(v)
7: for vout ∈ v.out-going-neighbors() do
8: id rank[vout] += s
9: end for

10: end for
11: for v ∈ GR do � calculate Property rank
12: sink nodes and weighted distribution handling
13: s = id rank[v]/outdegree(v)
14: for vout ∈ v.out-going-neighbors() do
15: prop rank[vout] += s
16: end for
17: end for
18: diff = calc diff()
19: end while

D. Sink Nodes and Weighted Distribution Handling

In Alg. 1 lines 5 and 12, we introduce logic for processing

sink nodes and handling weighted distribution.

First, handling sink nodes is a traditional task for PageRank-

like algorithms. Here, sink nodes in a directed graph indicate

those vertices that do not have any outgoing edges. During

the iterative calculation, the rank values get lost due to these

sink nodes. There are multiple ways to handle them in the

PageRank algorithm [17]. In FaultyRank, we simply assume

these sink nodes will point to all other vertices in the graph.

Hence their rank values will be distributed to all other vertices.

The weighted contribution, however, is introduced in Fault-

yRank to particularly address a credibility distribution prob-

lem. As we described earlier, the fundamental insight of Fault-

yRank is if a node a points to node b by making a.prop = b.id,

then we consider the credibility of a.prop should contribute to

b.id. In addition to that, FaultyRank also considers the reverse

also works. Specifically, it leverages ID Ranks to update the

Property Ranks. This is where the reversed graph is introduced.

This makes sense because if a.prop = b.id and b.id is known

to be correct, then a.prop should be rewarded for pointing to

b. However, such an intuition might be wrong in some cases

because anyone can point to b to increase their own credibility.

If an object falsely points to b, it still gets rewarded on its

Property Ranks, which is not correct.

To address this issue, FaultyRank lowers the weights of

unpaired edges in the reverse graph to penalize the objects

which wishfully point to a high credibility object but do

not receive an acknowledgment from it. Figure 4 shows an

example. On the left, we show a normal graph that contains

paired objects a and b, which will lead to highly credible ID

Ranks and Property Ranks for both of them. At the same time,

objects a and c do not have the paired edges.

c
a b c

a b

Reveresed GraphNormal Graph

Fig. 4: An example of weighted distribution.

In the reversed graph, we can observe the unpaired edge

from a to c. Based on the original FaultyRank, a.idrank
should be equally distributed to c.proprank and b.proprank.

However, we should not treat b and c the same as b receives

an acknowledgment from a but c does not (as shown in

the normal graph). In FaultyRank, we empirically lower the

weights of unpaired edges in the reversed graph to 1
10 of

normal edges. So, in this particular case, b.proprank will

receive a.idrank∗10
11 and c.proprank will only receive a.idrank

11 .

After several iterations, such a difference will lead to a very

low c.proprank, which helps identify the root cause for such

an unpaired inconsistency.

E. FaultyRank Running Example

The right part of Figure 3 shows the execution flow of

FaultyRank on the example metadata graph, which has some

inconsistencies. It first runs on the original graph to calculate

the idrank ( 1 ), then runs on the reversed graph to calculate

the proprank ( 2 ) until it converges.

We show the results of this FaultyRank calculation in

Table II, which contains the final [idrank, proprank] values

of these four objects. From these results, we can observe that

the Property Rank of object c and ID Rank of object d are
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extremely small (0.05) compared with other objects. Such a

small value generally means the particular metadata field lacks

support from other objects and hence is more likely to be

wrong and causes the inconsistency. The results do match

well with how we manually introduced the inconsistency in

the original case, where we removed the LINKEA property of

c and changed the ID of object d.

