
1

A Study of Failure Recovery and Logging of

High-Performance Parallel File Systems

RUNZHOU HAN, OM RAMESHWAR GATLA, MAI ZHENG, Iowa State University
JINRUI CAO, State University of New York at Plattsburgh
DI ZHANG, DONG DAI, North Carolina University at Charlotte
YONG CHEN, Texas Tech University
JONATHAN COOK, New Mexico State University

Large-scale parallel file systems (PFSes) play an essential role in high performance computing (HPC). However,
despite the importance, their reliability is much less studied or understood compared with that of local storage
systems or cloud storage systems. Recent failure incidents at real HPC centers have exposed the latent defects
in PFS clusters as well as the urgent need for a systematic analysis.

To address the challenge, we perform a study of the failure recovery and logging mechanisms of PFSes in
this paper. First, to trigger the failure recovery and logging operations of the target PFS, we introduce a black-
box fault injection tool called PFault, which is transparent to PFSes and easy to deploy in practice. PFault
emulates the failure state of individual storage nodes in the PFS based on a set of pre-defined fault models,
and enables examining the PFS behavior under fault systematically.

Next, we apply PFault to study two widely used PFSes: Lustre and BeeGFS. Our analysis reveals the unique
failure recovery and logging patterns of the target PFSes, and identifies multiple cases where the PFSes are
imperfect in terms of failure handling. For example, Lustre includes a recovery component called LFSCK to
detect and fix PFS-level inconsistencies, but we find that LFSCK itself may hang or trigger kernel panics when
scanning a corrupted Lustre. Even after the recovery attempt of LFSCK, the subsequent workloads applied to
Lustre may still behave abnormally (e.g., hang or report I/O errors). Similar issues have also been observed in
BeeGFS and its recovery component BeeGFS-FSCK. We analyze the root causes of the abnormal symptoms
observed in depth, which has led to a new patch set to be merged into the coming Lustre release. In addition,
we characterize the extensive logs generated in the experiments in details, and identify the unique patterns
and limitations of PFSes in terms of failure logging. We hope this study and the resulting tool and dataset
can facilitate follow-up research in the communities and help improve PFSes for reliable high-performance
computing.

CCS Concepts: • Computer systems organization → Reliability; Secondary storage organization.

Additional Key Words and Phrases: Parallel File Systems, File System Checkers, Reliability, Failure Handling,
Logging, High Performance Computing, Storage Systems

Authors’ addresses: Runzhou Han, Om Rameshwar Gatla, Mai Zheng, {hanrz,ogatla,mai}@iastate.edu, Iowa State University,
613 Morrill Rd, Ames, Iowa, 50011; Jinrui Cao, will_cao@nmsu.edu, State University of New York at Plattsburgh, 101
Broad St, Plattsburgh, New York, 12901; Di Zhang, Dong Dai, {dzhang16,dong.dai}@uncc.edu, North Carolina University
at Charlotte, 9201 University City Blvd, Charlotte, North Carolina, 28223; Yong Chen, {yong.chen}@ttu.edu, Texas Tech
University, 2500 Broadway, Lubbock, Texas, 79409; Jonathan Cook, jcook@cs.nmsu.edu, New Mexico State University, 1780
E University Ave, Las Cruces, New Mexico, 88003.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1553-3077/2022/1-ART1 $15.00
https://doi.org/10.1145/3483447

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

https://doi.org/10.1145/3483447

1:2 R. Han, et al.

ACM Reference Format:

Runzhou Han, Om Rameshwar Gatla, Mai Zheng, Jinrui Cao, Di Zhang, Dong Dai, Yong Chen, and Jonathan
Cook. 2022. A Study of Failure Recovery and Logging of High-Performance Parallel File Systems. ACM Trans.
Storage 1, 1, Article 1 (January 2022), 44 pages. https://doi.org/10.1145/3483447

1 INTRODUCTION

Large-scale parallel file systems (PFSes) play an essential role today. A variety of PFSes (e.g.,
Lustre [1], BeeGFS [2], OrangeFS [3]) have been deployed in high performance computing (HPC)
centers around the world to empower large-scale I/O intensive computations. Therefore, the
reliability of PFSes is critically important.

However, despite the prime importance, the reliability of PFSes is much less studied or understood
compared with that of other storage systems. For example, researchers [4–12] have studied and
uncovered reliability issues in different layers of local storage systems (e.g., RAID [5], local file
systems [6, 7]) as well as in many distributed cloud systems (e.g., HDFS [13], Cassandra [14],
ZooKeeper [15]). However, to the best of our knowledge, there is little equivalent study on PFSes.
This raises the concern for PFSes which are built atop of local storage systems and are responsible
for managing large datasets at a scale comparable to cloud systems.

In fact, in a recent failure incident at an HPC center (HPCC) in Texas [16], multiple storage clusters
managed by the Lustre parallel file system [1] suffered severe data loss after power outages [17].
Although many files have been recovered after months of manual efforts, there are still critical data
lost permanently, and the potential damage to the scientific discovery is unmeasurable. Similar
events have been reported at other HPC centers [18–20]. Such failure incidents suggest the potential
defects in the failure handling of production PFSes as well as the urgent need for a systematic study.

Motivated by the real problem, we perform a study of the failure handling mechanisms of PFSes
in this paper. We focus on two perspectives: (1) the recovery of PFS, which is important for ensuring
data integrity in PFS under failure events; (2) the logging of PFS, which is important for diagnosing
the root causes of PFS anomalies after recovery (e.g., I/O errors or data loss).
The first challenge is how to trigger the failure recovery and logging operations of PFSes in a

systematic way. While many methods and tools have been proposed for studying distributed cloud
systems [8–12, 21–23], we find that none of them is directly applicable to PFSes, largely due to the
unique architecture and complexity of PFSes. Major PFSes are designed to be POSIX-compliant
to support abundant HPC workloads and middleware (e.g., MPI-IO [24]) transparently with high
performance. To this end, they typically include operating system (OS) kernel modules and hook
with the virtual file system (VFS) layer of the OS. For example, Lustre [1] requires installing
customized Linux kernel modules on all storage nodes to function properly, and the local file
system Ext4 must be patched for Lustre’s ldiskfs backend [25]. Such close interleaving and strong
dependency on the OS kernel makes existing methodologies designed for user-level distributed
systems (e.g., HDFS) difficult to use for studying PFSes in practice. For instance, CORDS [21] inject
faults to cloud systems via a customized FUSE file system, which is incompatible to major PFSes.

Also, different from many cloud systems [14, 26, 27], PFSes do not maintain redundant copies of
data at the PFS level, nor do they use well-understood, consensus-based protocols [23] for recovery.
As a result, existing methodologies that rely on the specifications of well-known fault-tolerance
protocols (e.g., the gossip protocol [14]) are not applicable to PFSes. See §2, §6 and §7 for further
discussion.
To address the challenge, we introduce a fault injection tool called PFault, which follows a

black-box principle [28] to achieve high usability for studying PFSes in practice. PFault is based on
two key observations: (1) External failure events may vary, but only the on-drive persistent states
may affect the PFS recovery after rebooting; therefore, we may boil down the generation of various

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

https://doi.org/10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:3

external failure events to the emulation of the device state on each storage node. (2) Despite the
complexity of PFSes, we can always separate the whole system into a global layer across multiple
nodes, and a local system layer on each individual node; moreover, the target PFS (including its
kernel components) can be transparently decoupled from the underlying hardware through remote
storage protocols (e.g., iSCSI [29], NVMe/Fabric [30]), which have been used in large-scale storage
clusters for easy management of storage devices. In other words, by emulating the failure states of
individual storage nodes via remote storage protocols, we can minimize the intrusion or porting
effort for studying PFSes.
Based on the idea above, we build a prototype of PFault based on iSCSI, which covers three

representative fault models (i.e., whole device failure, global inconsistency, and network partitioning,
as will be introduced in §3.2.2) to support studying the failure recovery and logging of PFSes
systematically. Moreover, to address the potential concern of adding iSCSI to the PFS software
stack, we develop a non-iSCSI version of PFault, which can be used to verify the potential impact
of iSCSI on the behavior of the target PFS under study.
Next, we apply PFault to study two major production PFSes: Lustre [1] and BeeGFS [2]. We

apply the three fault models to different types and subsets of nodes in the PFS cluster to create
diverse failure scenarios, and then examine the corresponding recovery and logging operations
of the target PFS meticulously. Our study reveals multiple cases where the PFSes are imperfect.
For example, Lustre includes a recovery component called LFSCK [31] to detect and fix PFS-level
inconsistencies, but we find that LFSCK itself may hang or trigger kernel panics when scanning
a post-fault Lustre. Moreover, after running LFSCK, the subsequent workloads applied to Lustre
may still behave abnormally (e.g., hang or report I/O errors). Similarly, the recovery component of
BeeGFS (i.e., BeeGFS-FSCK) may also fail abruptly when trying to recover the post-fault BeeGFS.
In terms of logging, we find that both Lustre and BeeGFS may generate extensive logs during

failure handling. However, different from modern cloud systems which often use common libraries
(e.g., Log4J [32]) to generate well-formatted logs, the logging methods and patterns of PFSes are
diverse and irregular. For example, Lustre may report seven types of standard Linux error messages
(e.g., EIO, EBUSY, EROFS) across different types of storage nodes in the cluster, while BeeGFS may
only log two types of standard messages on limited nodes under the same faults. On the other
hand, BeeGFS may generate more customized error messages, some of which are equivalent to the
standard Linux errors. By characterizing the PFS logs in details based on the log sources, content,
fault types, and locations, we identify multiple cases where the log messages are inaccurate or
misleading, which suggests new opportunities for log enhancement and log-based analysis.
More importantly, based on the substantial PFS logs, PFS source code, and the feedback from

PFS developers, we are able to identify the root causes of a subset of the abnormal symptoms
observed in the experiments (e.g., I/O error, reboot). The in-depth root cause analysis has clarified
the resource leak problem observed in our preliminary experiments [33], and has led to a new
patch set to be merged into the mainline Lustre release [34].

To the best of our knowledge, this work is the first comprehensive study on the failure recovery
and logging mechanisms of production PFSes widely used in HPC centers. By developing a practical
tool and applying it to systematically analyze multiple versions of representative PFSes in depth,
we identify the common limitations as well as the opportunities for further improvements. We
hope that this study, including the open-source PFault tool and the extensive collection of PFS
failure logs 1, can raise the awareness of potential defects in PFSes, facilitate follow-up research

1The latest prototype of PFault and the experimental logs are publicly available at https://git.ece.iastate.edu/data-storage-
lab/prototypes/pfault

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:4 R. Han, et al.

in the communities, and help improve Lustre, BeeGFS, and HPC storage systems in general for
reliable high-performance computing.

The rest of the article is organized as follows. In §2, we discuss the background and motivation;
In §3, we introduce the PFault tool; In §4, we describe the study methodology based on PFault; In
§5, we present the study results of Lustre and BeeGFS; In §6, we elaborate on the lessons learned
and the opportunities for further improvements; §7 discusses related work and §8 concludes the
paper. In addition, for interested readers, we characterize the extensive failure logs collected in our
experiments in appendix §A.

2 BACKGROUND ANDMOTIVATION

2.1 Parallel File Systems

Parallel file systems (PFSes) is a critical building block for high performance computing. They
are designed and optimized for the HPC environment, which leads to an architecture different
from other distributed storage systems (e.g., GoogleFS [26], HDFS [13]). For example, PFSes are
optimized for highly concurrent accesses to the same file, and they heavily rely on hardware-level
redundancy (e.g., RAID [35]) instead of distributed file system level replication [26] or erasure
coding [27]. We use Lustre [25] and BeeGFS [2], two representative PFSes with different design
tradeoffs, as examples to introduce the typical architecture of PFSes in this section.

2.1.1 Lustre and LFSCK. Lustre dominates the market share of HPC centers [36], and more
than half of the top 100 supercomputers use Lustre [37]. A Lustre file system usually includes the
following components:

• Management Server (MGS) and Management Target (MGT) manage and store the configura-
tion information of Lustre. Multiple Lustre file systems in one cluster can share the MGS and
MGT.
• Metadata Server (MDS) and Metadata Target (MDT) manage and store the metadata of Lustre.
MDS provides request handling for local MDTs. There can be multiple MDSs/MDTs since
Lustre v2.4. Also, MGS/MGT can be co-located with MDS/MDT.
• Object Storage Server (OSS) and Object Storage Target (OST) manage and store the actual
user data. OSS provides the file I/O service and the network request handling for one or
more local OSTs. User data are stored as one or more objects, and each object is stored on a
separate OST.
• Clients mount Lustre to their local directory and launch applications to access the data in
Lustre; the applications are typically executed on login nodes or compute nodes which are
separated from the storage nodes of Lustre.

Different from most cloud storage systems (e.g., HDFS [13], HBase [38], Cassandra [14]), the
major functionalities of Lustre server components are closely integrated with the Linux kernel to
achieve high performance. Moreover, Lustre’s ldiskfs backend modifies Ext4 and heavily relies
on the extended attributes of Ext4 for metadata. Such close interleaving with the OS kernel makes
analyzing Lustre challenging.

Traditionally, high performance is the most desired metric of PFSes. However, as more and more
critical data are generated by HPC applications, the system scale and complexity keeps increasing.
Consequently, ensuring PFS consistency and maintaining data integrity under faults becomes
more and more important and challenging. To address the challenge, Lustre introduces a special
recovery component called LFSCK [31] for checking and repairing Lustre after faults, which has
been significantly improved since v2.6. Similar to the regular operations of Lustre, LFSCK also
involves substantial functionalities implemented at the OS kernel level.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:5

Typically, a Lustre cluster may include one MGS node, one or two dedicated MDS node(s), and
two or more OSS nodes, as shown in the target PFS example in Figure 1a (§3.1). And LFSCK may be
invoked on demand to check and repair Lustre after faults. We follow such setting in this study. Note
that LFSCK may also be invoked automatically by Lustre under certain conditions. For example,
the oi_scrub procedure of LFSCK may be triggered to scan all objects on the device when an
error is found during object index (OI) lookup operations; also, in case there is an error when
accessing the LAST_ID file on OST, LFSCK will attempt to repair it based on the existing objects on
the OST [25]. We explicitly invoke LFSCK with a tunable delay in this study to ensure that all the
LFSCK procedures are executed.

2.1.2 BeeGFS and BeeGFS-FSCK. BeeGFS is one of the leading PFSes that continues to grow
and gain significant popularity in the HPC community [39]. Conceptually, a BeeGFS cluster is
similar to Lustre in the sense that it mainly consists of a management server (MGS), at least one
metadata server (MDS), a number of storage servers (OSS) and several client nodes. BeeGFS also
includes kernel modules to achieve high performance and POSIX compliance for clients. In addition,
a BeeGFS cluster may optionally include other utility nodes (e.g., an Admon server for monitoring
with a graphic interface). For simplicity, we use the same acronym names (i.e., MGS, MDS, OSS) to
describe equivalent storage nodes in Lustre and BeeGFS in this study.

Facing the same challenge as Lustre to guarantee PFS-level consistency and data integrity, BeeGFS
also has a recovery component called BeeGFS-FSCK. Different from Lustre’s LFSCK, BeeGFS-FSCK
collects the PFS states from available servers in parallel, stores them into a user-level database (i.e.,
SQLite [40]), and issues SQL queries to check for potential errors in BeeGFS, which is similar to
the principle of SQCK [41]. Similar to invoking LFSCK, we explicitly invoke BeeGFS-FSCK in this
study to ensure that it is fully executed. For simplicity, we use FSCK to refer to both LFSCK and
BeeGFS-FSCK in the rest of the paper.

2.2 Limitations of Existing Efforts

PFS Test Suites. Similar to other practical software systems, PFSes typically have built-in test
suites. For example, Lustre has a testing framework called “auster” to drive more than two thousand
active test cases [1]. Similarly, BeeGFS includes a rich set of default tests as well as third party
tests [39]. However, most of the test suites are unit tests or micro-benchmarks for verifying the
functionality or performance of the PFS during normal execution. There are limited cases designed
for exercising error handling code paths, but they typically require modifying the PFS source code
(e.g., enabling debugging macros, inserting function hooks), which is intrusive. Moreover, they aim
to generate one specific function return error to emulate a single buggy function implementation
within the source code, instead of emulating external failure events that the entire PFS cluster may
have to handle (e.g., power outages or hardware failures). Therefore, existing PFS test suites are
not enough for studying the failure recovery and logging mechanisms of PFSes.
Studies of Other Distributed Systems. Great efforts have been made to understand other
distributed systems (e.g., [9, 10, 21–23, 42–48]), especially modern cloud systems (e.g., HDFS [13],
Cassandra [14], Yarn [49], ZooKeeper [15]). Different from PFSes, most of the heavily-studied
distributed systems [13–15, 49] are designed from scratch to handle failure events gracefully in the
cloud environment where component failures are the norm rather than exception [26]. To this end,
the cloud systems typically do not embed customized modules or patches in the OS kernel. Instead,
they consist of loosely coupled user-level modules with well-specified protocols for fault tolerance
(e.g., the leader election in ZooKeeper [15], the gossip protocol in Cassandra [14]). Such clean
design features have enabled many grey-box/white-box tools [28] which leverage well-understood
internal protocols or specifications to analyze the target systems effectively [9, 10, 22, 23, 48].

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:6 R. Han, et al.

Unfortunately, while existing methods are excellent for their original goals, we find that none of
them can be directly applied to PFSes in practice. We believe one important reason is that PFSes
are traditionally designed and optimized for the HPC environment, where performance is critically
important and component failures were expected to be minimal. Such fundamental assumption
has led to completely different design tradeoffs throughout the decades, which makes existing
cloud-oriented efforts sub-optimal or inapplicable for PFSes. More specifically, there are multiple
reasons as follows.
First, as mentioned in §1, major PFSes are typically integrated with the OS kernel to achieve

high performance and POSIX-compliance. The strong interleaving and dependency on the local
storage stack cannot be handled by existing methods designed for user-level distributed systems
without substantial engineering efforts (if possible at all).

