
Early Exploration of Using ChatGPT for Log-based
Anomaly Detection on Parallel File Systems Logs
Chris Egersdoerfer
cegersdo@uncc.edu

University of North Carolina at
Charlotte

Charlotte, NC, USA

Di Zhang
dzhang16@uncc.edu

University of North Carolina at
Charlotte

Charlotte, NC, USA

Dong Dai
ddai@uncc.edu

University of North Carolina at
Charlotte

Charlotte, NC, USA

ABSTRACT
Log-based anomaly detection has been extensively studied
to help detect complex runtime anomalies in production
systems. However, existing techniques exhibit several com-
mon issues. First, they rely heavily on expert-labeled logs to
discern anomalous behavior patterns. But labelling enough
log data manually to effectively train deep neural networks
may take too long. Second, they rely on numeric model pre-
diction based on numeric vector input which causes model
decisions to be largely non-interpretable by humans which
further rules out targeted error correction.
In recent years, we have witnessed groundbreaking ad-

vancements in large language models (LLMs) such as Chat-
GPT. These models have proven their ability to retain con-
text and formulate insightful responses over entire conver-
sations. They also present the ability to conduct few-shot
and in-context learning with reasoning ability. In light of
these abilities, it is only natural to explore their applicabil-
ity in understanding log content and conducting anomaly
classification among parallel file system logs.
ACM Reference Format:
Chris Egersdoerfer, Di Zhang, and Dong Dai. 2023. Early Explo-
ration of Using ChatGPT for Log-based Anomaly Detection on
Parallel File Systems Logs. In Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Comput-
ing (HPDC ’23), June 16–23, 2023, Orlando, FL, USA. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3588195.3595943

1 DESIGN AND PRELIMINARY RESULTS
Key Design and Implementation. To detect the anom-
alies, we used a fixed size window to scan the incoming logs.
For each log window, there are two primary parts: Context

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0155-9/23/06.
https://doi.org/10.1145/3588195.3595943

Creation and Active Analysis. Both of these are conducted
by directly querying the LLM (i.e., ChatGPT) [1]. During
Context Creation, we seek to maintain a useful memory of
past logs (long-term context) to be used during the analysis
of the current window of logs. This is done by requiring
the LLM to constantly re-summarize the important system
events described in historical logs. During Active Analysis,
we use the previously described summary, as well as the im-
mediate to-be-analyzed logs, as input to prompt the model to
create an output which includes a prediction of current sys-
tem status and a detailed description of reasoning behind the
prediction. Additionally, we ask the model to produce a list
of log indices in the current window which are anomalous
in the same output.
The key benefits to our solution are twofold: 1) avoiding

the need for expert labelled training data entirely; 2) creating
highly interpretable and useful output which can be easily
understood by system administrators.
1. Context Creation. One of the primary limitations of to-
day’s LLMs is their re-initialization at each query, limiting
their immediate context to the static token input length they
were designed with. For instance, ChatGPT maximally con-
tains 4096 tokens. To circumvent this issue, we maintain a
summary-based memory which the LLM updates with each
sequential window and carries to the next round of prompt-
ing. More specifically, when the first window of logs arrives,
the LLM is prompted to summarize the content of the logs.
When the next window of logs arrives, the LLM is prompted
to create a combined summary of the summary from the
previous window and the new log messages which have ar-
rived. This process is repeated for each window of logs. In
practice, the LLM often uses this information to recognize
repetitive system behavior and even to classify anomalies
as part of systemic issues as opposed to local errors. The
specific prompt given to the LLM to generate and maintain
this summary is shown in Figure 1.
2. Active Analysis. After creating the summary-based con-
text, we include it as part of the active analysis prompt
used for anomaly detection. Figure 2 shows the complete
prompt template. Within this template, {historic_summary}

https://doi.org/10.1145/3588195.3595943
https://doi.org/10.1145/3588195.3595943


HPDC ’23, June 16–23, 2023, Orlando, FL, USA Chris Egersdoerfer, Di Zhang, and Dong Dai

Figure 1: Context Creation summary prompt template

represents the aforementioned summary-based context, {win-
dow_size} represents the number of logs in each log window,
{file_system} represents the name of the file system from
which the logs originate, and {log_window} represents the
actual logs in the current window of logs. This prompt consis-
tently returns highly accurate and detailed responses without
log preprocessing or model training.

Figure 2: Active Analysis prompt template

Preliminary Results. Our Preliminary evaluation is set
up similarly to common evaluation processes of previous
SOTA anomaly detection frameworks. Specifically, we feed a
sliding window of 10 logs at a time to our system and parse
its four outputs. We use OpenAI’s gpt-3.5-turbo model as
our LLM and conduct evaluation on a dataset originating

from the Lustre file system which has been used in previous
work [2]. The results are compared to those of NeuralLog,
DeepLog, and SentiLog. The results presented in Fig 3 show
that our system achieves the best performance among all
three approaches. Additionally, our system provides a human
interpretable explanation of each error it predicts as well as
a written summary of processes recorded in the logs both of
which have not been a feature of any previous or related ap-
proaches. These allow for far greater overall interpretability
of the system and its faults as it is running. A sample of the
historic summary as well as all four LLM prompt outputs
are represented in Fig 4.

Figure 3:Comparison of performancewith other approaches

Figure 4: An output example.

Acknowledgment. We thank the anonymous reviewers for
their insightful feedback. This work was supported in part
by NSF under grants CNS-2008265 and CCF-1908843.

REFERENCES
[1] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.

2018. Improving language understanding by generative pre-training.
[2] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. 2021. SentiLog:

Anomaly detecting on parallel file systems via log-based sentiment
analysis. In Proceedings of the 13th ACM Workshop on Hot Topics in
Storage and File Systems (HotStorage’21).


	Abstract
	1 Design and Preliminary Results
	References