TABLE II: ID and Property Ranks of the example graph

Object Name ID Rank (idrank) Property Rank (proprank)
Object a 0.35 0.39
Object b 0.39 0.35
Object c 0.2 0.05
Object d 0.05 0.2

These results show a key advantage of FaultyRank: it can

differentiate the root causes of the inconsistency. In Table I, we

have discussed for each paired objects, the inconsistency may

come from either side, such as the dangling reference may

occur due to a’s property or b’s id being incorrect. Existing

rule-based file system checkers can not differentiate them well

and simply use what is stored on the metadata server to

overwrite its counterparts. Using FaultyRank, we can clearly

tell the inconsistency between a and c should come from c’s
property instead of a’s id, simply because a’s id has been

correctly pointed to by another credible object b. Similarly, the

inconsistency between b and d should be from d’s id instead

of b’s property, because b’s property has correctly pointed to

a and should be correct.

F. Identifying and Fixing Inconsistency

After calculating the ranks ([idrank, proprank]) for each

graph node, the next step is to leverage these ranks to identify

the reasons for inconsistencies and repair them.

To do that, we iterate graph vertices to examine whether the

node has paired edges with all of its neighbors. The nodes with

unpaired edges will be recorded in set Schk for the next stage

of checking. This step is typically done during FaultyRank

iterations. Note that, although we do not record nodes with

paired edges, we do not assume they will always be correct.

In fact, for paired nodes a and b, it is possible that both of their

properties a.prop and b.prop are wrong but successfully point

to each other. If that happens, there will be another object c
pointing to a but missing a proper point-back from a. In this

case, the (a,c) paired will be recorded for further checking.

We then iterate through all records in Schk and check their

ID Ranks and Property Ranks. We use a threshold value

of 0.1 to determine whether the corresponding field (ID or

Property) might be incorrect. If the rank value is smaller than

the threshold, then we consider the corresponding field as the

reason for the inconsistency and repair it by overwriting its

value based on its counterpart’s value. In Figure 5, we show

an example of how this procedure works.

Here, we show a Mismatch inconsistency case, where a
and b mismatch, and its two possible reasons. From the users’

perspective, the observation is the same: a points to b, but

Fig. 5: The calculated ID Rank and Property Rank [idrank,

proprank] of two different cases, which have the same incon-

sistency observation.

b does not point back. As we have discussed in Section III,

there are actually two possible reasons for such a case: 1)

b’s property is wrong so that it does not point to a, or 2)

a’s id is wrong so that b can not point to a. LFSCK does

not differentiate them and simply uses the metadata stored on

MDS or as the parent directory to overwrite its counterpart. In

FaultyRank, however, we can accurately calculate the different

rank values for both a and b’s properties and ids. It essentially

calculates a skewed distribution of correctness among nodes

based on the existence of inconsistencies. The distribution then

helps locate the errors. In the left part of Figure 5, we can

observe b.proprank is much smaller than 0.1 and therefore

chosen to be the wrong one compared with a.id, which equals

0.42. In the right part, we can observe a.idrank = 0.03
becomes extremely small while b.proprank = 0.34 is larger.

These results directly tell us what is the root cause. Knowing

that, delivering fixes becomes simple: if one node’s property is

wrong, we find out the corresponding unpaired node and use

its id to overwrite the property; if one node’s id is wrong, we

find out the corresponding unpaired node and use its property

to overwrite the id. The fixes are shown in Figure 5 as red

dashed lines.

From this example, we can see the key for FaultyRank to

differentiate the root causes of inconsistency is the extra edges

connecting with other nodes. For example, the paired edges

between a and c suggest both a’s ID and Property are likely

to be correct, while on the other hand, b does not have other

supporters on its property. Together, they make us believe b’s
property is more likely to be the reason. That being said, if

there are only two graph nodes a and b, then the root reason

becomes a mystery and only the users may be able to know

which part is wrong. Luckily, these extra edges commonly

exist in real-world parallel file systems, such as a file not only

connects to its parent but also connects to its stripe objects; or

a directory connects with both its parent directory and child

files or directories. FaultyRank leverages them to conduct the

intelligent and accurate checking and repairing.

IV. FAULTYRANK PROTOTYPE ON LUSTRE

To validate the idea of FaultyRank in real-world large-scale

settings, we implement a prototype of FaultyRank on Lustre.