Second, PFSes tend to integrate reliability features incrementally with regular functionalities
without using well-known fault-tolerance protocols. For example, there is no plugable erasure
coding modules (as in HDFS 3.X [50]) or explicit consensus-based protocols [23] involved at the
PFS layer. Instead, PFSes heavily rely on local storage systems (e.g., patched local file systems
and checkers [51]) to protect PFS metadata against corruption on individual nodes, and leverage
the FSCK component to check and repair corruptions at the PFS level. Moreover, most of the
functionalities of FSCK may be implemented in customized kernel modules together with regular
functionalities [52]. Such monolithic and opaque nature makes existing tools that rely on well-
understood distributed protocols or require detailed knowledge of internal specifications of the
target system difficult to use for studying PFSes in practice [9, 10, 22].
Third, many cloud systems are Java-based and they leverage common libraries for logging

(e.g., Log4J [32]). The strongly typed nature of Java and the unified logging format have enabled
sophisticated static analysis on the source code and/or system logs for studying cloud systems [10].
However, PFSes are typically implemented in C/C++ with substantial low-level code in the OS
kernel which is challenging for static analysis. Moreover, as we will detail in later sections (§5
and §A), PFSes tend to use diverse logging methods with irregular logging formats, which makes
techniques depending on clean logs [10] largely inapplicable.
In summary, we find that existing methods are sub-optimal for studying the failure handling

of PFSes due to one or more constraints: they may (1) only handle user-level programs (e.g., Java
programs) instead of PFSes containing OS kernel modules and patches; (2) require modifications to
the local storage stack (e.g., using FUSE [53]) which are incompatible to major PFSes; (3) rely on
language-specific features/tools that are not applicable to major PFSes; (4) rely on common logging
libraries (e.g., Log4J [32]) and well-formatted log messages that are not available on major PFSes;
(5) rely on detailed specifications of internal protocols of target systems, which are not available
for PFSes to the best of our knowledge. See §6 and §7 for further discussion.

2.3 Remote Storage Protocols

Remote storage protocols (e.g., NFS [54], iSCSI [29], Fibre Channel [55], NVMe/Fabric [30]) enable
accessing remote storage devices as local devices, either at the file level or the block level. In
particular, iSCSI[29] is an IP-based protocol allowing one machine (i.e., the iSCSI initiator) to
access the remote block storage on another machine (i.e., the iSCSI target) through the internet.
To everything above the block device driver layer (which is not patched by the PFS) on the initiator
machine, iSCSI is completely transparent. In other words, file systems including PFSes can be built
on iSCSI devices without any modification. We leverage this property to make PFault practical
and efficient for studying real-world PFSes.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:7

Management
Server

& Target
(MGS/MGT)

Metadata
Server

& Target
(MDS/MDT)

Object Storage
Server

& Target
(OSS/OST)

…
Target Parallel File System (PFS) on Storage Nodes

virtual
device

(3) PFS Checker

(2) PFS Worker

(1) Failure State Emulator
Virtual Device

Manager
…virtual

device
virtual
device

virtual
device

PFault

Target PFS
on Storage

Nodes (3) PFS Checker

(2) PFS Worker

(1’) Non-iSCSI
Failure State Emulator

PFault

(a) iSCSI-based PFault (b) Non-iSCSI PFault

physical
device

physical
device

physical
deviceFault

ModelsiSCSI

(4)
OrchestratorOSS/OST

OSS/OST
OSS/OST

(4’) Non-iSCSI
Orchestrator

Fig. 1. Overview of PFault. The shaded boxes are the major components of PFault. (a) the iSCSI version
enables manipulating PFS images efficiently; (b) the non-iSCSI version enables verifying the potential impact of
iSCSI on the target PFS.

3 HOW TO TRIGGER PFS FAILURE HANDLING AND LOGGING OPERATIONS

In this section, we describe the design and implementation of the PFault tool which enables us to
perform a systematic study. As mentioned in §1 and §2, the first challenge we encountered when
we initiated the study is that none of existing tools, including the official PFS test suites and the
extensive research prototypes (§2.2), can be applied to analyze the failure behaviors of production
PFSes like Lustre without substantial modifications (if not impossible). To address the challenge, we
design and implement PFault with the following three key goals, which we believe are critically
important for studying the failure behaviors of PFSes in practice:
• Usability. Applying a tool to study PFSes can take a substantial amount of efforts due to
the complexity of the PFS cluster; PFault aims to reduce the burden as much as possible.
To this end, PFault makes a key tradeoff to view the target PFS as a black box [28]. It does
not require any modification or instrumentation of the PFS code, nor does it require any
specification of the recovery protocols of PFS (which is often not documented well).
• Generality. By leveraging the iSCSI driver which is transparent to most OS kernel modules,
PFault can be applied to study different PFSes with little porting effort, no matter how strong
the interleaving is between the distributed layer and the local kernel components of the PFS.
• Fidelity. PFault can emulate diverse external failure events (e.g., metadata corruptions,
network partitioning) with high fidelity without changing the PFS itself (i.e., non-intrusive).

3.1 Overview

Figure 1 shows the overview of PFault and its connection with a target PFS under study. To make
the discussion concrete, we use Lustre as an example of the target PFS, which includes three types
of storage nodes (i.e., MGS/MGT, MDS/MDT, OSS/OST) as described in §2.1.
There are two versions of PFault: an iSCSI-based version (Figure 1a) and a non-iSCSI version

(Figure 1b). The iSCSI version controls the persistent states of the PFS nodes via iSCSI and enables
studying the failure recovery and logging mechanisms of the PFS efficiently, while the non-iSCSI
version can be used to verify the potential impact of iSCSI on the target PFS.

As shown in Figure 1a, the iSCSI-based PFault includes four major components. (1) The Failure
State Emulator is responsible for injecting faults to the target PFS. It mounts a set of virtual devices
to the storage nodes via iSCSI and forwards all disk I/O commands to the backing files through the
iSCSI protocol. Each backing file is one regular image file maintained on the PFault server and
configured as the backend device for the iSCSI target (§2.3), which represents the persistent state
of a corresponding virtual device. Moreover, the Failure State Emulator manipulates the backing
files and emulates the failure state of each virtual device based on the workloads and a set of
predefined fault models. (2) The PFS Worker launches workloads to exercise the PFS and generate

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:8 R. Han, et al.

I/O operations. (3) The PFS Checker invokes the recovery component (i.e., FSCK) of the PFS as
well as a set of verifiable workloads to examine the recoverability of the PFS. (4) The Orchestrator
coordinates the overall workflow and collects the corresponding logs automatically. We discuss the
details of the four components in §3.2, §3.3, §3.4, and §3.5, respectively.
Figure 1b shows the non-iSCSI version of PFault, which differs from the iSCSI version in the

Failure State Emulator and the Orchestrator components. We discuss the key difference in §3.6 and
summarize the overall workflow in §3.7.

3.2 Failure State Emulator

To study the failure recovery and logging of the PFS, it is necessary to generate faults in a systematic
way. Thanks to the great efforts in understanding real-world storage system failures [4, 5, 56–62],
we can model a set of representative scenarios at different granularity relatively easily. However,
the real challenge is how to build a practical tool to inject the desired faults to the PFS cluster
with high usability, generality, and fidelity (i.e., the three important goals described earlier in §3).
While various fault injectors have been proposed in the communities [4, 10, 21, 23, 42–46], we
find that they are not directly applicable to PFSes due to a number of practical constraints (e.g.,
cannot handle PFS’s kernel modules, require detailed specifications, as explained in §2.2). Based on
our key observations on the unique architecture of PFSes, we identify a low-level software layer
(i.e., iSCSI) that enables us to implement automatic fault injection on different PFSes with diverse
granularity (e.g., file-level metadata corruptions, device- and node-level crashes, and cluster-level
network partitioning). More specifically, PFault reduces various failure events to the states of
storage devices via Failure State Emulator, which mainly includes two sub-components: Virtual
Device Manager and Fault Models (Figure 1a) as follows:

3.2.1 Virtual Device Manager (VDM). This sub-component manages the states of iSCSI virtual
devices to enable efficient failure emulation. The persistent state of the target PFS depends on the
I/O operations issued to the devices. To capture all I/O operations in the PFS, the VDM creates
and maintains a set of backing files, each of which is corresponding to one storage device used in
the storage nodes. The backing files are mounted to the storage nodes as virtual devices via the
iSCSI protocol [29]. Thanks to iSCSI, the virtual devices appear to be ordinary local block devices
from the PFS perspective. In other words, PFault is transparent to the PFS (including its kernel
components) under study.

All I/O operations in the PFS are eventually translated into low-level disk I/O commands, which
are transferred to the VDM via iSCSI. The VDM updates the content of the backing files according
to the commands received and satisfies the I/O requests accordingly.
Note that the virtual devices can be mounted to either physical machines or virtual machines

(VMs) via iSCSI. In the VM case, the entire framework and the target PFS may be hosted on one
single physical machine, which makes studying the PFS with PFault convenient. This design
philosophy is similar to ScaleCheck [48] which leverages VMs to enable scalability testing of
distributed systems on a single machine.

3.2.2 Fault Models. This sub-component defines the failure events to be emulated by PFault.
For each storage node with a virtual device, PFault manipulates the corresponding backing file
and the network daemon based on the pre-defined fault models. The current prototype of PFault
includes three representative fault models as follows:
(a)Whole Device Failure (a-DevFail). This is the case when a storage device becomes inaccessible
to the PFS entirely, which can be caused by a number of reasons including RAID controller failures,
firmware bugs, accumulation of sector errors, etc [4, 5, 56].

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:9

Since PFault is designed to decouple the PFS from the virtual devices via iSCSI, we can simply
log out the virtual devices to emulate this fault model. More specifically, PFault uses the 𝑙𝑜𝑔𝑜𝑢𝑡
command in the iSCSI protocol (§2.3) to disconnect the backing file to the corresponding storage
node, which makes the device inaccessible to the PFS immediately. Also, different types of devices
(i.e., MGT, MDT, OST) may be disconnected individually or simultaneously to emulate device
failures at different scales. By leveraging the remote storage protocol, PFault can emulate different
scenarios automatically without any manual effort.
(b) Global Inconsistency (b-Inconsist). In this case, all storage devices are still accessible to the
PFS, i.e., the I/O requests from the PFS can be satisfied normally. Also, the local file system backend
(e.g., Ext4-based ldiskfs for Lustre) on each storage node is consistent. However, the global state
of the PFS, which consists of all local states, is inconsistent from the PFS perspective.
Because PFSes are built on top of (patched) local file systems, PFSes typically rely on local

file systems to maintain the local consistency. For example, the local file system checker (e.g.,
e2fsck[63] for ldiskfs) is required to be executed on every storage node before invoking PFS
FSCK. In other words, it is perhaps unreasonable to expect PFS FSCK to be able to recover the PFS
properly when a local file system is broken. Therefore, in this model we intentionally enforce that
every local file system in the PFS cluster must be consistent locally. Note that this is different from
existing works which emulate abnormal local file systems (e.g., return errors on local file system
operations [21, 23]).
The global inconsistency scenarios may be caused by a variety of reasons. For example, in a

data center-wide power outage [17], the local file systems on individual storage nodes may be
corrupted to different degrees depending on the PFS I/O operations at the fault time. Similarly,
besides power outages, local file systems may also be corrupted due to file system bugs, latent
sector errors, etc [4, 56, 64]. The corruptions of the local file system need to be checked and repaired
by the corresponding local file system checker. However, the local checker only has the knowledge
of local metadata consistency rules (e.g., ldiskfs follows Ext4’s rules), and it can only manipulates
the local state on each node independently. While running the local checker may bring all local file
systems back to a locally consistent state, it may (unintentionally) break the global consistency rules
of PFS due to its local repair operations (e.g., skipping incomplete journal transactions, recycling a
corrupted local inode, moving a local file to the “lost+found” directory). As a result, the global
consistency across PFS nodes may be compromised.

To emulate the fault model effectively and efficiently, PFault uses two complementary approaches
as follows:
(1) PFault invokes the debugging tool of the local file system (e.g., debugfs [65] for Ext4)

to manipulate the local states on selected nodes. The debugging tool allows “trashing” specific
metadata structures of the local file system for regression testing. We make use of such feature to
randomly corrupt a given percentage of total on-disk files’ inode fields. After introducing local
corruptions, we invoke the checking and repairing utility of the local file system (e.g., e2fsck [51])
to repair local inconsistencies and thus bring the local file system back to a (locally) healthy state.

(2) PFault invokes Linux command line utilities (e.g., rm) to randomly delete a given percentage
of on-disk files entirely on selected nodes. This is to emulate the repairing effect of the local file
system where the local checker may move a corrupted local file to the “lost+found” directory,
making it “missing” from the PFS’ perspective. Since the delete operations are regular operations
supported by the local file system, the local file system remains consistent. By deleting different
local files (e.g., various object files, links) on different types of nodes (i.e., MGS, MDS, OSS), we can
easily introduce a wide range of global inconsistencies while maintaining the local consistency.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:10 R. Han, et al.

The two approaches have their tradeoffs. Since the debugging tool can expose accurate type
information of the metadata of the local file system, the first approach allows PFault to manipulate
the local metadata structures directly and comprehensively. However, introducing corruptions
to local metadata directly may cause severe damage beyond the repairing capability of the local
file system utility (e.g., e2fsck). Consequently, the local image may be “too broken” to be used
for further analyzing the global consistency of PFS, and the entire analysis workflow has to be
stopped. Such interruption is one major limitation in our preliminary prototype [33] that makes
the workflow inefficient. In contrast, the second approach always maintains a usable and consistent
local file system state by focusing only on a subset of all possible scenarios, which makes studying
the global inconsistency issues of PFS efficient. We use a mix of both approaches in this work.
(c) Network Partitioning (c-Network). This is a typical failure scenario in large-scale networked
systems [66], which may be caused by dysfunctional network devices (e.g., switch [67]) or hanging
server processes among others [62]. When the failure happens, the cluster splits into more than
one “partitions” which cannot communicate with each other.

To emulate the network partitioning effect, PFault disables the network card(s) used by the PFS
on selected nodes through the network daemon, which effectively isolates the selected nodes to
the rest of the system.
Summary & Expectation. The three fault models defined above represent a wide range of real-
world failure scenarios [4, 5, 56–62]. By emulating these fault models automatically, PFault enables
studying the failure recovery and logging of the target PFS efficiently. Note that in all three cases,
PFault introduces the faults from outside of the target PFS (e.g., iSCSI driver below the target
PFS’s local modules), which ensures the non-intrusiveness to the target PFS. Also, since there are
multiple types of storage nodes (e.g., MGS, MDS, OSS) in a typical PFS, a fault may affect the PFS
in different ways depending on the types of nodes affected. Therefore, PFault allows specifying
which types of nodes to apply the fault models through a configuration file. In this study, we cover
the behaviors of PFSes when faults occurred on each and every type of PFS nodes (§5).

Since PFSes are traditionally optimized for high performance, one might argue that it is perhaps
acceptable if the target PFS cannot function normally after experiencing these faults. However, we
expect the checking and repairing component of the target PFS (e.g., LFSCK [31] for Lustre and
BeeGFS-FSCK [2] for BeeGFS) to be able to detect the potential corruptions in PFS and response
properly (e.g., do not hang or crash during checking). Also, we expect the corresponding failure
logging component to be able to generate meaningful messages. We believe understanding the
effectiveness of such failure handling mechanisms is a fundamental step towards addressing the
catastrophe occurred at HPC centers in practice [17].

3.3 PFS Worker

Compared with a fresh file system, an aged file system is more representative of real-world file
system usage [68, 69]. Also, an aged file system is more likely to encounter recovery issues under
fault due to the more complicated internal state. Therefore, the PFS Worker invokes data-intensive
workloads (e.g., unmodified HPC applications) to age the target PFS and generate a representative
state before injecting faults. Internally, the PFS distributes the I/O operations to storage nodes,
which are further transferred to the Virtual Device Manager as described in §3.2.1.

Besides unmodified data-intensive workloads, another type of useful workloads is customized
applications specially designed for examining the recoverability of the PFS. For example, the
workload may embed checksums in the data written to the PFS. The checksums can be used by the
end user to identify the potential corruptions of files stored in the PFS directly. In this way, the
integrity of the user data can be verified without relying on the report of the target PFS (which

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:11

might be incorrect). The current prototype of PFault includes examples of both types of workloads,
which will be described in details in §4.3.

3.4 PFS Checker

Similar to local file systems, maintaining internal consistency and data integrity is critical for
large-scale storage systems including PFSes. Therefore, PFSes typically include a FSCK component
(e.g., LFSCK, BeeGFS-FSCK, PVFS2-FSCK) to serve as the last line of defense to recover PFS after
faults (§2.1).
The PFS Checker of PFault invokes the default FSCK component of the target PFS to recover

the PFS after injecting faults with a tunable delay (i.e., the FSCK delay). Note that if the FSCK
component is not designed or implemented properly (which is not uncommon as will be discussed
§5), the FSCK itself may hang and thus disturb the automatic workflow of PFault. Therefore, the
PFS Checker of PFault includes a tunable time threshold to kill the FSCK procedure in case it
becomes non-responsive. Moreover, to verify if the default FSCK can recover PFS properly, the
PFS Checker also invokes a set of customized and verifiable checking workloads to access the
post-FSCK PFS. This enables examining the PFS’ recoverability from the end user’s perspective
based on the responses of the workloads without relying on FSCK or PFS logs. Examples of such
workloads include I/O intensive programs with known checksums for data or known return values
for I/O operations. More details will be described in §4.3. Note that the workloads may also become
non-responsive because the default FSCK may not be able to fully recover the target PFS. Therefore,
PFault also includes a time threshold to kill the non-responsive workloads.

3.5 Orchestrator

To reduce the manual effort as much as possible, the Orchestrator component controls and coordi-
nates the overall workflow of PFault automatically. First, the Orchestrator controls the formatting,
installation, deployment of all PFS images via iSCSI to create a valid PFS cluster for study. Next, it
coordinates the other three components (i.e., PFS Worker, Failure State Emulator, PFS Checker) to
apply workloads, emulate failure events, and perform post-fault checks accordingly as described in
§3.3, §3.2, and §3.4. In addition, it collects the extensive logs generated by the target system during
the experiment and classifies them based on both time (e.g., pre-fault, post-fault) and space (e.g.,
logs from MGS, MDS, or OSS) for further investigation.

