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Motivation &
Background

* Introduction of HPC batch job schedulers
« Challenges of existing schedulers
« Background of Reinforcement Learning
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HPC Batch Job Scheduler
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HPC Batch Job Scheduler

Smallest Job First(Small)

Job Queue (Waiting Jobs)

‘Job; | [Jobj ||iJobg | ---s--- Computing Nodes

S1 e 2,'_;,83

HPC

= Batch Job
Scheduler

ny |

-_—— - _———— - - — o —

— S: job submission time

. Yes, nodes are enough for the current job.
— n: the number of processors that a job requests

— r: job’s runtime estimation (or upper bound) from users



HPC Batch Job Scheduler
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HPC Batch Job Scheduler
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Motivation Example
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Motivation

Job Queue (Waiting Jobs)
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Without Inspector
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Challenges
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Reinforcement Learning
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David Silver, et. al. Mastering the game of Go with deep neural
networks and tree search, Nature vol. 529 (2016)

Volodymyr Mnih, et. al. Playing Atari with Deep Reinforcement
Learning arXiv:1312.5602 (cs)

From https://www.selfdrivingcars360.com/how-autonomous-
vehicles-fit-into-our-ai-enabled-future/

14



S

DIRLAB

W\

SchedInspector
Design

« Overview of Schedlnspector
 Design of State and Reward
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Our Contribution

 The first scheduling inspector for HPC
systems.

* New optimizations of the state and reward
to enable efficient RL training.

« Extensively evaluations on efficiency,
stability and interpretability of
Schedlnspector.
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Design of State DIRLAB

Je: Scheduled Job
RT: Rejected Times
CA: Cluster Avail.
Run: Runnable

Naive Features Compacted Features
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SchedInspector QD: Queue Delay
BF: Backfilling
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Design of Reward
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Evaluation &
Analysis

» Usability
 Efficiency
* Interpretability
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How is the performance on various job traces?
How is the performance for different scheduling

policies?
How is the performance of different metrics?

——

How fast and stable can Schedlnspector converge?
What pattern it is in the training of Schedlnspector?

aaaaa
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What does Schedinspector learn and

what we can learn from it?
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Testing for Different Job Traces and DIRLAB
Policies
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Schedlnspector has significant
improvement for the two

scheduling policies on all job
traces.
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Impact on System Utilization -

SJF F1
BASE | INSP ‘ A i BASE | INSP A
Schedulingfwithout Bhckfilling
SDSC-SP2 | 59.64% | 59.37%|| -0.27% || 60.18% | 60.59% || +0.41%
CTC-SP2 | 51.35% | 49.92%|| -1.43% || 54.40% | 54.23%
Lublin 61.49% | 61.06% || -0.43% || 67.37% | 63.047%4) -4.33%
HPC2N | 23.72% | 23.47%|| -0.25% || 24.00% | 23.79%
Schedulinlg with Badkfilling
SDSC-SP2 | 78.45% | 78.37%|| -0.08% || 76.71% | 76.93% || +0.22%
CTC-SP2 | 74.98% | 74.89%|| -0.09% || 75.47% | 76.05% || +0.58%
Lublin 79.38% | 77.71% || -1.67% || 80.38% | 78.08% | -2.30%
HPC2N | 56.81% | 57.10% || +0.29% || 57.11% | 56.57% | -0.54%

S

321_1.2 38.7 DIRLAB

: 88% Improvement
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200

Schedlnspector has barely

noticeable reduction (1%
difference) on system utilization
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Training on Different Job Traces DIREAE
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Schedlnspector converges in all of the workloads within

100 training epochs and different job traces have different
converge pattern.
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Training on Different Scheduling Policies "
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Schedlnspector converges in all scheduling policies.

For some scheduling policies, the converged value is near
0 and the rejection ratio is low.
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Training for Different Metrics DIREAE
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Schedlnspector converges towards two new metrics but with
different patterns.



Evaluation
Outline

Interpretability
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What SchedlInspector Learns

CDF of input features.
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Schedlnspector has obvious patterns for different

features which indicates the effectiveness of
feature selection Y
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Summary

* We introduces scheduling inspector to integrate runtime factor
into existing batch job scheduling.
e https://github.com/DIR-LAB/SchedInspector

 We conducted extensive evaluations to show how
SchedIinspector performs on various job scheduling policies
under various workloads.

» We carefully analyze and summarize the statistical rules
learned by Schedlnspector.


https://github.com/DIR-LAB/deep-batch-scheduler
https://github.com/DIR-LAB/SchedInspector
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