The prototype consists of three essential components as Fig. 6

shows: 1) a scanner running on all MDS and OSS servers to

extract metadata from the local server into partial graphs; 2) an
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aggregator running on MDS server to receive and combine all

partial graphs into a unified graph; 3) executing the FaultyRank

algorithm on the unified graph to identify and repair the

inconsistencies. Since the third component has been discussed,

we focus on the first two in the following subsections.

Fig. 6: The architecture of FaultyRank prototype on Lustre.

A. Extract Metadata into Graphs
Similar to many parallel file systems, Lustre relies on local

file systems, such as ldiskfs or ZFS, to store its data and

metadata. In this prototype, we focus on the ldiskfs case.

Lustre metadata are stored in two places: 1) most of them

are embedded as Extended Attributes (EA) of the local inodes,

such as LinkEA or LOVEA; 2) the DIRENT metadata between

the directory and its sub-directories or files are stored as the

content of the directory. To extract Lustre metadata, we need

to scan the extended attributes of inodes and the contents of

directories in local ldiskfs completely.
We implemented a scanner which runs in parallel on all the

Lustre MDS and OSS servers once called by users. Running

the scanner is the first step of file system checking. To run it,

users need to stop and unmount the Lustre file system, which

allows the scanner to extract coherent metadata from disks.

This means the current FaultyRank prototype is an offline

checker. This is mostly for implementation simplicity and is

not required by the FaultyRank algorithm. In the future, we

plan to investigate how to implement FaultyRank online to

further reduce file system offline time.
Once started, the scanner will scan the whole disk image

from the superblock to each logic block group. Lustre’s ldiskfs

is essentially an extended version of Ext4, so we basically use

the Ext4 disk layout to scan MDS and OSS servers. Most

of the scanning is sequential and fast as it simply iterates all

inodes and reads their Extended Attribute (EA) fields. The only

exception is once it hits a directory, the scanner will move to

the corresponding data blocks to read their DIRENT entries.
The output of the scanner is a partial graph that represents

metadata stored on that server. The partial graph is a list of

edges created during scanning. Each edge has a source vertex

and destination vertex, each representing a Lustre directory,

file, or stripe object. Since Lustre already assigns unique FIDs

to these objects, we simply use those FIDs to uniquely identify

these vertices in the partial graph. These global FIDs also help

us match vertices generated from other storage servers.

B. Aggregate Partial Graphs into a Unified Graph

The next step is to aggregate the partial graphs collected

from multiple concurrent scanners on MDS and OSS servers

into a unified graph to execute the FaultyRank algorithm.

To generate the unified graph, we let the scanners on all

OSS servers send their generated partial graphs to the MDS

server aggregator once they finish the scanning. The MDS

aggregator receives the partial graphs and simply aggregates

them together with the local MDS partial graph. Since all the

vertices have unique global FIDs, there will not be conflict

during the aggregation. After the data transfer, a global graph

is formed on the MDS server.

In addition to simply combining partial graphs on MDS, we

do one more step to re-map the graph IDs before running the

FaultyRank algorithm. In our current FaultyRank implemen-

tation, we used Compressed Sparse Row (CSR) data structure

to store the graph in DRAM for extreme performance. For

the best performance, we re-map the graph vertex IDs, which

currently are 128-bit Lustre non-continuous FIDs, to vertex

GIDs which continue from 0 to MAX VERTEX NUM-1.

This processing happens in memory and takes minimal time,

as we will show in later evaluation sections.

Note that the implementation details discussed in this sec-

tion are based on Lustre. The FaultyRank algorithm and its

idea is not limited to Lustre and can be implemented on other

parallel file systems. The calculation phase will remain the

same, but scanner and graph building components will need

to be re-designed depending on the specific file systems.

V. EVALUATIONS

In this section, we discuss the evaluations of FaultyRank on

a realistic Lustre instance. We mainly examine two aspects of

FaultyRank: 1) functionality: how well it can handle various

inconsistency cases compared with the state-of-the-art Lustre

checker LFSCK; 2) performance: how fast it runs and whether

it will be a bottleneck in large-scale file systems.