3.6 Non-iSCSI PFault

By leveraging the remote storage protocol (§2.3), PFault can create a target PFS cluster and perform
fault injection testing with little manual effort. While remote storage protocols including iSCSI are
transparent to the upper-layer software by design, one might still have concern on the potential
impact of iSCSI on the failure behavior of the target PFS. To address the concern, we develop a
non-iSCSI version of PFault for verifying the PFS behavior without iSCSI.
As shown in Figure 1b, the target PFS is deployed on the physical devices (instead of virtual

devices) of PFS nodes in case of non-iSCSI PFault. The PFS Worker and PFS Checker are the same
as that of the default iSCSI-based version, while the Failure State Emulator and the Orchestrator are
adapted to avoid iSCSI.
Specifically, the emulation methods of the three fault models (§3.2.2) are adapted to different

degrees. First, Network Partitioning (c-NetWork) can be emulated without any modification because
disabling network card(s) is irrelevant to iSCSI. Second, the emulation of Global Inconsistency (b-
Inconsist) is modified to access the local file system on the physical device of a selected storage node
directly, instead of manipulating an iSCSI virtual image file. Third,Whole Device Failure (a-DevFail)
cannot be emulated conveniently without iSCSI (or introducing other modification to the local

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:12 R. Han, et al.

software stack), so we have to leave it as a manual operation. The Orchestrator component is split
accordingly to enable inserting manual operations (e.g., unplug a hard drive) between automatic
steps (e.g., applying pre-fault and post-fault workloads on PFS). Since the non-iSCSI PFault is
designed only for verification purpose, we expect the low-efficient manual part to be acceptable.

3.7 Putting It All Together

In this subsection, we summarize PFault’s overall workflow including both iSCSI-based version
and non-iSCSI-based version. Since both versions share a number of common steps, we summarize
them together in Algorithm 1.
First of all, there are multiple inputs needed to execute the PFault workflow, including the

PFault mode ‘𝑀 ’ (i.e., iSCSI or non-iSCSI), a set of PFS cluster configurations ‘𝐶’ (e.g., the number
of PFS nodes, the hostname and IP address of each node), a set of PFault internal configurations
(e.g., fault model ‘𝐹 ’, target node ‘𝑁 ’ to apply the fault, time threshold ‘𝑇 ’ for determining hang).
We omit other minor parameters (e.g., delay time for invoking FSCK) for clarity. The outputs of the
workflow include a status file (i.e., ‘𝑆𝑇𝐴𝑇_𝑅𝐸𝐶’) recording the target PFS and FSCK’s behaviors
as well as a set of log files (i.e., ‘𝐿𝑂𝐺_𝑅𝐸𝐶’) collected at different steps of the workflow. Note that
the entire workflow is controlled by the Orchestrator (§3.5) which is invisible in Algorithm 1 for
simplicity.

More specifically, the workflow includes the following major steps as shown in Algorithm 1:
(1) Cluster Setup (line 3 to 8): If PFault is executed in iSCSI-based mode, we first connect each

PFS node to a virtual device via iSCSI. In case of non-iSCSI mode, no special iSCSI setup is needed
because we directly use the physical devices on the nodes. Then, PFault formats the PFS devices
(either iSCSI devices or physical devices) and mounts the formatted PFS based on the PFS commands
and configurations.
(2) Pre-Fault Stage (line 9 to 11): The PFS Worker described in §3.3 (i.e., ‘PWorker’) applies

aging and verifiable workloads to wear the brand-new PFS and to enable verifying post-FSCK PFS
behavior later, respectively. Moreover, PFault collects all the logs after applying the workloads,
which consists of normal logs generated during the cluster setup and regular I/O operations before
fault injection (i.e., ‘𝐿𝑂𝐺_𝑅𝐸𝐶.1’).

(3) Fault Injection (line 12 to 20): The Failure State Emulator described in §3.2 (i.e., ‘FSE’) applies
a specified fault model 𝐹 to the specified target node(s) 𝑁 . For a-DevFail, in iSCSI-based mode (line
13, 14), PFault automatically disconnects the iSCSI device to emulate a whole device failure; in
non-iSCSI mode (line 15, 16), PFault prompts to user and wait for the user to manually remove the
physical device. In terms of the other two fault models (i.e., b-Inconsist and c-Network from line
17 to 20), there is no difference between iSCSI mode and non-iSCSI mode since the iSCSI layer is
transparent in the two scenarios.

(4) PFS Recovery (line 21 to 25): The PFS Checker described in §3.4 (i.e., ‘PChecker’) invokes the
PFS’ FSCK component (after a tunable delay) to recover the PFS (line 21). If the FSCK component
hangs for more than a time threshold (‘T’), it kills the process to continue the workflow (i.e.,
‘𝐾𝑖𝑙𝑙_𝑈𝑝𝑜𝑛_𝐻𝑎𝑛𝑔(𝑇)’ in line 22). The behavior of FSCK is recorded in 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 (line 23). Also,
the PFS logs and FSCK logs generated during the recovery are recorded in 𝐿𝑂𝐺_𝑅𝐸𝐶 (line 24 and
25).

(5) Post-FSCK Verification (line 26 to 30): Besides running FSCK, PFS Checker executes additional
post-FSCK workloads to further verify the PFS status after recovery (§3.4). Similar to the previous
steps, hanging workloads will be killed after a time threshold. The behavior of the post-FSCK
workloads is recorded in 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 (line 28), which enables further verifying the PFS status based
on the workload responses without relying on PFS FSCK report. The PFS logs generated during the
post-FSCK workloads are also recorded for further analysis (line 29).

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:13

Algorithm 1: PFault Workflow
1 Input: PFault modes𝑀 which inludes iSCSI mode and non-iSCSI mode; PFS cluster

configuration 𝐶; fault model 𝐹 ; target node(s) 𝑁 ; time threshold 𝑇
Output: 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 records PFS and FSCK status and behaviors; 𝐿𝑂𝐺_𝑅𝐸𝐶 records logs

generated by PFS and FSCK;
2 Workflow PFault(𝑀,𝐶, 𝐹, 𝑁 ,𝑇)
3 if 𝑀 is 𝑖𝑆𝐶𝑆𝐼 then

/* iSCSI mode requires every PFS node to establish one iSCSI virtual device */

4 𝑖𝑆𝐶𝑆𝐼_𝑠𝑒𝑡𝑢𝑝 ();
5 else

/* non-iSCSI mode uses local physical devices directly so no iSCSI setup is needed */

6 𝑠𝑘𝑖𝑝;
7 𝐹𝑜𝑟𝑚𝑎𝑡_𝑃𝐹𝑆 (𝐶);
8 𝑀𝑜𝑢𝑛𝑡_𝑃𝐹𝑆 (𝐶);

/* PFS Worker applies aging and verifiable workloads */

9 PWorker.𝑎𝑔𝑖𝑛𝑔;
10 PWorker.𝑣𝑒𝑟𝑖 𝑓 𝑖𝑎𝑏𝑙𝑒 ;

/* record logs before fault injection (phase 1) */

11 𝐿𝑂𝐺_𝑅𝐸𝐶.𝑝ℎ𝑎𝑠𝑒1← PFS_Log_Dump(C);
12 if 𝐹 is 𝑎-𝐷𝑒𝑣𝐹𝑎𝑖𝑙 then
13 if 𝑀 is 𝑖𝑆𝐶𝑆𝐼 then

/* disconnect the iSCSI virtual device automatically in iSCSI mode */

14 FSE.𝐷𝑒𝑣𝐹𝑎𝑖𝑙 (𝑁);
15 else

/* in non-iSCSI mode, wait for manual removal of physical device */

16 𝑝𝑎𝑢𝑠𝑒 ;

17 if 𝐹 is 𝑏-𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡 then
18 FSE.𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡 (𝑁);
19 if 𝐹 is 𝑐-𝑁𝑒𝑡𝑤𝑜𝑟𝑘 then

20 FSE.𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (𝑁);
21 PChecker.𝐹𝑆𝐶𝐾 ;
22 𝐾𝑖𝑙𝑙_𝑈𝑝𝑜𝑛_𝐻𝑎𝑛𝑔(𝑇);

/* record FSCK status; record PFS logs and FSCK logs (phase 2) */

23 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 ← PChecker.𝐹𝑆𝐶𝐾.𝑠𝑡𝑎𝑡𝑢𝑠;
24 𝐿𝑂𝐺_𝑅𝐸𝐶.𝑝ℎ𝑎𝑠𝑒2← PFS_Log_Dump(C);
25 𝐿𝑂𝐺_𝑅𝐸𝐶.𝑝ℎ𝑎𝑠𝑒2← FSCK_Log_Dump(C);

/* apply post-FSCK workloads to further verify the PFS status; record workload behaviors;

record PFS logs (phase 3) */

26 PChecker.𝑝𝑜𝑠𝑡𝐹𝑆𝐶𝐾.𝑤𝑘𝑙𝑑 ;
27 𝐾𝑖𝑙𝑙_𝑈𝑝𝑜𝑛_𝐻𝑎𝑛𝑔(𝑇);
28 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 ← PChecker.𝑝𝑜𝑠𝑡𝐹𝑆𝐶𝐾.𝑠𝑡𝑎𝑡𝑢𝑠;
29 𝐿𝑂𝐺_𝑅𝐸𝐶.𝑝ℎ𝑎𝑠𝑒3← PFS_Log_Dump(C);
30 return 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 , 𝐿𝑂𝐺_𝑅𝐸𝐶

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:14 R. Han, et al.

(6) Finally, the workflow ends by returning 𝑆𝑇𝐴𝑇_𝑅𝐸𝐶 and 𝐿𝑂𝐺_𝑅𝐸𝐶 for in-depth investigation.
Note that while the Orchestrator of PFault automates the entire workflow to a great extent, the

target PFSmay behave extremely badly during theworkflow (e.g., crash or reboot as will be discussed
in §5). In such cases, the automatic workflow may be interrupted and manual intervention may be
needed. We believe it is possible to integrate the PFault prototype with additional virtual machine
provisioning (with iSCSI mode) or bare-metal provisioning (with non-iSCSI mode) techniques to
reduce the manual intervention further, which we leave as future work.

4 EXPERIMENTAL METHODOLOGY

We build a prototype of PFault (including both iSCSI and non-iSCSI versions) and apply it to
study two representative PFSes: Lustre and BeeGFS. In this section, we introduce the experimental
platforms (§4.1), the target PFSes (§4.2), and the workloads used by PFault in this study (§4.3).
Also, we summarize the experimental efforts in §4.4 and the communications with developers in
§4.5. We defer the discussion of detailed study results to the next section (§5).

4.1 Experimental Platforms

As mentioned in §2.1, a typical production PFS cluster may include one MGS node, one or two ded-
icated MDS node(s), and two or more OSS nodes. We follow such typical setup in our experiments.

Specifically, we first create a seven-node cluster on virtual machines (VMs) hosted on one high-
end physical server (Intel Xeon Gold 2.3GHz CPU x2, 256GB DRAM, 960GB SSD, 2TB HDD). In this
seven-node main cluster, one node is used for hosting the Failure State Emulator and Orchestrator
of PFault, and another node is used as a login/compute node to host PFS Worker and PFS Checker
and to launch workloads on behalf of clients. The remaining five nodes are dedicated to the target
PFS as storage nodes, which includes one MGS node, one MDS node, and three OSS nodes. On
each storage node, there is one iSCSI virtual device mounted to serve as the corresponding target
device (i.e., MGT/MDT/OST). This VM-based cluster enables us to deploy PFSes and investigate
their behaviors using iSCSI-based PFaultconveniently.
In addition, to ensure reproducibility and to investigate the potential impact of iSCSI on the

PFS behaviors, we use another two platforms, including: (a) A twenty-node cluster created on
CloudLab [70] where 18 nodes are dedicated to the target PFS with 1 MGS, 1 MDS, and 16 OSS;
this cluster is used for verifying that the results observed in the previous private platform are
reproducible in the public cloud environment at scale. (b) A four-node cluster consisting of four
private physical servers where all physical nodes are used by the target PFS with 1 MGS, 1 MDS,
and 2 OSS; the PFault server is co-located with the PFS (i.e., on a PFS node which is not selected
for fault injection). This cluster is used for verifying the behaviors of PFSes without iSCSI, i.e., the
platform allows us to apply the non-iSCSI PFault for verification conveniently given the easy
access to physical devices on different physical servers.
All results presented in §5 and Appendix (§A) are based on experiments using the iSCSI-

based PFault on the first seven-node main cluster. Moreover, a subset with unexpected symptoms
(e.g., hang, rebooting) has been reproduced and verified on CloudLab (using iSCSI-based PFault)
and the four-physical-server cluster (using non-iSCSI PFault). The results are consistent across
different platforms and different PFault modes in our experiments. In other words, the impact
of iSCSI on the abnormal behaviors observed in our experiments is negligible, which is expected
because the iSCSI layer is transparent to the PFS kernel modules. Therefore, we do not differentiate
between iSCSI or non-iSCSI modes in the following sections.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:15

4.2 Target PFSes

We have studied three versions of Lustre (v2.8.0, v2.10.0 and v2.10.8) and one version of BeeGFS
(v7.1.3) in this work. The latest version of Lustre when we started our study was v2.8.0, which
is the first minor version of the 2.8 series (referred to as v2.8 in the rest of the paper). Lustre has
evolved to the 2.10 series in the last two years. To reflect the advancement, we apply the same set
of experiments on two additional versions: v2.10.0 and v2.10.8. For simplicity, we refer to them
together as v2.10.x in the rest of the paper. The experimental results (§5) are consistent across
versions unless otherwise specified.

In terms of local OS, we use CentOS 7.2 (Linux kernel v3.10.0-327.3.1.el7 with ldiskfs patches)
for Lustre v2.8, CentOS 7.6 (kernel v3.10.0-957.1.3.el7 with ldiskfs patches) for Lustre v2.10.x,
and CentOS 7.5 (kernel v3.10.0-1062.el7.x86_64 with Ext4) for BeeGFS v7.1.3, all of which are the
default or recommended setup for the target PFS.

4.3 Workloads

Table 1. Workloads Used for Studying Lustre and BeeGFS.

Workload Description Purpose
cp+tar+rm copy, compress/decompress, & delete files age target PFS

Montage-m101 an astronomical image mosaic engine age target PFS
WikiW-init write an initial set of Wikipedia files (w/ known MD5) generate verifiable data

WikiR read the initial Wikipedia files & verify MD5 analyze post-FSCK behavior
WikiW-async write new files asynchronously, read back & verify MD5 analyze post-FSCK behavior
WikiW-sync write new files synchronously, read back & verify MD5 analyze post-FSCK behavior

Table 1 summarizes the workloads included in the current PFault prototype for this study.
As shown in the table, cp+tar+rm is a set of common file operations (i.e., copying, compress-
ing/decompressing, and deleting files) for aging the PFS under study. Montage-m101 is a classic
HPC application for creating astronomical image mosaics [71], which is used for deriving the target
PFS to a representative state. The Wikipedia workloads (i.e., WikiW-init, WikiR, WikiW-async,
WikiW-sync) use a dataset consisting of archive files of Wikipedia [72]. Each archive file has an
official MD5 checksum for self-verifying its integrity. PFaultmakes use of such property to examine
the correctness of PFS states after executing PFS FSCK (e.g., LFSCK for Lustre, BeeGFS-FSCK for
BeeGFS).

4.4 Experimental Efforts

The current prototype of PFault is implemented as bash scripts integrating with a set of Linux
and PFS utilities (e.g., debugfs [65], LFSCK, BeeGFS-FSCK). The iSCSI-based PFault is built on
top of the Linux SCSI Target Framework [29] with additional 1168 Lines of Code (LOC) for the
Failure State Emulator, PFS Worker, PFS Checker, and Orchestrator (§3). The non-iSCSI PFault is a
variant of the iSCSI-based version, which differs in Failure State Emulator (77 LoC difference) and
Orchestrator (106 LOC difference). Note that in both versions of PFault, only about 200 LoC is
Lustre/BeeGFS specific (mainly for cluster setup and FSCK invocation).

In total, we have performed around 400 different fault injection experiments covering three fault
models (§3.2.2) on five different combinations of PFS nodes (i.e., 1 MGS node, 1 MDS node, 1 OSS
node, 3 OSS nodes, 1 MDS + 1 OSS nodes) using the seven-node main cluster. In each experiment,
we collect the logs generated by PFS and its FSCK for further analysis. As mentioned in §3.7, the
logs are collected at three different phases of each experiment with the help of PFault to enable

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:16 R. Han, et al.

thorough analysis: (1) after aging: this phase contains logs of PFS under normal condition (e.g.,
during cluster setup and the aging workloads); (2) after FSCK: this phase includes logs generated by
PFS and FSCK after fault injection; (3) after post-FSCK workloads: this phase contains logs triggered
by the post-FSCK workloads, which enables examining the PFS status based on the workload
responses without relying on the FSCK report. All experiments are repeated at least three times to
ensure that the results are reproducible.

Table 2. Numbers of Log Files Studied

Type of Log Location of Log Sum

MGS MDS OSS#1 OSS#2 OSS#3 Client
Lustre 135 135 135 135 135 135 810 Lustre + 405 LFSCK
LFSCK N/A 135 90 90 90 N/A (1,215 in total)
BeeGFS 135 135 135 135 135 135 810 BeeGFS + 90 BeeGFS-FSCK

BeeGFS-FSCK N/A N/A N/A N/A N/A 90 (900 in total)

Table 2 summarizes the subset of log files used for in-depth manual study. In total, we have
studied 1,215 log files for Lustre/LFSCK and 900 log files for BeeGFS/BeeGFS-FSCK. Lustre keeps a
log buffer on each node of the cluster, so the numbers of log files collected on different node are
the same (i.e., “135” in Lustre row). LFSCK has three steps on MDS and two steps on OSSes, and
each step generates its own status log, so the number of log files on MDS (“135”) is more than that
on OSS (“90”). Similar to Lustre, BeeGFS keeps a log file on each node for debugging purpose and
the log file is created as soon as a service or client is started. On the other hand, different from
LFSCK, BeeGFS-FSCK logs are centralized on two separate files on the client node, which makes
the collection relatively easy. A more detailed characterization of the logs is in Appendix §A.