A. Evaluation Testbed and Dataset

To conduct the evaluations, we built a local Lustre cluster

with 1 MDS/MGS server and 8 OST servers as the testbed.

The MDS/MGS server uses Intel(R) Xeon(R) Bronze 3204

CPU with 128GB DRAM and 256GB local SSD. The eight

OSS servers use Intel(R) Xeon(R) CPU E5-2630 CPU with

32GB DRAM and 1TB hard disk (partially partitioned for

Lustre). Based on the hardware, we installed Lustre version

2.12.8 (with the latest LFSCK implementation) and created a

Lustre instance with a total of 2.4TB of storage space.

To create a realistic Lustre instance for evaluation, we lever-

aged the public data released by USRC (Ultrascale Systems

Research Center) from LANL national lab [18]. Specifically,

we used its Archive and NFS Metadata dataset. This dataset

contains a file system walk of LANL’s HPC systems with

detailed information such as file sizes, creation time, modifi-

cation time, UID/GID, anonymized file path, etc. The LANL

dataset includes roughly 2PB of files.
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Fig. 7: Comparison between FaultyRank and LFSCK on eight different types of inconsistency.

Although we have only 2.4TB storage space in our local

testbed, we took several key measurements to generate meta-

data that can reflect the complete LANL trace. First, we used

the actual file paths to re-create the same directory structures

in our local testbed, which leads to the same Namespace meta-

data. Second, we tried to shrink the sizes of files in the 2PB file

system without affecting the representativeness of generated

Layout metadata. Specifically, we set the stripe_size
of our Lustre directories to be extremely small (i.e., 64KB)

and stripe_count to be −1. This allows us to generate

extra stripes starting from files larger than 64KB. Since the

testbed contains 8 OSTs and each stripe is 64KB, any file

larger than 512KB (8*64KB) will create the same number of

stripes regardless of its actual size. Hence, we can shrink files

that are larger than 512KB to 512KB without affecting their

layout metadata. All files smaller than 512KB will remain the

same size and create stripes based on FILE SIZE/64KB. It

is arguable that real-world Lustre could have lots of OSTs,

hence generate lots of stripes if having many large files,

which our testbed can not represent. However, real-world

Lustre’s stripe_size is typically large (1MB by default)

and most files in PFSes are actually very small (86% under

1MB, 95% under 2MB [19]). Together, these two factors

limit the number of stripes in the real world. Our testbed,

although smaller, leveraging the minimized stripe_size,

will generate similar or even more stripes, leading to complex

and representative Layout metadata for evaluations, since it is

the size of metadata and not the data which determines the

performance of file system checkers.

B. Functionality Evaluation on FaultyRank

We first evaluated how FaultyRank can check and repair

different inconsistency scenarios compared with the state-of-

art LFSCK. In this evaluation, we manually introduced eight

inconsistent scenarios based on the failure cases discussed in

LFSCK design documents [15], which represent what LFSCK

handles in production systems. These inconsistencies match

the four categories listed in Table I as well. To introduce

the inconsistency for each case, we randomly selected one

directory/file in the generated Lustre image and modified

the Extended Attributes of corresponding ldiskfs inodes on

MDS and OSS servers. We then ran both FaultyRank and

LFSCK on these cases and recorded their behaviors. We

compared whether they could identify the root reason for the

inconsistencies and repair them. The results are summarized

in Fig. 7. In the Example Plot column, we plot both how

the faults were introduced and the [idrank, proprank] values

calculated using FaultyRank for all of the vertices. Due to the

space limits, we can not show the complete directory and file

path for each vertex. But in most of the case, the vertices at the

top indicate a directory, and the vertices at the bottom indicate

a file or a stripe object. The red vertices indicate where the

faults are actually injected. For example, in the first case of

Dangling Reference inconsistency, we modified the properties

of the parent directory, hence it has all other vertices pointing

to it but it does not point to any other vertex. FaultyRank

captures that by calculating its property rank value to be 0.0,

which indicates the error is on its property, instead of assuming

other neighbors’ IDs are wrong. From these results, we can

see across all the cases that FaultyRank is able to identify the

root faults and fix them. By comparison, LFSCK is limited in

many cases to identify the root cause or to repair the error.

C. Performance Evaluations on FaultyRank

To evaluate the performance of FaultyRank, we conducted

two sets of experiments. First, we focused on the iterative

algorithm itself and tested its performance on different graph

datasets. This gives a basic idea of how long FaultyRank may
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take for extremely large file systems. Second, we conducted

the full system evaluation on the local Lustre testbed. We ran

both LFSCK and our FaultyRank prototype to compare their

performance. Note that, we ran each experiment multiple times

to ensure consistency and reliability and reported the averages.

1) Benchmark Iterative FaultyRank Algorithm: We imple-

mented the iterative algorithm based on in-memory CSR

structure. During execution, it first reads the edge-list file from

local storage and builds the CSR format in DRAM. After

that, the algorithm will run completely in DRAM. Using CSR

leads to minimal memory usage and extremely high speed due

to CSR’s cache-friendly compact memory layout. Note that,

the graph-building time is considered part of the FaultyRank

execution time.

To benchmark the FaultyRank graph algorithm, we used

well-known graphs with different sizes to evaluate the exe-

cution time and the memory footprints. The graphs we used

include both real-world from SNAP [20] and synthetic graphs

created using R-MAT library [21], listed in Table III. We

generated the R-MAT graphs using probabilities a = 0.57,

b = 0.19, c = 0.19 (recommended by Graph500 [22]) and set

the average vertex degree to 8.

Datasets Vertex Number Edge Number

Amazon 403,393 4,886,816
Road-Net 1,971,281 5,533,214
RMAT-23 8,388,608 67,108,864
RMAT-24 16,777,216 134,217,728
RMAT-25 33,554,432 268,435,456
RMAT-26 67,108,864 536,870,912

TABLE III: Graph inputs and their key properties.

Datasets Graph Build-
ing (s)

Iterations (s) Memory Us-
age (GB)

Amazon 0.92 1.37 0.24
Road-Net 1.46 1.75 0.40
RMAT-23 31.99 21.64 3.31
RMAT-24 69.14 50.55 6.66
RMAT-25 148.80 116.92 13.3
RMAT-26 315.11 275.38 26.5

TABLE IV: FaultyRank performance and memory footprint.

The performance of FaultyRank algorithm on different

graphs is listed in Table IV. From these results, we have

two key observations. First, both the graph building and the

iterative algorithm are fast. For a graph with more than 60

million vertices and 500 million edges (RMAT-26), we can

finish the whole execution in roughly 590 seconds. If we

consider each graph vertex represents 10MB of data, such a

graph could represent a Lustre with more than 600TB of data.

Finishing the checking within 10 minutes for such a scale is

impressive. Second, we observe that running FaultyRank does

not require extreme memory space. For example, the RMAT-

26 graph with average degree of 8 takes 26.5 GB of memory,

which can be stored and processed in a single MDS server.

In the previous evaluation, we scaled the number of vertices

but fixed the average degree (i.e., 8) for all the RMAT graphs.

It is also interesting to know how FaultyRank scales if the

number of vertices is fixed but average degree changes. In

this experiment, we further benchmarked FaultyRank on the

same RMAT-26 graph but with varying average degrees (from

4 to 32). The results are listed in Table V. From these results,

we can observe that FaultyRank still scales well in terms of

execution time and memory usage. For instance, when the

average degree reaches 32, the RMAT-26 graph will have more

than 2 billion edges. For such a scale, FaultyRank can finish

execution within 45 minutes and only use 90.4GB of memory.