Table 3. Configurations Used in Experiments. Columns 2 to 9 show the main configurations for
experiments; columns 10 to 14 show additional configurations for verification; the last column shows that the

results are reproducible and consistent (‘Y’).

Target Main Configurations for Experiments Additional Config. for Verification Res.
PFS Local Number of Nodes stripe stripe FSCK PFault No. of stripe stripe FSCK PFault Rep.

FS MGS MDS OSS count size delay Mode OSS count size delay Mode ?
Lustre ldiskfs 1 1 3 3 64KB 10s iSCSI 16 16 64KB 30s iSCSI Y

16 8 256KB 15s iSCSI Y
2 2 512KB 10s non-iSCSI Y
2 1 1MB 5s non-iSCSI Y

BeeGFS Ext4 1 1 3 3 64KB 10s iSCSI 16 8 64KB 30s iSCSI Y
16 8 256KB 15s iSCSI Y
2 2 512KB 10s non-iSCSI Y
2 1 1MB 5s non-iSCSI Y

In addition, as mentioned in §4.1, we have further reproduced and verified a subset of experiments
with abnormal symptoms (e.g., hang, kernel panics) on a CloudLab cluster (with the iSCSI mode
of PFault) and a four-physical-server private cluster (with the non-iSCSI mode of PFault). We
find that the abnormal symptoms are reproducible across different platforms and different modes
of PFault. We have also tuned another three parameters (i.e., stripe count, stripe size,
FSCK delay) to a wide range of non-default values, and we fine that the results are consistent
(i.e., insensitive to the parameters tuned). We summarize all the configurations that have been
used in our experiments in Table 3. Since the results are reproducible and consistent, we do not
differentiate between different configurations in the following sections. Note that we do not claim
our configurations are exhaustive. Given the complexity of PFS, there is almost an infinite number
of ways to configure a PFS cluster. But we believe that our platforms and configurations are
representative as they cover the default parameters of PFS clusters widely used in practice. More
importantly, our setups have helped identify real problems of PFS confirmed by the PFS developers
(§4.5). We discuss other hardware-dependent configuration issues further in §6.3.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:17

4.5 Confirmation with Developers

For the abnormal symptoms observed in the experiments, we try our best to analyze the root causes
based on the extensive PFS logs, source code, as well as communications with the developers. For
example, in our preliminary experiments [33, 73] we observed a resource leak problem where a
portion of the internal namespace as well as the storage space on OSTs became unusable by Lustre
after running LFSCK. We analyzed the root cause and discussed with the developers, and eventually
found that the “leaked” resources may be moved to a hidden “lost+found” directory in Lustre by
LFSCK when a parameter is set. While the resources are still not usable directly, it is no longer a
leak problem. Therefore, we skip the discussion of the issue in this article. On the other hand, our
root cause analysis of a kernel panic problem has been confirmed by developers, and a new patch
set has been generated based on our study to fix the problem in the coming Lustre release [34]. We
discuss the patch set in details in §5.2.2.

5 STUDY RESULTS

In this section, we present the study results on Lustre and BeeGFS. The results are centered around
FSCK (i.e., LFSCK and BeeGFS-FSCK) since FSCK is the major recovery component for handling
PFS level issues after faults.
First (§5.1), we analyze the target PFS including its FSCK from the end user’s perspective (e.g.,

whether a program can finish normally or not). We present the behavior of the PFS under a variety
of conditions enabled by PFault (i.e., different fault models applied on different types of storage
nodes), and identify a set of unexpected and abnormal symptoms (e.g., hang, I/O error).

Next (§5.2), we study the failure logs and the root causes of abnormal symptoms. We identify the
unique logging methods and patterns of Lustre and BeeGFS. Moreover, based on the information
derived from the logs as well as the PFS source code and the feedback from the developers, we
pinpoint the root causes of a subset of the abnormal behaviors observed (e.g., reboot).

Third (§5.3), to further understand the recovery procedures of the PFS after faults, we characterize
the FSCK-specific logs generated under the diverse conditions. By detailed characterization, we
find that FSCK logs may be incomplete or misleading, which suggests opportunities for further
improvements (§6).

In addition, we characterize the extensive logs triggered by non-FSCK components of the target
PFS in details. For clarity, we summarize the additional results in Appendix (§A).
We would like to clarify that the goal of this study is not to compare Lustre with BeeGFS or to

imply which PFS is better. We study Lustre and BeeGFS because (1) both of them are widely used
in practice and deserve our efforts, (2) neither of them is perfect in terms of failure handling as far
as we know, and (3) they represent different design tradeoffs. So we hope to identify the potential
limitations as well as the opportunities for improving both Lustre and BeeGFS. Also, we do not
claim that our results are conclusive or complete. Due to the complexity of PFSes, we believe our
results only represent a subset of all possible behaviors of Lustre and BeeGFS, and the results may
not be translated directly to interpret other PFSes. We will discuss the general lessons learned and
the opportunities for further improvements (including extending to other PFSes) in §6.

5.1 Behavior of PFS FSCK and Post-FSCKWorkloads

In this subsection, we present the behavior of LFSCK and BeeGFS-FSCK as perceived by the end
user when recovering the PFS after faults. As mentioned in §3.4 and §4.3, PFault applies a set
of self-verifiable workloads after LFSCK/BeeGFS-FSCK (i.e., post-FSCK) to further examine the
effectiveness of FSCK. While we do not expect the target PFS to function normally after faults, we

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:18 R. Han, et al.

Table 4. Behavior of LFSCK and Post-LFSCK Workloads. The first column shows where the faults are
injected. The second column shows the fault models applied. The remaining columns show the responses. “normal”:
LFSCK appears to finish normally; “reboot”: at least one OSS node is forced to reboot; “Invalid”: report an “Invalid
Argument” error; “I/O err”: report an “Input/Output error”; “hang”: cannot finish within one hour; “corrupt”:
checksum mismatch; “ ✓”: complete w/o error reported.

Node(s) Affected Fault Models LFSCK WikiR WikiW-async WikiW-sync

a-DevFail normal ✓ ✓ ✓
MGS b-Inconsist normal ✓ ✓ ✓

c-Network normal ✓ ✓ ✓
a-DevFail Invalid I/O err I/O err I/O err
a-DevFail (v2.10.x) I/O err I/O err I/O err I/O err

MDS b-Inconsist normal ✓ ✓ ✓
c-Network I/O err hang hang hang
c-Network (v2.10.x) hang hang hang hang
a-DevFail hang hang hang hang
a-DevFail (v2.10.x) normal ✓ ✓ ✓

OSS#1 b-Inconsist reboot corrupt hang hang
c-Network hang hang hang hang
a-DevFail hang hang hang hang

three a-DevFail (v2.10.x) normal ✓ hang hang
OSSes b-Inconsist reboot corrupt hang hang

c-Network hang hang hang hang
a-DevFail Invalid hang hang hang

MDS a-DevFail (v2.10.x) I/O err I/O err I/O err I/O err
+ b-Inconsist reboot corrupt hang hang

OSS#1 c-Network I/O err hang hang hang
c-Network (v2.10.x) hang hang hang hang

expect LFSCK/BeeGFS-FSCK, which is designed to handle the post-fault PFS, to be able to behave
properly (e.g., do not hang) and/or identify the underlying corruptions of the PFS correctly.

5.1.1 LFSCK. Table 4 summarizes the behavior of LFSCK and the behavior of the self-verifiable
workloads after running LFSCK. As shown in the first column, we inject faults to five different
subsets of Lustre nodes: (1) MGS only, (2) MDS only, (3) one OSS only, (4) all three OSSes, and (5)
MDS and one OSS. For each subset, we inject faults based on the three fault models (§3.2). For
simplicity, in case of only one OSS is affected, we only show the results on OSS#1; the results on
OSS#2 and OSS#3 are similar.

We add the behavior of Lustre/LFSCK v2.10.x when it differs from that of v2.8. As mentioned in
§4, we studied two subversions of 2.10.x (i.e., v2.10.0 and v2.10.8). Since the two subversions behave
the same in this set of experiments, we combine the results together (i.e., the “v2.10.x” lines).
When faults happen on MGS (the “MGS” row), there is no user-perceivable impact. This is

consistent with Lustre’s design that MGS is not involved in the regular I/O operations after Lustre
is built [25].

When faults happen on other nodes, however, LFSCK may fail unexpectedly. For example, when
“a-DevFail” happens on MDS (the “MDS” rows), LFSCK fails with an “Invalid Argument” error
(“Invalid”) and all subsequent workloads encounter errors (“I/O err”). Arguably, the workloads’
behavior might be acceptable given the fault, but the LFSCK behavior is clearly sub-optimal because
it is designed to scan and check a corrupted Lustre gracefully. Such incompleteness is consistent
with the observations on local file system checkers [41, 74].

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:19

Table 5. Behavior of BeeGFS-FSCK and Post-FSCKWorkloads. The first column shows where the faults are
injected. The second column shows the fault models applied. The remaining columns show the responses. “normal”:
BeeGFS-FSCK appears to finish normally; “aborted”: terminate with an “Aborted” error; “NoFile”: report a "No
such file or directory" error; “comm err”: report a "communication error”; “I/O err”: report an “Input/Output error”;
“hang”: cannot finish within one hour; “corrupt”: checksum mismatch; “ ✓”: complete w/o error reported.

Node(s) Affected Fault Models BeeGFS-FSCK WikiR WikiW-async WikiW-sync

a-DevFail normal ✓ ✓ ✓
MGS b-Inconsist normal ✓ ✓ ✓

c-Network hang ✓ ✓ ✓
a-DevFail normal NoFile I/O err I/O err

MDS b-Inconsist normal NoFile I/O err I/O err
c-Network aborted comm err comm err comm err
a-DevFail aborted corrupt I/O err I/O err

OSS#1 b-Inconsist normal corrupt ✓ ✓
c-Network aborted comm err comm err comm err
a-DevFail aborted corrupt I/O err I/O err

three OSSes b-Inconsist normal corrupt ✓ ✓
c-Network aborted comm err comm err comm err
a-DevFail aborted NoFile I/O err I/O err

MDS+OSS#1 b-Inconsist normal NoFile I/O err I/O err
c-Network aborted hang comm err comm err

When “a-DevFail” happens on OSS (the “OSS#1” row), v2.8 and v2.10.x differ a lot. On v2.8, LFSCK
and all workloads hang. However, on v2.10.x, LFSCK finishes normally, and all workloads succeed
(i.e., “✓”). WikiR can succeed because it reads the initial files buffered in the memory. We verify
this by unmounting and remounting the ldiskfs backend file system, which purges the buffer
cache. After remounting, running WikiR becomes “hang” (same as v2.8). This suggests that v2.10.x
has a more aggressive buffering mechanism compared with v2.8. WikiW-sync and WikiW-aync can
succeed because v2.10.x skips the missing OST and uses the remaining two OSTs for storing striped
data. We verify this by analyzing the internal data files on OSTs. Compared to the “hang” on v2.8,
this is indeed an improvement.

When “a-DevFail” happens on both MDS and OSS (the “MDS+OST#1” row), v2.8 and v2.10.x also
behave differently. The behaviors of LFSCK and subsequent workloads in v2.8 (i.e., “Invalid” and
hang”) change to “Input/Output error” (“I/O err”) on v2.10.x, which is an improvement since “I/O
err” is closer to the root cause (i.e., a device failure emulated by PFault).
When “b-Inconsist” happens on MDS (the “MDS” row), it is surprising that LFSCK finishes

normally without any warning (“normal”). In fact, LFSCK’s internal logs also appear to be normal,
as we will discuss in §5.3. Such behavior suggests that the set of consistency rules implemented in
LFSCK is likely incomplete, similar to the observation on local file system checkers [41, 74].

When “b-Inconsist” happens on OSS (the “OSS#1” row), running LFSCK may crash storage nodes
and trigger rebooting abruptly (“reboot” in the “LFSCK” column). We will discuss the root cause of
the abnormality in details in §5.2.2. Note that WikiR reports mismatched checksums (“corrupt”) in
this case. This is because OSTs store the striped data, “b-Inconsist” on OSTs affects the user data
files, which leads to checksum mismatch in the workload.

5.1.2 BeeGFS-FSCK. Table 5 summarizes the behavior of BeeGFS-FSCK and the behavior of the
workloads after running BeeGFS-FSCK. In general, we find that compared with LFSCK, BeeGFS-
FSCK’s behavior is more unified, i.e., there are fewer types of unexpected symptoms.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:20 R. Han, et al.

Specifically, when faults occur on MGS (the “MGS” row), there is little user-perceivable impact.
For example, BeeGFS-FSCK finishes normally under “a-DevFail” and “b-Inconsist” fault models
and all workloads finish successfully (i.e., “✓”). This is because MGS is mostly involved when
adding/removing nodes to/from the BeeGFS cluster. However, we do observe a difference between
BeeGFS-FSCK and LFSCK (Table 4): when applying “c-Network” to MGS, BeeGFS-FSCKmay “hang”
(i.e., no progress within one hour), while LFSCK always finishes normally. On one hand, the hang
symptom suggests that BeeGFS-FSCK is more complete because it checks the network connectivity
among all nodes including MGS in the cluster. On the other hand, such behavior implies that
BeeGFS-FSCK itself cannot handle the case gracefully.

When we apply the fault models to other nodes, there are different responses. For example, when
“a-DevFail” or “b-Inconsist” happens on MDS (the “MDS” row), BeeGFS-FSCK appears to complete
normally (“normal”). However, BeeGFS-FSCK is unable to fix the inconsistency. As a result, WikiR
may fail with an "No such file or directory" error (“NoFile”) when reading files from the client,
and WikiW-async and WikiW-sync may fail with an “Input/Output error” (“I/O err”). Also, it is
interesting to see that BeeGFS-FSCK may response to the device failure on MDS (“a-DevFail”) and
metadata inconsistency (“b-Inconsist”) in the same way (i.e., both appear to be “normal”), which
suggests that the current recovery policy is not thorough enough to identify the either of the issues.

When “a-DevFail” or ”c-Network”occurs on OSS (the “OSS#1” and “three OSSes” rows), BeeGFS-
FSCK often aborts (“aborted”). While aborting may be understandable because the data on OSSes
become unaccessible under either of the two fault models, the same simple and abrupt response is
not helpful for identifying the underlying issue of the PFS cluster, let alone fixing it. Unsurprisingly,
after FSCK, WikiR may still report checksum mismatch (“corrupt”) as the checksum is calculated
based on partial file data. WikiW-async and WikiW-sync may still encounter I/O error (“I/O err”)
as they cannot access the data on the affected OSS node(s).

5.1.3 Summary. In summary, the behaviors of Lustre and BeeGFS under the three types of faults
are diverse. The symptoms are also dependent on where the faults occur in the PFS cluster. There
are multiple cases where FSCK itself may fail unexpectedly (e.g., hang, abort) when attempting
to recover the post-fault PFS. In some cases, the FSCK may appear to complete normally without
reporting any issue, but the underlying PFS may still be in a corrupted state as exposed by the
abnormal response of the subsequent workloads (e.g., I/O error). Table 4 and Table 5 summarizes
the incompleteness of FSCK under different fault and node combinations, which may serve as a
reference for further refining FSCK capability (See §6).

5.2 Failure Logs and Root Causes

In this subsection, we first characterize the failure logs generated by Lustre and BeeGFS, and then
analyze the root causes of a subset of the abnormal symptoms described in §5.1 based on the failure
logs, the PFS source code, as well as communications with the developers.

5.2.1 Failure Logs of PFS. We observe that both Lustre and BeeGFS may generate extensive
logs during operations. Based on our investigation, Lustre maintains an internal debug buffer and
generates logs on various events (including but not limited to failure handling) on each node of the
cluster. Similarly, BeeGFS also maintains log buffers and generates extensive logs. Such substantial
logging provides a valuable way to analyze the system behavior. We collect the log messages
generated by the target PFS and characterize the ones related to the handling of failure events. In
addition to the PFS logs, we find that the FSCK component itself may produce explicit status logs
when it is invoked to recover the corrupted target PFS. For clarity, we defer the discussion of FSCK
specific logs to the next section (§5.3).

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:21

Table 6. Logging methods observed in Lustre and BeeGFS.

Sources of Log Lustre BeeGFS
kernel space user space kernel space user space

C function printk(), seq_printf() fprintf() seq_printf() printf(), fprintf()
C++ class – – – std::cerr, Logger, LogContext

Debugging Macro CDEBUG(), CERROR() – – LOG_DEBUG()

Table 7. Standard & Equivalent Error Messages Captured in PFS Failure Logs. The customized error
messages (i.e., h to k rows) are converted to the equivalent standard Linux error messages for clarity.

ID Error # Error Name Description Logged by Lustre? Logged by BeeGFS?
a 2 ENOENT No such file or directory Yes
b 5 EIO I/O error Yes Yes
c 11 EAGAIN Try again Yes
d 16 EBUSY Device or resource busy Yes
e 30 EROFS Read-only file system Yes Yes
f 107 ENOTCONN Transport endpoint is not connected Yes
g 110 ETIMEDOUT Connection timed out Yes
h CEM-2 ENOENT No such file or directory Yes
i CEM-30 EROFS Read-only file system Yes
j CEM-101 ENETUNREACH Network is unreachable Yes
k CEM-110 ETIMEDOUT Connection timed out Yes

Error appears
on OSS#2` Error appears

on OSS#1

a b c d e f g h i j k
MGS

MDS

OSS#1

3 OSSes

MDS &
OSS#1

a-DevFail b-Inconsist c-Network
Node(s)
affected

○

○

MGS

MDS

OSS#1

3 OSSes

MDS &
OSS#1

○

MGS

MDS

OSS#1

3 OSSes

MDS &
OSS#1

○ ○

L
us
tr
e
2.
8.
0

L
us
tr
e
2.
10
.8

B
ee
G
FS
7.
1.
3

Error appears
on MDS○ Error appears

on MGS
Error appears
on OSS#3

a b c d e f g h i j k

a b c d e f g h i j k

a b c d e f g h i j k

a b c d e f g h i j k

a b c d e f g h i j k

a b c d e f g h i j k

a b c d e f g h i j k

a b c d e f g h i j k

Fig. 2. Distribution of PFS Error Messages. This figure shows the distribution of 11 types of standard error
messages (i.e., ‘a’ to ‘k’) of Lustre (two major versions) and BeeGFS after applying three fault models (i.e., a-DevFail,
b-Inconsist, c-Network). The “Node(s) Affected” column shows where the faults are injected.

Logging Methods.We first look into how the logs are generated by the target PFS. Unlike modern
Java-based cloud storage systems (e.g., HDFS, Cassendra) which commonly use unified and well-
formed logging libraries (e.g., Log4J [32] or SLF4J [75]), we find that the logging methods of PFSes

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:22 R. Han, et al.

are diverse and irregular. Table 6 summarizes the major methods used for logging in Lustre and
BeeGFS. We can see that both Lustre and BeeGFS can generate logs from both kernel space and
user space. The two PFSes have a few methods in common (e.g., fprint, seq_printf), but there are
many differences. For example, Lustre uses a set of debugging macros (e.g., CDEBUG, CERROR) for
reporting errors with different levels of severity, while BeeGFS uses customized logging classes
(e.g., Logger, LogContext) in addition to debugging macro (e.g., LOG_DEBUG) for the same purpose.
Moreover, the content and formats of the logs are diverse and irregular. Detailed examples can
be found in Table 11, Table 12, and Table 13 of the Appendix (§A). Such diversity and irregularity
make analyzing PFSes behaviors based on log patterns (e.g., CrashTuner [10]) challenging. On the
other hand, it may also imply new opportunities for learning-based log analysis (See §6).
Patterns of Failure Logs. Given the diverse and irregular logs, we use a combination of three
rules to determine if a log message is related to the failure handling activities or not. First, in terms
of timing, a failure handling log message must appear after the fault injection. Second, we find
that both Lustre and BeeGFS may use standard Linux error numbers or equivalent customized
counterparts in their logging methods, so we consider logs with standard Linux error numbers or
equivalent customized errors as failure handling logs. In addition, for logs appear after the fault
injection but do not contain explicit standard or equivalent errors, we examine failure-related
descriptions (e.g., “failed”, “commit error”, see §A for detailed examples) and double check the
corresponding source code to determine their relevance. For clarify, we call the log messages that are
related to the failure handling based on the three rules above as error messages. Note that the third
rule above essentially describes the highly-customized error messages which are neither standard
nor equivalent to standard error numbers. For clarify, we discuss those messages in Appendix (§A)
and only focus on the standard messages (including the equivalent ones) in the rest of this section.

Table 7 summarizes the major standard and equivalent error messages captured in the two PFSes
after fault injection in our experiments, which includes eleven types (i.e., ‘a’ to ‘k’) in total. We
can see that Lustre mainly uses a set of seven standard Linux error numbers (e.g., ‘2’, ‘5’, ‘11’, ‘16’,
‘30’, ‘107’, ‘110’) while BeeGFS only uses two standard error numbers (i.e., ‘5’ and ‘30’). On the
other hand, BeeGFS uses a few customized error messages which can be mapped to the standard
Linux error numbers directly (i.e., row ‘h’ to ‘k’). For clarity, the customized messages have been
converted to their standard counterparts in Table 7 (e.g., ‘CEM-2’ in row ‘h’ is equivalent to the
standard error number ‘2’, both of which mean ‘No such file or directory’). The specific examples of
customized messages can be found in §A. The difference in the error message logging reflects the
different design choices of the two PFSes: although both Lustre and BeeGFS contain Linux kernel
modules, Lustre implements much more functionalities in the kernel space compared to BeeGFS.
As a result, Lustre captures more standard Linux error numbers and messages directly.

Figure 2 further shows the distribution of the error messages after injecting three types of faults
(i.e., a-DevFail, b-Inconsist, c-Network) on two major versions of Lustre and one version of BeeGFS.
The “Node(s) Affected” column shows where the faults are injected. Columns ‘a’ to ‘k’ represent
the eleven types of standard or equivalent error messages described in Table 7. The five different
symbols represent the five different PFS nodes where an error message is observed. In case an error
message is captured on multiple nodes under the same fault, we use superposition of symbols in
the corresponding cell. For example, in Lustre v2.8.0, after PFault injects a-DevFail on MGS, the
error message ‘g’ is captured on MDS, OSS#1, OSS#2 and OSS#3.
Based on Figure 2, we can clearly see that Lustre v2.10.8 generates error messages on more

nodes with more standard Linux error numbers compared to Lustre v2.8.0. For example, after
injecting a-DevFail to MDS, Lustre v2.10.8 generates error messages with ‘a’, ‘b’, ‘c’, ‘e’ on MDS,
‘f’ on MGS, and ‘g’ on MDS and all OSS nodes. On the other hand, Lustre v2.8.0 only reports ‘g’

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:23

under the same fault. This implies that Lustre v2.10.8 has enhanced the failure logging significantly
compared to v2.8.0. As discussed in the previous sections (e.g., Table 4), most faults are still not
handled properly (e.g., v2.10.x may still expose I/O errors to users after FSCK), but we believe that
the enhanced logging is one step in the right direction. As will be discussed in §5.2.2, we find that
the enhanced logging is valuable in diagnosing the issues in PFSes.
Also, it is interesting to see that ‘g’ is heavily logged in the two Lustre versions under all three

fault models. As mentioned in Table 7, ‘g’ means connection timed out, which implies that one or
more PFS nodes are not reachable. This is expected because under all fault models one or more
PFS nodes may crash, hang, or reboot, as described in Table 4. On the other hand, this observation
implies that diagnosing the root causes of failures solely based on logs may be challenging because
different faults may lead to the same error messages. Therefore, we believe that more fine-grained
logging will likely be needed to address the challenge of PFS failure diagnosis.
Compared to Lustre, the distribution of BeeGFS’s standard or equivalent error messages looks

more sparse in Figure 2. For example, only ‘h’ is captured under b-Inconsist. This confirms that
BeeGFS does not leverage standard Linux error numbers as much as Lustre does in terms of logging.
However, this does not necessarily imply that BeeGFS’s logging is less effective. In fact, we find
that BeeGFS may generate a variety of customized error messages beyond the standard set of Linux
error numbers. This reflects the trend of PFS development: Similar to many user-level cloud storage
systems (e.g., HDFS), BeeGFS has implemented more functionalities in the user space with more
customized error logging compared to the classic Lustre. Please refer to Appendix (§A) for more
concrete examples and more detailed characterization of all error messages (including non-standard
error messages).

5.2.2 Analysis of Error Propagation and Root Cause. The extensive logs collected in the
experiments provide a valuable vehicle for understanding the behavior of the target PFS. By
combining information derived from the experimental logs, the source code, and the feedback from
the developers, we are able to identify the error propagation and root causes of a subset of the
abnormal behaviors observed in our experiments. In the rest of this subsection, we further discuss
why the Lustre checker LFSCK itself may exhibit abnormal behaviors during recovery using three
specific examples (i.e., examples of “I/O err”, “hang”, “reboot” on v2.10.x in Table 4). We illustrate
the three simplified cases using Figure 3.

Specifically, Figure 3 shows the critical error propagation path of Lustre and LFSCK under three
fault scenarios, i.e., “a-DevFail” on MDS (Figure 3a), “b-Inconsistent” on OSS#1 (Figure 3b), and
“c-Network” on MDS (Figure 3c), as defined in §3.2 and §5.1. Each bold black statement represents
one internal function of Lustre, which is followed by a short description after it. The internal error
codes are highlighted in red in parentheses after the corresponding functions. PFault operations
are represented in blue. The red dash boxes highlight the key operations and errors leading to the
observable abnormal behaviors. We discuss the three scenarios one by one below.
(1) a-DevFail on MDS (“I/O err”): When “a-DevFail” occurs on MDS, Lustre fails to access the log
file immediately (“mgc_process_log” reports error number “-2”), though the error is invisible to
the client. LFSCK is able to finish the preparation of its phase 1 normally (“osc_scrub_prepare”).
However, the subsequent operations (e.g., “osc_ldiskfs_write_record”) from LFSCK require accessing
the MDT device, which cannot be accomplished because the MDT is unreachable. These operations
generate I/O errors (e.g., “-5”) that are eventually propagated to the client by MDS. As a result, the
client observes “I/O err” when using LFSCK. Right after the I/O error is reported, we observe error
number “-30” (i.e., read-only file system) on MDS. This is because the previous I/O error cannot be
handled by Lustre’s ldiskfs backend. To prevent further corruption, ldiskfs sets the file system
to read-only [25]. As a result, the subsequent workloads, including LFSCK itself and also fail on

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:24 R. Han, et al.

Inject a-DevFail
mgc_process_log (-2): fails to access log file

Start LFSCK
osd_scrub_prepare: preparation for LFSCK phase 1
osd_ldiskfs_write_record (-5): fails to write log record
osd_scrub_main (-5): fails to prepare for LFSCK
lfsck_verify_lpf (-5): fails to scan ./lustre/lost+found
osd_ldiskfs_read (-5):	fails to read from local device
lfsck_layout_reset (-30)
lfsck_namespace_reset (-30)
lfsck_namespace_prep (-30)
lfsck_post_generic (-30)

MDS

(a) a-DevFail on MDS

I/O
err

Lustre
storage
stack

Inject b-inconsist

lfsck_layout_slave_in_notify:
starts LFSCK as notified by MDT
dt_object_put:
lu_object_put:
osd_object_release:
LASSERT(!(o->oo_destroyed ==	0	
&& o->oo_inode
&& o->oo_inode->i_nlink ==	0)):

unexpected object loss

Start LFSCK
osd_scrub_prepare:	
preparation for LFSCK phase 1
lfsck_async_interpret_common:
notifies OST#1 to start LFSCK
lfsck_post_generic:	
waits for OSTs to finish LFSCK
lfsck_layout_scan_orphan(-2):
reports error on OST#1

reboot

MDS OSS#1

(b) b-Inconsist on OSS#1

Inject c-Network
ptlrpc_initiate_recovery:	
starts connection recovery
ptlrpc_connect_interpret (-110):	
recovery fails and repeat

Start LFSCK
osd_scrub_prepare
osd_scrub_main
lfsck_async_interpret… (-11):	
fails to start LFSCK on OSTs
lfsck_layout_master prep
lfsck_namespace_prep
lfsck_post_generic:	
waits for OSTs to finish LFSCK

local checking

MDS OSSes

ptlrpc_initiate_recovery:	
starts connection recovery

ptlrpc_connect_interpret(-110):	
recovery fails and repeats

hang

(c) c-Network on MDS

LFSCK fails to write checkpoint files
because ldiskfs sets the file system
read-only

Fig. 3. Internal Operations of Lustre and LFSCK After Three Types of Faults. Each bold black statement
represents one Lustre function, which is followed by a short description. Blue lines represent PFault operations. Red
dash boxes highlight the key operations leading to the abnormal symptoms observed by the end user.

write operations. Since LFSCK is supposed to handle corrupted Lustre, we believe that a more
elegant design of LFSCK could be verifying the accessibility of the device before issuing the I/O
requests, which could avoid throwing out the I/O errors to the user abruptly during LFSCK. We
discuss such optimization opportunities further in §6.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:25

Fig. 4. A Lustre patch set developed based on this study. (a) Five files have been modified in the patch set;
the last file (sanity-scrub.sh) includes a new test case generated based on our report; (b) The key modification of
the patch set in osd_handler.c.

(2) b-Inconsist on OSS#1 (“reboot"): When the fault occurs, OSS#1 does not have any abnormal
behaviors initially. When LFSCK is invoked on MDS by PFault, the LFSCK main thread on MDS
notifies OSS#1 to start a local thread (i.e., the arrow from “lfsck_async_interpret_common” on
MDS to “lfsck_layout_slave_in_notify” on OSS#1). The LFSCK thread on OSS#1 then initiates
a put operation (“dt_object_put”) to remove the object affected by the fault. The put request
propagates through the local storage stack of Lustre, and eventually reaches the “OSD” layer
(“osd_object_release”), which is the lowest layer of the Lustre abstraction built directly on top of
local file system.
The “OSD” layer (“osd_object_release”) checks an assertion (“LASSERT”) before releasing the

object, which requires that the Lustre file’s flag “oo_destoryed” and attribute “oo_inode−>i_nlink”
cannot be zero simultaneously. This is to ensure that when the Lustre object is not destroyed
(‘oo_destoryed” == 0), the corresponding local file should exist (“oo_inode−>i_nlink” != 0).

However, the two critical conditions in the assertion depend on Lustre and the local file system
operations separately. “oo_destoryed” will be set to 1 by Lustre if Lustre removes the corresponding
object, while “oo_inode−>i_nlink” will be set to 0 by local file system when the file is removed.
Under the fault model, the local file system checker may remove the corrupted local file without
notifying Lustre, leading to inconsistency between the state maintained by the local file system
and the state maintained by Lustre. As a result, the assertion fails and triggers a kernel panic,
which eventually triggers the “reboot”. This subtle interaction between the local file system checker
and LFSCK suggests that a holistic co-design methodology is needed to ensure the end-to-end
correctness. Note that our analysis of the kernel panic issue has been confirmed by Lustre developers
and a new patch set has been generated to fix the problem and other related issues based on our
analysis[34]. We elaborate more on the patch set below.
Patch Description: Figure 4 shows the details of the patch set developed to fix the unexpected
crash and related issues in Lustre. At the time of this writing, this patch set has involved five files
and has been revised and tested for 17 rounds by the developers, which implies the complexity
of the code base as well as the thoroughness of the patching procedure. As shown in Figure 4(a),

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:26 R. Han, et al.

the five files modified by the patch set include “lod_object.c”, “lu_object.c”, “osd_handler.c”,
“osd_object.c”, and “sanity-scrub.sh”. Based on our analysis, one key modification is located
in “osd_handler.c”. As shown in Figure 4(b), in function “osd_object_release”, the patch adds
the “unlikely” macro to provide hints to the compiler to optimize the branch predication. More
importantly, it replaces the diagnostic macro “LASSERT” with the debugging macro “CERROR”,
because the first assertion always triggers kernel panic when the ldiskfs on-disk inode state is
different from its in-memory copy, which is an “overly-aggressive” bad behavior as commented by
the developers. The modifications to other files include similar refinements to the error handling
code paths. The last file (i.e., “sanity-scrub.sh”) includes a new test case for sanity check derived
from our report.
Based on our understanding, replacing the assertion with an error message might be a tenta-

tive workaround solution to avoid the immediate crash and reboot. The new test case added to
“sanity-scrub.sh” is essentially a simplified procedure to emulate a specific scenario under the
‘b-Inconsist’ fault model in PFault (§3.2.2). By applying the test case in regression testing, the
developers have identified other correlated issues in the code base which might require a careful
re-design. For example, the developers observed another unexpected crash during the testing and
commented as follows: “I can’t align 0x0000000c to any of the ‘oo_inode’, ‘i_sb’, ‘s_id’, ‘oo_header’, or
‘i_ino’ fields in the parent structs ... It seems that ‘oo_header’ can be NULL in various places in the code,
and the PFID() expansion to (𝑓 𝑖𝑑)− > 𝑓 _𝑠𝑒𝑞, (𝑓 𝑖𝑑)− > 𝑓 _𝑜𝑖𝑑 , (𝑓 𝑖𝑑)− > 𝑓 _𝑣𝑒𝑟 is triggering on only
‘f_ver’ and not ‘f_seq’ (offset 0x0) or ‘f_oid’ (offset 0x8). We should really get the FID directly from the
passed-in lu_object". While the patch set is still under active revision and additional re-design may
be needed due to the complexity of the code base, the fact that PFault has helped trigger the latent
issue in production PFS and helped generate a new patch set including a new test case suggests the
effectiveness and practical impact of this work.
(3) c-Network on MDS (“hang”): When the fault occurs, MDS can notice the network partition
quickly because the remote procedure call (RPC) fails, and the RPC-related functions (e.g., functions
with “ptlrpc” in name) may report network errors and repeatedly try to recover the connection with
OSS. When LFSCK starts on MDS, its main thread has no trouble in processing the local checking
steps (e.g., functions with “osd_scrub” in name return successfully). However, when the main thread
tries to notify the OSS to start the LFSCK thread on OSS, the request cannot be delivered to OSS due
to the network partition. After finishing the local checking steps on MDS, LFSCK keeps waiting
(“lfsck_post_generic”) for the OSS’s response to proceed with global consistency checking. As a
result, the system appears to be hanging from the client’s perspective. We believe it would be more
elegant for LFSCK to maintain a timer instead of hanging forever. We discuss such optimization
opportunities further in §6.

5.3 Logs of LFSCK and BeeGFS-FSCK

In this subsection, we analyze the logs generated by LFSCK and BeeGFS-FSCK when they check
and repair the post-fault target PFS to further understand the failure handling of the PFS.

5.3.1 LFSCK Logs. In addition to the failure logs of Lustre discussed in §5.2.1, we find that LFSCK
itself may generate extensive status information in the /proc pseudo file system on the MDS and
OSS nodes [31] as well as in the debug buffer of Lustre. For clarity, in this section we use status log
to refer to LFSCK logs maintained in the /proc pseudo file system, and debug buffer log to refer to
LFSCK-triggered events in the debug buffer of Lustre. We characterize these logs in details below.