Avg.
Degree

Graph Build-
ing (s)

Iterations (s) Memory Us-
age (GB)

4 165.05 180.46 15.9
8 315.11 275.38 26.5
16 727.06 623.37 48.7
32 1517.02 1168.86 90.4

TABLE V: FaultyRank performance and memory footprint on

RMAT-26 graphs for varying average degree.

2) Full System Benchmark: We run LFSCK and Fault-

yRank and compare their performance. One of the main issues

of Lustre LFSCK is its slow performance when running from

scratch on a well-aged file system [7]. The slow performance

mainly comes from its design, which consists of scalability

bottleneck on the metadata server (MDS), relatively high

fan-out ratio in network utilization, and unnecessary block-

ing among internal components. Specifically, LFSCK scans,

checks, and repairs inodes individually via several closely

coupled asynchronous kernel threads. It tangles disk scanning,

network, and processing logic together. Hence, any delay in

the pipeline may block others significantly.
Our graph-based parallel file system checker design ad-

dresses these issues as a nice side effect. First, the parallel

scanners transfer the entire partial graphs in bulk only once

after building the partial graphs. Such a bulk data transfer

significantly reduces the network communication workloads.

Second, there are no multiple dependencies among the internal

components of FaultyRank. It simply conducts an iterative

graph calculation, which could be done completely in DRAM

in a single machine without complicated I/O operations. To

show the performance advantages of the graph-based checkers,

we further benchmarked the performance of FaultyRank and

LFSCK on our testbed in this experiment.
It is worth noting that FaultyRank is currently implemented

as an offline checker while LFSCK is an online checker. To

conduct a fair comparison, each time, we re-mounted the

Lustre file system and ran LFSCK to simulate a complete

LFSCK run over the whole file system. We did not run other

workloads nor limited the speed of LFSCK. For FaultyRank,

we counted the end-to-end time, starting from un-mounting

the file system until the FaultyRank algorithm converges.

The reported execution time contains three parts: 1) metadata

scanning time (Tscan); 2) graph transfer and processing time

(Tgraph); 3) FaultyRank algorithm execution time (TFR).
Table VI shows the execution time of FaultyRank (including

the detailed performance of each stage) and LFSCK towards
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Lustre file system that was increasingly aged (with more

inodes being used). Since the total number of available inodes

in our Lustre testbed is around 4 million, we stopped the

experiments at aging the file system with 4 million files. Also,

since both LFSCK and FaultyRank work on metadata only, the

taken storage space does not play a key role in performance,

we do not list the actual data usage in the testbed. From

these results, we can quickly notice that FaultyRank performs

an order of magnitude faster than LFSCK in all cases. For

instance, when there are around 2 million MDS inodes used,

running a fresh LFSCK takes around 800 seconds. While for

the same file system, the overall time taken by FaultyRank

is only around 130 seconds. We can see the trend continues

when more inodes are used in the file system.

MDS Inodes LFSCK FaultyRank Tscan Tgraph TFR

651,553 207 12.40 3.8 3.2 5.40
1,099,717 364 37.69 16.74 11.74 9.21
1,555,351 525 57.62 25.09 19.39 13.14
2,007,043 667 83.28 43.78 22.46 17.04
2,231,988 803 130.47 79.22 32.22 19.03
3,335,597 1212 213.73 134.01 51.04 28.68
4,235,925 1612 292.83 185.92 70.79 36.12

TABLE VI: The execution time (in seconds) of FaultyRank

and LFSCK on local Lustre testbed.

VI. DISCUSSIONS ON GENERALITY AND LIMITATIONS

So far, we have shown the efficiency and effectiveness

of FaultyRank. In this section, we will further discuss its

generality and limitations.

Generality. In this study, we implemented FaultyRank on

the Lustre file system and mainly compared it with Lustre’s

LFSCK. But the core idea of FaultyRank, such as the graph-

based metadata abstraction and the iterative credibility calcu-

lation, is generic to be applied to other parallel file systems.

To implement it on a different PFS, the iterative calculation

should remain the same once the metadata graph is built. But,

the scanning and graph-building phases will be different and

depend on the file system implementation. For instance, in the

case of file systems like BeeGFS [8] that also use extended

attributes (EAs) of the underlying local file systems to store

metadata, the scanning and graph-building phases will be very

similar. For parallel file systems which store metadata in a

database (e.g., PVFS [3]), the scanning and graph-building

may be implemented directly upon the existing database.

Limitations. Although FaultyRank performs well in both

functionality and speed, it still has limitations. First, its current

implementation is offline, which will require stopping and

unmounting of the file system to work. This limitation is not

fundamental and can be addressable by making scanner and

graph building incremental. In this way, we can always run the

FaultyRank algorithm on the latest snapshot of the metadata

graph [23, 24]. We plan to investigate the online FaultyRank in

the future. Second, some real-world inconsistent issues could

be too complicated and beyond the capability of FaultyRank.

For example, if multiple paired metadata are all wrong but

pointing to each other coherently, FaultyRank cannot detect it.

Existing tools would not work either. Users’ inputs are likely

necessary in such cases.

VII. RELATED WORK

FaultyRank is mainly related to the existing efforts on file

system checkers and parallel file systems. We elaborate on the

two categories of related work in this section.

Improving File System Checkers. Given the importance of

maintaining file system consistency, great efforts have been

made to optimize file system checkers [25, 26, 27, 28, 29,

30, 31, 32]. For example, Carreira et al. [25] propose a

tool called SWIFT to test file system checkers using a mix

of symbolic and concrete execution to detect bugs in five

popular checkers. Gunawi et al. [26] also find that file system

checkers may create inconsistent or even insecure repairs

and propose a more elegant design based on a declarative

query language (i.e., SQCK). Gatla et al. [29] study the fault

resilience of file system checkers and propose a transitional

library (RFSCK) to enhance them. While these works are

effective for their original goals, they only focus on local file

system checkers. Mahmud et al. [32] analyze the configuration

dependencies between file systems and the checkers. In terms

of PFS checkers, Han et al. [33] study the defects in Lustre’s

LFSCK through fault injections, which partially motivates the

design of FaultyRank. But they do not provide a solution for

building more effective or efficient PFS checkers. Therefore,

FaultyRank is complementary to the existing works.

Tool Support for Parallel File Systems. Besides file system

checkers, many other tools have been proposed to improve

parallel file systems, including instrumentation, profiling or

tracing I/O activities, fault injections, and so on [34, 35,

36, 37, 38, 10]. For example, Sun et al. [38] propose to

study the crash consistency of PFSes via replaying workload

traces. Cao et al. [10] performs fault injections to PFSes

and analyzes the failure handling mechanisms including the

behaviors of PFS checkers. In addition, many of the existing

tools originally designed for analyzing the performance of

HPC systems may also help improve PFS reliability. For

example, Darshan [34] is able to capture the I/O characteristics

of various HPC applications. Since all I/O requests are served

by the backend PFS, these captured I/O metrics could be used

to help diagnose the root causes of reliability issues in PFSes.

Overall, these existing efforts aim at improving PFSes from

different perspectives and they do not directly enhance PFS

checkers. Therefore, they are complementary to FaultyRank.

VIII. CONCLUSION AND FUTURE WORK

In this study, we present FaultyRank, a new graph-based

parallel file system checker. Different from the existing rule-

based parallel file system checker design, FaultyRank lever-

ages the graph model to represent PFS metadata and proposes

a new iterative algorithm to quantitatively calculate the cred-

ibility of each metadata field for checking and repairing. We

implemented a prototype of FaultyRank on Lustre and showed

its advantages in both functionality and speed compared with
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Lustre’s file system checker, LFSCK. In the future, we plan to

extend FaultyRank algorithm by investigating how separating

multiple properties of an object will impact its design and cor-

rectness. Also, we plan to extend FaultyRank implementation

from two aspects: 1) implement online FaultyRank on Lustre;

2) extend FaultyRank to other widely used parallel file systems

and benchmark the performance.
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