We find that there are three types of LFSCK status logs, each of which corresponds to one major
component of LFSCK: (1) oi_scrub log (oi): linearly scanning all objects on the local device and
verifying object indexes; (2) layout log (lo): checking the regular striped file layout and verifying

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:27

Table 8. Characterization of LFSCK Status Logs Maintained in /proc. The first column shows where the
faults are injected. The second column shows the fault models applied. “oi”, “lo”, “ns” represent “oi_scrub log”,
“layout log”, “namespace log”, respectively. “comp” means the log shows LFSCK “completed”; “init” means the log
shows the “init” state (no execution of LFSCK); “repaired” means the log shows “repaired three orphans”; “scan”
means the log keeps showing “scanning” without making visible progress for an hour; “scan-1” means “scanning
phase 1”; “scan-2” means “scanning phase 2”; “–" means the log is not available.

Node(s) Fault Logs on MDS Logs on OSS#1 Logs on OSS#2 Logs on OSS#3
Affected Models oi lo ns oi lo oi lo oi lo

a-DevFail comp comp comp comp comp comp comp comp comp
MGS b-Inconsist comp comp comp comp comp comp comp comp comp

c-Network comp comp comp comp comp comp comp comp comp
a-DevFail – – – init init init init init init

a-DevFail (v2.10.8) – – – comp comp comp comp comp comp
MDS b-Inconsist comp repaired comp comp comp comp comp comp comp

b-Inconsist (v2.10.8) comp comp comp comp comp comp comp comp comp
c-Network init init init init init init init init init

c-Network (v2.10.8) comp scan-1 scan-1 init init init init init init
a-DevFail scan scan-1 init – – comp scan-2 comp scan-2

a-DevFail (v2.10.8) comp scan-1 comp – – comp comp2 comp comp
OSS#1 b-Inconsist comp scan-1 scan-1 comp comp comp scan-2 comp scan-2

c-Network scan scan-1 init init init comp scan-2 comp scan-2
c-Network (v2.10.8) comp scan-1 scan-1 init init comp scan-2 comp scan-2

a-DevFail scan scan-1 init – – – – – –
three a-DevFail (v2.10.8) scan scan-1 comp – – – – – –
OSSes b-Inconsist comp scan-1 scan-1 comp comp comp comp comp comp

c-Network scan scan-1 init init init init init init init
c-Network (v2.10.8) comp scan-1 scan-1 comp comp comp comp comp comp

a-DevFail – – – – – init init init init
MDS a-DevFail (v2.10.8) – – – – – comp comp comp comp
+ b-Inconsist comp repaired scan-1 comp comp comp scan-2 comp scan-2

OSS#1 b-Inconsist (v2.10.8) comp scan-1 scan-1 init init comp scan-2 comp scan-2
c-Network init init init init init init init init init

c-Network (v2.10.8) comp scan-1 scan-1 init init comp comp comp comp

the consistency between MDT and OSTs; (3) namespace log (ns): checking the local/global
namespace consistency inside/among MDT(s). On the MDS node, all types of logs are available. On
OSS nodes, the namespace log is not available as it is irrelevant to OSTs. None of the LFSCK status
logs are generated on MGS.

Table 8 summarizes the logs (i.e., “oi”, “lo”, “ns”) generated on different Lustre nodes after running
LFSCK. Similar to Table 4, we add the v2.10.8 logs when it differs from that of v2.8 (i.e., “v2.10.8”
lines). As shown in the table, when “b-Inconsist” happens on MDS, LFSCK of v2.8 may report that
three orphans have been repaired (i.e., “repaired”) in the “lo” log. This is because the corruption
and repair of the local file system on MDS may lead to inconsistency between the MDS and the
three OSSes. Based on the log, LFSCK is able to identify and repair some of the orphan objects on
OSSes which do not have corresponding parents (on MDS) correctly. On the other hand, when
the same fault model is applied to Lustre v2.10.8 (“b-Inconsist (v2.10.8)”), LFSCK shows “comp” in
the “lo” log (instead of “repaired”). This is likely because the randomness in introducing global
inconsistencies in PFault (§3.2) leads to a different set of local files being affected on MDS. As a
result, we did not observe the orphan object case on v2.10.8.
When “a-DevFail” happens on MDS or OSS node(s), all LFSCK logs on the affected node(s)

disappear from the /proc file system, and thus are unavailable (i.e., “–”).

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:28 R. Han, et al.

Table 9. Characterization of LFSCK-triggered Logs in the Debug Buffer of Lustre v2.10.8 . Similar
to Table 5, the “Node(s) Affected” column shows the node(s) to which the faults are injected. “–” means no error
message is reported, while “x1” , “x2” and “x3” are failure messages corrsponding to the three phases of LFSCK:
oi_scrub, lfsck_layout and lfsck_namespace, respectively. The meaning and example of each message type is shown
at the bottom part of the table.

Node(s) Fault Logs on Logs on Logs on Logs on
Affected Models MDS OSS#1 OSS#2 OSS#3
MDS a-DevFail x1,x2,x3 – – –

c-Network x2 – – –
OSS#1 a-DevFail x2 x1,x2 – –

c-Network x2 – – –
three a-DevFail x2 x1,x2 x1,x2 x1,x2
OSSes c-Network x2 – – –
MDS a-DevFail x1,x2,x3 – – –
+ b-Inconsist x1,x2 – – –

OSS#1 c-Network x2 – – –
Type Meaning Message Example
x1 oi_scrub failed ...osd_scrub_file_store() sdb: fail to store scrub file, expected =... : rc = -5

...1521:osd_scrub_main() sdb: OI scrub fail to scrub prep: rc = -5
...fail to notify...for lfsck_layout start: rc = -5/-11/-30

...lfsck_verify_lpf()...scan .lustre/lost+found/ for bad sub-directories: rc = -5
...lfsck_post_generic()...waiting for assistant to do lfsck_layout post, rc = -30

x2 lfsck_layout failed ...lfsck_layout_store() ...fail to store lfsck_layout: rc = -30
...lfsck_layout_reset()...layout LFSCK reset: rc = -30

...master engine fail to verify the .lustre/lost+found/... : rc = -5
...layout LFSCK slave gets the MDT 0 status -11...

...layout LFSCK hit first non-repaired inconsistency at...
x3 lfsck_namespace failed ...lfsck_namespace_prep()...namespace LFSCK prep failed: rc = -30

...lfsck_namespace_reset()...namespace LFSCK reset: rc = -30

When LFSCK hangs (i.e., “hang” in Table 4), the logs may keep showing that it is in scanning.
We find that internally LFSCK uses a two-phase scanning to check and repair inconsistencies [31],
and the “lo” and “ns” logs may further show the two scanning phases (i.e., “scan-1” and “scan-2”).
In case the scanning continues for more than one hour without making any visible progress, we
kill the LFSCK and show the hanging phases (i.e., “scan-1” or “scan-2”) in 8.
Table 9 further summarizes the debug buffer logs triggered by LFSCK. We find that there are

three subtypes of LFSCK debug buffer logs (i.e., x1, x2, x3), which corresponds to the three phases
of LFSCK (i.e., oi_scrub, lfsck_layout, lfsck_namespace) respectively. Also, most logs are triggered on
MDS (i.e., the “MDS” column), which implies that MDS plays the most important role for LFSCK
execution and logging; and most of the triggered error messages are related to lfsck_layout (i.e.,
x2), which implies that checking the post-fault Lustre layout across nodes and maintaining data
consistency is challenging and complicated. Moreover, there are multiple types of Linux error
numbers (e.g., -5, -11, -30) logged, which implies that the lfsck_layout procedure involves and
depends on a variety of internal operations on local systems. Since LFSCK is designed to check and
repair the corrupted PFS cluster, it is particularly interesting to see that LFSCK itself may fail when
the local systems are locally correct (i.e., "b-Inconsist" row).

To sum up, we find that in terms of LFSCK status logs, in most cases (other than the two “repaired”
cases in Table 8), the logs are simply about LFSCK’s execution steps (e.g., “init”, “scan-1”, “scan”,
“comp” in Table 8), which provides little information on the potential corruption of the PFS being
examined by LFSCK. On the other hand, the corresponding debug buffer log of LFSCK is relatively
more informative (Table 9), as it may directly shows the failed operations of LFSCK. To guarantee

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:29

Table 10. Characterization of BeeGFS-FSCK Logs. The first column shows where the faults are injected.
“conn” means the log shows FSCK is connected to the server/servers; “wait” means the log shows FSCK is waiting
for mgmtd; “failed” means the log shows FSCK “connect failed”; “comp” means the output of FSCK is “normal”;
“N/A” means the FSCK hangs without generating any output file; “orphaned chunk” means “Checking: Chunk
without an inode pointing to it”; “wrong attributes” means “Attributes of file inode are wrong”; “metadata err”
means “Communication with metadata node failed”; “fetch err” means “An error occurred while fetching data
from servers”.

Node(s) Affected Fault Models Status Logs (*.log) Checking Logs (*.out)
a-DevFail conn normal

MGS b-Inconsist conn normal
c-Network wait N/A
a-DevFail conn orphaned chunk

MDS b-Inconsist conn orphaned chunk

c-Network failed metadata err

a-DevFail conn fetch err

OSS#1 b-Inconsist conn comp
c-Network failed metadata err

three a-DevFail conn fetch err

OSSes b-Inconsist conn wrong attributes

c-Network failed metadata err

MDS a-DevFail conn fetch err

+ b-Inconsist conn orphaned chunk

OSS#1 c-Network failed metadata err

that we do not miss any valuable error messages, we run LFSCK before injecting the faults to
generate a set of logs under the normal condition. Then, we compare the logs of the two runs
of LFSCK (i.e., with and without faults), and examine the difference. In most cases there are no
differences, except for minor updates such as the counts of execution and the running time of
LFSCK. Therefore, we believe the characterization of LFSCK logs is accurate.

5.3.2 BeeGFS-FSCK Logs. Unlike LFSCK which generates logs in a distributed manner (i.e., on
all MDS and OSS nodes), we find that BeeGFS-FSCK centralizes its logs on the client node. We
characterizes BeeGFS-FSCK’s logs in Table 10.
Specifically, we find that the BeeGFS-FSCK logs are grouped in two separate files on the client

node. The first file stores the status of BeeGFS-FSCK, which is relatively simple and only includes
one of three states: “conn”, “wait” and “failed” (i.e., the “Status Logs (*.log)" column). This set of
status logs is roughly equivalent to LFSCK’s status logs.
The second file stores BeeGFS-FSCK’s checking results (the "Checking Logs (*.out)" column),

which are relatively more informative. For example, when “b-Inconsist” happens onMDS (the “MDS”
and “MDS+OST#2” rows), BeeGFS-FSCK reports a message “finding a data chunk without an inode
pointing to it” (“orphaned chunk”), which correctly implies that BeeGFS is in an inconsistent state
after the fault. However, based on the logs in Table 5, BeeGFS-FSCK is unable to fix the inconsistency
(i.e., WikiR fails with an “NoFile” error when reading files from the client, and WikiW-async and
WikiW-sync fail with an “I/O err” in Table 5).

Also, it is interesting to see that BeeGFS-FSCK treats the device failure on MDS (“a-DevFail”) and
metadata inconsistency (“b-Inconsist”) in the same way (i.e., both report “orphaned chunk”). This
may lead to confusion for pinpointing the root cause because the report is the same for different
faults. In other words, more fine-grained checking or logging mechanisms may be needed.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:30 R. Han, et al.

When “a-DevFail” happens on OSS (the “OSS#1” and “three OSSes” rows), BeeGFS-FSCK reports
“errors occurred while fetching data from servers” (“fetch err”). This is reasonable because the
data on OSSes become unaccessible under the fault model.
When “b-Inconsist” occurs on three OSSes, BeeGFS-FSCK may report that the attributes of

file inode are wrong (“wrong attributes”), which suggests that BeeGFS-FSCK can detect the
inconsistency. This behavior is much accurate and useful compared with that of LFSCK under the
same scenario.

When “c-Network” happens on MDS (the “MDS” and “MDS+OSS#1” rows), BeeGFS-FSCK reports
an error message“communication with metadata node failed” (“metadata err”). This is reasonable
because MDS is not accessible under the fault model. However, when “c-Network” is applied to
OSSes (the “OSS#1” and “three OSSes” rows), BeeGFS-FSCK still reports the same message, which
may be misleading as OSS nodes are responsible for storing the user data.
In summary, we find that BeeGFS-FSCK is able to detect a number of subtle inconsistencies

in BeeGFS after faults (e.g., “orphaned chunk”, “wrong attributes”). Compared with LFSCK,
BeeGFS-FSCK can report relatively more detailed information for diagnosis. However, in some cases
the error messages are still sub-optimal, which suggests opportunities for further optimization.

6 LESSONS LEARNED AND FUTUREWORK

We have presented a comprehensive study on Lustre and BeeGFS, which has revealed their unique
failure handling and logging patterns and has led to actual enhancements of PFS. Besides the specific
contributions, this study has a number of general implications and suggests many opportunities
for further improvements. We highlight a number of general lessons learned and discuss a few
promising directions in this section.

6.1 Implications on Analyzing the Failure Handling Mechanisms of PFSes

In this study, we focus on the failure handling mechanisms of PFSes, which is mainly inspired by two
sources: (1) The real-world failure incidents causing downtime and data loss at HPC centers [17–20];
(2) The abundant research efforts exposing the failure handling issues of local and cloud storage
systems [4, 8–12, 21–23, 61, 76, 77]. By looking into the unique architecture of major PFSes, we
identify the gap between the requirements of testing PFSes and the state-of-the-art methods as
elaborated in §2. In order to bridge the gap, We find that we have to sacrifice many sophisticated
designs proposed in the literature (e.g., protocol-aware methods) due to the complexity and the
opaque nature of PFSes. Therefore, the current PFault prototype follows a black-box principle [28]
to achieve the usability, generality, and fidelity as described in §3. The fact that this work has helped
improve the leading PFS suggests that the methodology is effective in filling the void and bridging
the gap in practice.
However, the black-box approach is not perfect. In particular, we find that it is fundamentally

limited in terms of diagnosing the abnormal symptoms observed in PFSes. In this study, we have
to manually investigate the substantial logs generated during the experiments and the associated
PFS code base and documentation to understand the root causes, which is time consuming and not
scalable for complicated large-scale systems like PFSes.

As a tradeoff to the black-box approach, a grey-box or white-box approach [28] may leverage the
knowledge of the internal logic of the target program to collect feedback (e.g., code coverage) and/or
guide the generation of test inputs, which may improve the test efficiency as well as the diagnosis
of target systems. To be effective, such approaches typically require well-documented internal
specifications, strong tool support for code analysis or instrumentation (e.g., AspectJ [78] for Java
programs), etc., which remains challenging in the context of production PFSes with substantial
weakly-typed code (e.g., C) in the kernel space. Therefore, despite the limitation of the black-box

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:31

principle, we believe that our work is one fundamental step towards more sophisticated analysis
for PFSes in practice, and we hope that the extensive results collected in this work will facilitate
follow-up exploration of grey-box/white-box approaches for analyzing PFSes in the communities.

6.2 Integration with Other Tools

The prototype of PFault is designed and implemented in a modular and extendable manner. For
example, PFault invokes the local file systems utilities (e.g., debugfs [51]) to manipulate the states
of individual PFS nodes (§3.2.2), which may be replaced with other tools (e.g., customized fault
injectors) to achieve additional functionalities. Also, the modules in PFault may be integrated into
other workflows in a standalone manner beyond what is presented in this work (e.g., manipulating
the configurations of PFS nodes and collecting regular logs for performance tuning). As one concrete
example, we elaborate on the research opportunity of integration with fuzzing tools, which are
gaining significant traction recently [7, 79–85], in this subsection.

Fuzzing is a classic technique for generating effective inputs and improving the test coverage [79].
Since 1990s [86], fuzzing has been applied to study a wide range of programs [7, 79–83, 86]. In
particular, a number of fuzzing tools (i.e., fuzzers) have been proposed for practical systems including
file systems and OS kernels in recent years. For instance, Janus [80] uses two-dimensional fuzzing
which mutates both on-disk metadata and system calls to expose bugs in local file systems. Similarly,
Hydra [7] analyzes semantic bugs in local file systems through fuzzing. However, these existing
fuzzers can only handle a local file system on a single node instead of distributed PFSes.

A few researchers have tried to fuzz networked software systems. For example, Raft consensus
protocol has been fuzzed [83] through manipulation on RPC messages in a black-box manner
without feedback loop or code coverage measurement. Similarly, AFLNET [87] is a grey-box fuzzer
for network protocols used by servers. In this work, the vanilla AFL is expanded by network
communication over C Socket APIs [84], which allows the fuzzer to act as a client and enables
remote fuzzing. However, the fuzzer can only mutate the sequence of messages sent from client to
server, the input space of which is much smaller compared to the distributed storage state needed
to fuzz a PFS effectively [85].

Therefore, applying fuzzing to PFSes remains challenging. Multiple innovations are likely needed
for the integration, including reducing the size of the initial seed pool, identifying critical compo-
nents for instrumentation and collecting execution feedback, among others. One potential technique
we are exploring is the in-memory API fuzzing on a single function [79], which focuses only a
portion of the target program and thus might reduce the complexity. We leave such integration as
future work.

6.3 Analyzing Hardware-Dependent Features of PFS Clusters

In this work, we focus on studying the failure recovery and logging mechanisms of PFS from the
software perspective (e.g., the FSCK component and the logging methods). As mentioned in §4,
to ensure the reproducibility and consistency of our results, we have tried a variety of different
configurations with the resources available to us, including virtual and physical servers, private
and public platforms, PFS node counts, stripe counts, stripe sizes, iSCSI/non-iSCSI, FSCK delay,
etc., which have helped identify and fix real problems confirmed by PFS developers. On the other
hand, modern PFS clusters may include additional advanced features that require special hardware
support. For example, Lustre may be configured with a failover feature when the MDS nodes
are equipped with the remote power control (RPC) mechanism, which requires both hardware
support (e.g., IPMI/BMI device for power control) and external power management software support
(e.g., PowerMan, Corosync, Pacemaker) [25]. The failover pair shares the same storage device and
provides server process failover. Similarly, BeeGFS has an advanced feature called buddy mirroring

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:32 R. Han, et al.

with additional failover capability. Such advanced features are designed to improve the failure
handling mechanisms of PFSes and to provide additional reliability and/or availability guarantees
for PFSes. Based on our understanding, however, these mechanisms might not be able to handle
all the failure scenarios considered in this study. For example, the process failover mechanism in
Lustre is designed to provide redundancy at the process level while still sharing the physical device;
consequently, the a-DevFail fault model may still affect the Lustre cluster. Due to the limitation of
our current hardware platform, we leave the study of such hardware-dependent features as future
work.

6.4 Improving the Failure Handling Mechanisms of PFSes

We have exposed a number of limitations of PFSes in terms of failure recovery and logging in
this study, especially on the FSCK component. We may improve the corresponding mechanisms
of Lustre and BeeGFS based on the study results. For example, we find that Lustre logs can often
capture the correct fault types (e.g., network connection fails), which implies that it is possible
to detect the problem and avoid the abnormal behavior during LFSCK (e.g., “hang”). Similarly,
it is possible to eliminate the abrupt “I/O err” by verifying the existence of the device before
accessing. Along the same direction, one recent work studies the recovery rules of LFSCK in details
and proposes to improve the completeness of LFSCK accordingly [88]. In addition, PFault may
be applied to study and improve other important PFSes (e.g., OrangeFS, Ceph). Since PFault is
designed with usability and portability in mind, we expect the porting efforts to be minimal.
Also, we find that the extensive logs generated by PFSes including their FSCK components are

valuable for understanding the behaviors and diagnosing the root causes. However, as detailed in §5,
in many cases the log information may be incomplete or misleading, which suggests opportunities
for refining the logging mechanisms. In fact, the patch set created by the developers to fix the crash
problem exposed by our study (§5.2.2) is also related to the internal logging macros of Lustre (e.g.,
CERROR, LASSERT). Given the complex code base of PFSes, manually refactoring the logging code
is unlikely to be effective or scalable. Instead, automatic logging support or enhancements (e.g.,
LogEnhancer [89]) are likely needed to address the challenge, which we leave as future work.

6.5 Challenges and Opportunities for Log-Based Analysis

The extensive experimental logs generated in our study include both normal and abnormal cases,
and the PFault tool may be applied to other PFSes to generate additional failure logs. Given the
large quantity of the logs, we believe our work provides a valuable vehicle for applying learning-
based log analysis to optimize PFSes, which has proved to be promising for failure detection and
diagnosis of other large-scale systems (e.g., DeepLog [90]). In fact, SentiLog, which leverages
PFault and the associated logs, is one recent effort along this direction [91]. On the other hand,
we find that PFS logs are much more diverse and irregular than typical cloud systems logs, which
makes many existing log-based analysis methodologies (e.g., CrashTuner [10]) largely inapplicable
for PFSes. More sophisticated techniques in terms of log parsing and feature extraction [92] are
likely needed to handle the PFS logs effectively. We release the prototype of PFault as well as the
experimental logs publicly on GitLab to facilitate the follow-up research in the communities [93].

7 RELATEDWORK

In this section, we discuss related work that has not been covered sufficiently in the previous
sections.
Tools and Studies of Parallel File Systems. Due to the prime importance of PFSes, many analysis
tools have been proposed by the HPC community to improve them [94–98]. For example, there is

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:33

a variety of tools for instrumentation, profiling, and tracing of I/O activities, such as mpiP [95],
LANL-Trace [96], HPCT-IO [99], IOT [97], and TRACE [98] and so on. On the one hand, since
these tools are mostly designed for studying and improving the performance of PFSes, they cannot
emulate external failure events for studying the failure handling of PFSes as in PFault. One the
other hand, we believe that these tools may also help in reliability. For example, Darshan [100, 101]
is able to capture the I/O characteristics of various HPC applications, including access patterns,
frequencies, and duration time. Since all I/O requests are served by the backend PFS, these captured
I/O characterization may be used by PFault to further reason the behavior of the PFS and identify
the potential root causes of abnormalities observed. More recently, Sun et.al. [102] proposes to
study the crash consistency of PFSes via replaying workload traces, which may benefit from the
extensive real logs collected via PFault; also, SentiLog [91] applies sentimental analysis to detect
PFS anomalies based on the logs generated by PFault. Therefore, PFault and the existing PFS
efforts are complementary.
Tools and Studies of Other Distributed Systems. Many tools have been proposed for analyzing
distributed systems (e.g., [11, 12, 21–23, 42–47]), especially for modern Java-based cloud systems
(e.g., HDFS [13], Cassandra [14], Yarn [49], ZooKeeper [15]). While they are effective for their
original goals, few of them have been or can be directly applied to study PFSes in practice due to
one or more constraints. For examples, they may (1) only work for user-level programs, instead
of PFSes containing OS kernel modules and patches; (2) require modifications to the local storage
stack that are incompatible to major PFSes; (3) rely on Java-specific features/tools that are not
applicable to major PFSes; (4) rely on unified and well-formed logging mechanisms (e.g., Log4J [32])
that are not available on major PFSes; (5) rely on detailed specifications of internal protocols of
the target system, which are difficult to derive for PFSes due to the complexity and the lack of
documentation. We discuss a number of representative works in more details below.
As far as we know, the most relevant work is CORDS [21], where the researchers customize a

FUSE file system to analyze eight user-level distributed storage systems and find that none of them
can consistently use redundancy to recovery from faults. They inject two types of local corruptions
(i.e., zeros or junk on a single file-system block), which is similar to the global inconsistency fault
model emulated by PFault. On the other hand, the FUSE-based approach is not applicable to PFSes
which often have special requirements on the OS kernel and/or local file system features (i.e., Lustre
requires a patched version of Ext4 or ZFS).

MOLLY [103] proposes lineage-driven fault injection (LDFI) for discovering bugs in fault-tolerant
protocols of distributed systems. By rewriting protocols in a declarative language (i.e., Dedalus)
and leveraging a SAT solver, MOLLY can effectively provide correctness and coverage guarantee
for the protocols under test. However, applying LDFI to study PFSes remains challenging. Among
others, rewriting production PFS or FSCK in a declarative language is prohibitively expensive in
practice. Moreover, PFSes do not maintain redundant replica at the PFS level, nor do they use
well-specified protocols for recovery. As a result, it is difficult to derive the execution model or
correctness properties of PFS required by LDFI. On the other hand, the high-level idea of leveraging
data lineage to connect system outcomes to the data and messages that led to them could potentially
help analyze the root causes of the abnormal symptoms observed in our study.

SAMC [9] applies semantic aware model checking to study seven protocols used by Cassandra,
Yarn, and ZooKeeper. Different from the black-box approach taken by PFault, SAMC uses a white-
box approach to incorporate semantic information (e.g., local message independence) of the target
system in its state-space reduction policies. While effective in exposing deep bugs in cloud systems,
SAMC depends on detailed specifications of distributed fault-tolerance protocols, which are not
applicable to PFS and FSCK. Moreover, it requires modifying target systems using AspectJ [78],

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:34 R. Han, et al.

which is not applicable to major PFSes. In contrast, PFault focuses on emulating general external
failure events for PFSes via a black-box transparent approach, trading off fine-grained control for
usability. We leave the potential integration of model checking with PFSes as future work.
ScaleCheck [48] focuses on testing scalability bugs in distributed systems. It leverages Java

language supports (e.g., JVMTI [104] and Reflection [105]) to identify scale-dependent collections,
and makes use of multiple novel co-location techniques (e.g., single-process cluster using the
isolation support of Java class loader) to make target system single-machine scale-testable. PFault
is similar to ScaleCheck in the sense that both aim to make large distributed systems easier to
analyze with less physical resource constraints; on the other hand, the Java-specific techniques are
unlikely to be directly applicable to study PFSes which are mostly written in type-unsafe languages.
More recently, CrashTuner [10] proposes the concept of “meta-info” to locate fault injection

points for detecting crash recovery bugs in distributed systems efficiently and effectively. The
target system must be written in Java because the static analysis and instrumentation tools (i.e.,
WALA [106] and Javasist [107]) are Java-specific and rely on the strong type system of Java. While
in theory there may be similar compiler tools for instrumenting PFSes written in C/C++ (e.g.,
LLVM [108]), implementing the same idea to study PFSes with OS kernel components would
require substantial efforts (if possible at all). Moreover, the “meta-info” variables must be derived
from well-formed logs (e.g., messages with clear nodeID and taskID information generated by
Log4J [32] or SLF4J [75]), which is not applicable to PFSes because the log messages of PFSes are
diverse and irregular as exposed in our study (§5.2.1 and §A). On the other hand, the extensive
and complex logs collected in our experiments provide a valuable dataset for exploring potential
implicit “meta-info” of PFSes via sophisticated learning-based approaches as discussed in §6.
In addition, many researchers have studied the failures occurred in large-scale production

systems [20, 109–112], which provides valuable insights for emulating realistic failure events
in PFault to trigger the failure recovery and logging operations of PFSes.
Tools and Studies of Local Storage Systems. Great efforts have been made to study the bugs
or failure behaviors of local storage software and/or hardware (e.g., hard disks [56, 59], RAID [5],
flash-based SSDs [76, 112, 113], persistent memories [114], local file systems and checkers [6, 7, 41,
77, 80, 115–119]) through a variety of approaches (e.g., fault injection [64, 77], model checking [115],
formal methods [120], fuzzing [7, 80]). While the tools are effective for their original design goals,
applying them to study large-scale PFSes remains challenging. For example, model checking still
faces the state explosion problem despite of various path reduction optimizations [9]. Also, turning
a practical system like Lustre into a precise or verifiable model is prohibitively expensive in terms of
human efforts. On the other hand, these existing efforts provide valuable insights on the reliability
of local storage systems, and they may help in emulating realistic failure states of individual
storage nodes in PFault. Moreover, some techniques (e.g., fuzzing) could potentially be integrated
with PFault as discussed in §6.

8 CONCLUSIONS

As the scale and complexity of PFSes keeps increasing, maintaining PFS consistency and data
integrity becomes more and more challenging. Motivated by the real challenge, we perform a study
of the failure recovery and logging mechanisms of PFSes in this paper. We apply the PFault tool to
study two widely used PFSes: Lustre and BeeGFS. Through extensive log analysis and root cause
diagnosis, our study has revealed the abnormal behaviors of the failure handling mechanisms in
PFSes. Most importantly, our study has led to a new patch to address a kernel panic problem in the
latest Lustre.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:35

This research study is a critical step on our roadmap toward achieving robust high-performance
computing. Given the prime importance of PFSes in HPC systems and data centers, this study
also calls for community’s collective efforts in examining reliability challenges and coming up
with advanced and highly-efficient solutions. We hope this study can inspire more research efforts
along this direction. We also believe that such a study, including the open-source PFault and the
extensive PFS logs, can have a long-term impact on the design of large-scale file systems, storage
systems, and HPC systems.

9 ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and the TOS editors for their time
and insightful feedback. The authors also thank Andreas Dilger and other PFS developers for
valuable discussions. This work was supported in part by NSF under grants CCF-1717630/1853714,
CCF-1910747, and CNS-1943204. Any opinions, findings, and conclusions expressed in this material
are those of the authors and do not necessarily reflect the views of the sponsor.

REFERENCES

[1] Lustre File System. [Online]. Available: http://lustre.org/
[2] BeeGFS File System. [Online]. Available: https://www.beegfs.io/
[3] The OrangeFS Project, 2017. [Online]. Available: http://www.orangefs.org/
[4] M. Zheng, J. Tucek, F. Qin, andM. Lillibridge, “Understanding the robustness of SSDs under power fault,” in Proceedings

of the 11th USENIX Conference on File and Storage Technologies (FAST’13), 2013.
[5] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and W. Hsu, “Raidshield: Characterizing, monitoring, and

proactively protecting against disk failures,” in 13th USENIX Conference on File and Storage Technologies
(FAST 15). Santa Clara, CA: USENIX Association, Feb. 2015, pp. 241–256. [Online]. Available: https:
//www.usenix.org/conference/fast15/technical-sessions/presentation/ma

[6] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking semantic correctness: The case of finding file system
bugs,” in Proceedings of the 25th Symposium on Operating Systems Principles, ser. SOSP ’15. New York, NY, USA:
ACM, 2015, pp. 361–377. [Online]. Available: http://doi.acm.org/10.1145/2815400.2815422

[7] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding semantic bugs in file systems with an
extensible fuzzing framework,” in Proceedings of the 27th ACM Symposium on Operating Systems Principles, ser.
SOSP ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 147–161. [Online]. Available:
https://doi.org/10.1145/3341301.3359662

[8] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “All file
systems are not created equal: On the complexity of crafting crash-consistent applications,” in Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14), October 2014.

[9] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi, “Samc: Semantic-aware model checking
for fast discovery of deep bugs in cloud systems,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014, pp. 399–414. [Online]. Available:
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa

[10] J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, and L. You, “Crashtuner: Detecting crash-recovery bugs in cloud systems
via meta-info analysis,” in Proceedings of the 27th ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: ACM, 2019, pp. 114–130. [Online]. Available: http://doi.acm.org/10.1145/3341301.3359645

[11] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: A programmable tool for multiple-failure injection,” in Proceedings of
the 2011 ACM international conference on Object oriented programming systems languages and applications, 2011, pp.
171–188.

[12] P. Joshi, M. Ganai, G. Balakrishnan, A. Gupta, and N. Papakonstantinou, “Setsudō: perturbation-based testing
framework for scalable distributed systems,” in Proceedings of the First ACM SIGOPS Conference on Timely Results in
Operating Systems, 2013, pp. 1–14.

[13] Hadoop Distributed File System, 2006-now. [Online]. Available: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.
html

[14] Apache Cassandra, 2008-now. [Online]. Available: https://cassandra.apache.org
[15] Apache Zookeeper, Accessed January 2021. [Online]. Available: https://zookeeper.apache.org
[16] High Performance Computing Center, Texas Tech University, 2017. [Online]. Available: http://www.depts.ttu.edu/

hpcc/

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

http://lustre.org/
https://www.beegfs.io/
http://www.orangefs.org/
https://www.usenix.org/conference/fast15/technical-sessions/presentation/ma
https://www.usenix.org/conference/fast15/technical-sessions/presentation/ma
http://doi.acm.org/10.1145/2815400.2815422
https://doi.org/10.1145/3341301.3359662
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa
http://doi.acm.org/10.1145/3341301.3359645
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://cassandra.apache.org
https://zookeeper.apache.org
http://www.depts.ttu.edu/hpcc/
http://www.depts.ttu.edu/hpcc/

1:36 R. Han, et al.

[17] Power Outage Event at High Performance Computing Center (HPCC) in Texas , 2016. [Online]. Available:
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf

[18] GPFS Failures at Ohio Supercomputer Center (OSC), 2016. [Online]. Available: https://www.ece.iastate.edu/~mai/
docs/failures/2016-hpcc-lustre.pdf

[19] Multiple Switch Outages at Ohio Supercomputer Center (OSC), 2016. [Online]. Available: https://www.ece.iastate.
edu/~mai/docs/failures/2016-hpcc-lustre.pdf

[20] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin, T. Emami, W. Sheng, N. Bidokhti,
C. McCaffrey, G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb, P. Alvaro, H. B. Runesha,
M. Hao, and H. Li, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems,” in
16th USENIX Conference on File and Storage Technologies (FAST 18), 2018.

[21] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Redundancy does not imply fault
tolerance: Analysis of distributed storage reactions to single errors and corruptions.” in FAST, 2017, pp. 149–166.

[22] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and
D. Borthakur, “FATE and DESTINI: A Framework for Cloud Recovery Testing,” ser. NSDI’11, 2011.

[23] R. Alagappan, A. Ganesan, E. Lee, A. Albarghouthi, V. Chidambaram, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Protocol-aware recovery for consensus-based storage,” in 16th {USENIX} Conference on File and Storage Technologies
({FAST} 18), 2018, pp. 15–32.

[24] Open MPI, 2004-now. [Online]. Available: https://www.open-mpi.org
[25] Lustre Software Release 2.x: Operations Manual, 2017. [Online]. Available: http://lustre.org/documentation/
[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in ACM SIGOPS operating systems review, vol. 37,

no. 5. ACM, 2003, pp. 29–43.
[27] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure codes in HDFS,” in 13th USENIX Conference on

File and Storage Technologies (FAST 15), 2015, pp. 213–226.
[28] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software testing. Wiley, 2004, vol. 2.
[29] L. S. target framework (tgt), 2017. [Online]. Available: http://stgt.sourceforge.net/
[30] N. E. over Fabrics Specification Released, 2017. [Online]. Available: http://www.nvmexpress.org/

nvm-express-over-fabrics-specification-released/
[31] LFSCK: an online file system checker for Lustre, 2017. [Online]. Available: https://github.com/Xyratex/lustre-stable/

blob/master/Documentation/lfsck.txt
[32] Apache log4j, a logging library for Java, 2001-now. [Online]. Available: http://logging.apache.org/log4j/2.x/
[33] J. Cao, O. R. Gatla, M. Zheng, D. Dai, V. Eswarappa, Y. Mu, and Y. Chen, “PFault: A General Framework for Analyzing

the Reliability of High-Performance Parallel File Systems,” in Proceedings of the 2018 International Conference on
Supercomputing (ICS), 2018.

[34] Lustre Patch: LU-13980 osd: remove osd_object_release LASSERT, 2020. [Online]. Available: https://review.
whamcloud.com/#/c/40058/

[35] D. A. Patterson, G. Gibson, and R. H. Katz, A case for redundant arrays of inexpensive disks (RAID). ACM, 1988,
vol. 17, no. 3.

[36] HPC User Site Census, 2016. [Online]. Available: http://www.intersect360.com/
[37] Top500 Supercomputers, 2019. [Online]. Available: https://www.top500.org/lists/2016/11/
[38] Apache HBase, 2020. [Online]. Available: https://hbase.apache.org
[39] BeeGFS Documentation v7.2, 2020. [Online]. Available: https://doc.beegfs.io/latest/overview/overview.html
[40] S. documents, 2017.
[41] H. S. Gunawi, A. Rajimwale, A. C. Arpaci-dusseau, and R. H. Arpaci-dusseau, “SQCK: A Declarative File System

Checker,” in Proceedings of USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2008.
[42] S. Dawson, F. Jahanian, and T. Mitton, “Orchestra: a probing and fault injection environment for testing protocol

implementations,” in Proceedings of IEEE International Computer Performance and Dependability Symposium, 1996, pp.
56–.

[43] Seungjae Han, K. G. Shin, and H. A. Rosenberg, “Doctor: an integrated software fault injection environment for
distributed real-time systems,” in Proceedings of 1995 IEEE International Computer Performance and Dependability
Symposium, 1995, pp. 204–213.

[44] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer, “Nftape: a framework for assessing dependability in
distributed systems with lightweight fault injectors,” in Proceedings IEEE International Computer Performance and
Dependability Symposium. IPDS 2000, 2000, pp. 91–100.

[45] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault injection experiments using fiat,” IEEE Transactions
on Computers, vol. 39, no. 4, pp. 575–582, 1990.

[46] Jepsen. [Online]. Available: https://github.com/jepsen-io/jepsen

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.open-mpi.org
http://lustre.org/documentation/
http://stgt.sourceforge.net/
http://www.nvmexpress.org/nvm-express-over-fabrics-specification-released/
http://www.nvmexpress.org/nvm-express-over-fabrics-specification-released/
https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
http://logging.apache.org/log4j/2.x/
https://review.whamcloud.com/#/c/40058/
https://review.whamcloud.com/#/c/40058/
http://www.intersect360.com/
https://www.top500.org/lists/2016/11/
https://hbase.apache.org
https://doc.beegfs.io/latest/overview/overview.html
https://github.com/jepsen-io/jepsen

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:37

[47] X. Yuan and J. Yang, “Effective concurrency testing for distributed systems,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS
’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1141–1156. [Online]. Available:
https://doi.org/10.1145/3373376.3378484

[48] C. A. Stuardo, T. Leesatapornwongsa, R. O. Suminto, H. Ke, J. F. Lukman, W.-C. Chuang, S. Lu, and H. S. Gunawi,
“Scalecheck: A single-machine approach for discovering scalability bugs in large distributed systems,” in 17th USENIX
Conference on File and Storage Technologies (FAST 19). Boston, MA: USENIX Association, Feb. 2019, pp. 359–373.
[Online]. Available: https://www.usenix.org/conference/fast19/presentation/stuardo

[49] Apache Hadoop YARN, 2020. [Online]. Available: https://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html

[50] Apache Hadoop, 2019. [Online]. Available: https://hadoop.apache.org/docs/stable/
[51] E2fsprogs: Ext2/3/4 Filesystems Utilities, 2017. [Online]. Available: http://e2fsprogs.sourceforge.net
[52] D. Dai, O. R. Gatla, and M. Zheng, “A Performance Study of Lustre File System Checker: Bottlenecks and Potentials,”

in 2019 35th Symposium on Mass Storage Systems and Technologies (MSST), 2019.
[53] FUSE. Linux FUSE (Filesystem in Userspace) interface. [Online]. Available: https://github.com/libfuse/libfuse
[54] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon, “Innovations in internetworking,” C. Partridge, Ed.

Norwood, MA, USA: Artech House, Inc., 1988, ch. Design and Implementation of the Sun Network Filesystem, pp.
379–390. [Online]. Available: http://dl.acm.org/citation.cfm?id=59309.59338

[55] M. Primmer, “An Introduction to Fibre Channel,” HP Journal, 1996.
[56] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, G. R. Goodson, and B. Schroeder, “An analysis

of data corruption in the storage stack,” Trans. Storage, vol. 4, no. 3, pp. 8:1–8:28, Nov. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1416944.1416947

[57] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler, “An analysis of latent sector errors in
disk drives,” in Proceedings of the 2007 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS ’07. New York, NY, USA: ACM, 2007, pp. 289–300. [Online]. Available:
http://doi.acm.org/10.1145/1254882.1254917

[58] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells and platters: An empirical analysis of hardware failures
on a million consumer PCs,” in Proceedings of the Sixth Conference on Computer Systems, ser. EuroSys ’11. New York,
NY, USA: ACM, 2011, pp. 343–356.

[59] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?”
in Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST’07), 2007.

[60] S. Subramanian, Y. Zhang, R. Vaidyanathan, H. S. Gunawi, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and J. F.
Naughton, “Impact of disk corruption on open-source DBMS,” in ICDE, 2010, pp. 509–520.

[61] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang, B. W. Zhao, and S. Singh, “Torturing databases
for fun and profit,” in 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, 2014, pp. 449–464. [Online]. Available: https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/zheng_mai

[62] Network Partition, 2017. [Online]. Available: https://www.cs.cornell.edu/courses/cs614/2003sp/papers/DGS85.pdf
[63] e2fsck(8) — Linux manual page, 2017. [Online]. Available: https://man7.org/linux/man-pages/man8/e2fsck.8.html
[64] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“IRON File Systems,” in Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP’05), Brighton,
United Kingdom, October 2005, pp. 206–220.

[65] debugfs, 2017. [Online]. Available: http://man7.org/linux/man-pages/man8/debugfs.8.html
[66] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An analysis of network-partitioning failures in cloud

systems,” in Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’18.
USA: USENIX Association, 2018, p. 51–68.

[67] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers: Measurement, analysis,
and implications,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, p. 350–361, Aug. 2011. [Online]. Available:
https://doi.org/10.1145/2043164.2018477

[68] K. A. Smith and M. I. Seltzer, “File system aging—increasing the relevance of file system benchmarks,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 25, no. 1. ACM, 1997, pp. 203–213.

[69] A. Conway, A. Bakshi, Y. Jiao, W. Jannen, Y. Zhan, J. Yuan, M. A. Bender, R. Johnson, B. C. Kuszmaul, D. E. Porter, and
M. Farach-Colton, “File systems fated for senescence? nonsense, says science!” in 15th USENIX Conference on File
and Storage Technologies (FAST 17). Santa Clara, CA: USENIX Association, 2017, pp. 45–58. [Online]. Available:
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway

[70] CloudLab. [Online]. Available: http://cloudlab.us/
[71] Montage: An Astronomical Image Mosaic Engine, 2017. [Online]. Available: http://montage.ipac.caltech.edu/

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

https://doi.org/10.1145/3373376.3378484
https://www.usenix.org/conference/fast19/presentation/stuardo
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/stable/
http://e2fsprogs.sourceforge.net
https://github.com/libfuse/ libfuse
http://dl.acm.org/citation.cfm?id=59309.59338
http://doi.acm.org/10.1145/1416944.1416947
http://doi.acm.org/10.1145/1254882.1254917
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_mai
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_mai
https://www.cs.cornell.edu/courses/cs614/2003sp/papers/DGS85.pdf
https://man7.org/linux/man-pages/man8/e2fsck.8.html
http://man7.org/linux/man-pages/man8/debugfs.8.html
https://doi.org/10.1145/2043164.2018477
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
http://cloudlab.us/
http://montage.ipac.caltech.edu/

1:38 R. Han, et al.

[72] Wikipedia:Database download, 2017. [Online]. Available: https://en.wikipedia.org/wiki/Wikipedia:Database_
download

[73] J. Cao, S. Wang, D. Dai, M. Zheng, and Y. Chen, “A generic framework for testing parallel file systems,” in Proceedings
of the 1st Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems (PDSW-
DISCS), 2016.

[74] J. a. C. M. Carreira, R. Rodrigues, G. Candea, and R. Majumdar, “Scalable testing of file system checkers,” in Proceedings
of the 7th ACM European Conference on Computer Systems, ser. EuroSys ’12, 2012, p. 239–252.

[75] Simple logging facade for Java, 2019. [Online]. Available: http://www.slf4j.org
[76] M. Zheng, J. Tucek, F. Qin, M. Lillibridge, B. W. Zhao, and E. S. Yang, “Reliability analysis of ssds under

power fault,” in To appear in the ACM Transactions on Computer Systems (TOCS), 2016. [Online]. Available:
http://dx.doi.org/10.1145/2992782

[77] O. R. Gatla, M. Hameed, M. Zheng, V. Dubeyko, A. Manzanares, F. Blagojević, C. Guyot, and R. Mateescu, “Towards
robust file system checkers,” in 16th USENIX Conference on File and Storage Technologies (FAST). USENIX Association,
Feb. 2018.

[78] AspectJ, 2001-now. [Online]. Available: https://www.eclipse.org/aspectj/
[79] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo, “The Art, Science, and Engineering of

Fuzzing: A Survey,” IEEE Transactions on Software Engineering, 2019.
[80] W. Xu, H. Moon, S. Kashyap, P. Tseng, and T. Kim, “Fuzzing file systems via two-dimensional input space exploration,”

in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 818–834.
[81] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data Race Fuzzing for Kernel File Systems,” in 2020 IEEE Symposium

on Security and Privacy (SP), 2020.
[82] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer: Finding kernel race bugs through fuzzing,” in 2019

IEEE Symposium on Security and Privacy (SP), 2019.
[83] C. Scott, “Fuzzing Raft for Fun and Publication,” 2015. [Online]. Available: https://colin-scott.github.io/blog/2015/10/

07/fuzzing-raft-for-fun-and-profit/
[84] socket(2) — Linux manual page, 2020. [Online]. Available: https://man7.org/linux/man-pages/man2/socket.2.html
[85] R. Banabic, G. Candea, and R. Guerraoui, “Automated vulnerability discovery in distributed systems,” in 2011 IEEE/IFIP

41st International Conference on Dependable Systems and Networks Workshops (DSN-W), 2011, pp. 188–193.
[86] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix utilities,” Commun. ACM, vol. 33,

no. 12, 1990. [Online]. Available: https://doi.org/10.1145/96267.96279
[87] V. T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: A greybox fuzzer for network protocols,” in 2020 IEEE 13th

International Conference on Software Testing, Validation and Verification (ICST), 2020, pp. 460–465.
[88] R. Han, D. Zhang, and M. Zheng, “Fingerprinting the Checker Policies of Parallel File Systems,” in Proceedings of the

5th International Parallel Data Systems Workshop (PDSW) held in conjunction with IEEE/ACM SC20: The International
Conference for High Performance Computing, Networking, Storage and Analysis, 2020.

[89] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software diagnosability via log enhancement,” ACM
Transactions on Computer Systems (TOCS), 2012.

[90] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep
Learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17),
2017.

[91] D. Zhang, D. Dai, R. Han, and M. Zheng, “SentiLog: Anomaly Detecting on Parallel File Systems via Log-based
Sentiment Analysis,” in Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage),
2021.

[92] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles (SOSP), 2009.

[93] GitLab repository for PFault by Data Storage Lab@ISU , 2020. [Online]. Available: https://git.ece.iastate.edu/
data-storage-lab/prototypes/pfault

[94] D. Huang, X. Zhang, W. Shi, M. Zheng, S. Jiang, and F. Qin, “Liu: Hiding disk access latency for hpc applications with
a new ssd-enabled data layout,” in 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems, 2013, pp. 111–120.

[95] J. S. Vetter and M. O. McCracken, “Statistical Scalability Analysis of Communication Operations in Distributed
Applications,” in ACM SIGPLAN Notices, vol. 36, no. 7. ACM, 2001, pp. 123–132.

[96] HPC-5 Open Source Software project, LANL-Trace, 2015. [Online]. Available: institutes.lanl.gov/data/tdata/
[97] P. C. Roth, “Characterizing the I/O behavior of scientific applications on the Cray XT,” in Proceedings of the 2nd

international workshop on Petascale data storage: held in conjunction with Supercomputing’07. ACM, 2007, pp. 50–55.
[98] M. P. Mesnier, M. Wachs, R. R. Simbasivan, J. Lopez, J. Hendricks, G. R. Ganger, and D. R. O’hallaron, “//trace: Parallel

trace replay with approximate causal events.” USENIX, 2007.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://www.slf4j.org
http://dx.doi.org/10.1145/2992782
https://www.eclipse.org/aspectj/
https://colin-scott.github.io/blog/2015/10/07/fuzzing-raft-for-fun-and-profit/
https://colin-scott.github.io/blog/2015/10/07/fuzzing-raft-for-fun-and-profit/
https://man7.org/linux/man-pages/man2/socket.2.html
https://doi.org/10.1145/96267.96279
https://git.ece.iastate.edu/data-storage-lab/prototypes/pfault
https://git.ece.iastate.edu/data-storage-lab/prototypes/pfault
institutes.lanl.gov/data/tdata/

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:39

[99] S. Seelam, I. Chung, D.-Y. Hong, H.-F. Wen, H. Yu et al., “Early Experiences in Application Level I/O Tracing on Blue
Gene Systems,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. IEEE, 2008,
pp. 1–8.

[100] Darshan:HPC I/O Characterization Tool, 2017. [Online]. Available: http://www.mcs.anl.gov/research/projects/darshan/
[101] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 Characterization of Petascale I/O Workloads,” in

Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE International Conference on. IEEE, 2009, pp. 1–10.
[102] J. Sun, C. Wang, J. Huang, and M. Snir, “Understanding and Finding Crash-Consistency Bugs in Parallel File Systems,”

in Proceedings of the 12th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage), 2020.
[103] P. Alvaro, J. Rosen, and J. M. Hellerstein, “Lineage-driven fault injection,” in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, 2015, pp. 331–346.
[104] Java Virtual Machine Tool Interface (JVM TI). [Online]. Available: https://docs.oracle.com/javase/8/docs/technotes/

guides/jvmti/
[105] Trail: The Reflection API. [Online]. Available: https://docs.oracle.com/javase/tutorial/reflect/index.html
[106] “WALA Home page,” 2015. [Online]. Available: http://wala.sourceforge.net/wiki/index.php/
[107] Java bytecode engineering toolkit, 1999. [Online]. Available: https://www.javassist.org/
[108] The LLVM Compiler Infrastructure, 2020. [Online]. Available: https://llvm.org
[109] E. Xu, M. Zheng, F. Qin, Y. Xu, and J. Wu, “Lessons and actions: What we learned from 10k ssd-related storage

system failures,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA: USENIX Association,
Jul. 2019, pp. 961–976. [Online]. Available: https://www.usenix.org/conference/atc19/presentation/xu

[110] E. Xu, M. Zheng, F. Qin, J. Wu, and Y. Xu, “Understanding ssd reliability in large-scale cloud systems,” in 2018 IEEE/ACM
3rd International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS), 2018.

[111] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria, J. Adityatama, and K. J. Eliazar, “Why does the cloud
stop computing? lessons from hundreds of service outages,” in Proceedings of the Seventh ACM Symposium on Cloud
Computing, ser. SoCC ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 1–16. [Online].
Available: https://doi.org/10.1145/2987550.2987583

[112] A. M. Bianca Schroeder, Raghav Lagisetty, “Flash reliability in production: The expected and the unexpected,” in 14th
USENIX Conference on File and Storage Technologies (FAST 16). Santa Clara, CA: USENIX Association, Feb. 2016, pp.
67–80. [Online]. Available: https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder

[113] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, “Understanding the robustness of ssds under power fault,” in Proceedings
of 11th USENIX Conference on File and Storage Technologies (FAST), 2013, pp. 271–284.

[114] D. Zhang, O. R. Gatla, W. Xu, and M. Zheng, “A study of persistent memory bugs in the linux kernel,” in Proceedings
of the 14th ACM International Conference on Systems and Storage (SYSTOR), 2021.

[115] J. Yang, C. Sar, and D. Engler, “EXPLODE: a lightweight, general system for finding serious storage system errors,” in
Proceedings of the Seventh Symposium on Operating Systems Design and Implementation (OSDI ’06), November 2006,
pp. 131–146.

[116] L. N. Bairavasundaram, S. Sundararaman, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Tolerating
file-system mistakes with envyfs,” in Proceedings of the 2009 Conference on USENIX Annual Technical
Conference, ser. USENIX’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 7–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855807.1855814

[117] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A study of linux file system evolution,” in Presented as
part of the 11th USENIX Conference on File and Storage Technologies (FAST 13). San Jose, CA: USENIX, 2013, pp.
31–44. [Online]. Available: https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu

[118] O. R. Gatla, M. Zheng, M. Hameed, V. Dubeyko, A. Manzanares, F. Blagojevic, C. Guyot, and R. Mateescu, “Towards
robust file system checkers,” ACM Transactions on Storage (TOS), vol. 14, no. 4, pp. 1–25, 2018.

[119] O. R. Gatla and M. Zheng, “Understanding the fault resilience of file system checkers,” in Proceedings of the 9th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage), 2017.

[120] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich, “Using crash hoare logic for certifying
the fscq file system,” in Proceedings of the 25th Symposium on Operating Systems Principles, ser. SOSP ’15. New York,
NY, USA: ACM, 2015, pp. 18–37. [Online]. Available: http://doi.acm.org/10.1145/2815400.2815402

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

http://www.mcs.anl.gov/research/projects/darshan/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://docs.oracle.com/javase/tutorial/reflect/index.html
http://wala.sourceforge.net/wiki/index.php/
https://www. javassist.org/
https://llvm.org
https://www.usenix.org/conference/atc19/presentation/xu
https://doi.org/10.1145/2987550.2987583
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://dl.acm.org/citation.cfm?id=1855807.1855814
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu
http://doi.acm.org/10.1145/2815400.2815402

1:40 R. Han, et al.

A APPENDIX: CHARACTERIZATION OF PFS FAILURE LOGS

In this appendix, we characterize the extensive failure logs generated by the target PFS in our
experiments. As described in 5.2, we use three rules to identify the PFS logs related to failure
handling and we call them as error messages. In total, we observe seven, thirteen, and fifteen
different types of error messages on Lustre v2.8, Lustre v2.10.8, and BeeGFS v7.1.3 respectively,
which we describe in details below.

A.1 Failure Logs of Lustre v2.8

We first analyze the error messages of Lustre v2.8. As shown in Table 11, we observe seven types of
error messages (i.e., y1 to y7) when faults are injected on different nodes, including Recovery failed
(y1-y3), Log updating failed (y4), Lock service failed (y5), and Failing over (y6,y7). If an error message
has a Linux error number, the number is usually appended to the end of the message. A minor
logging inconsistency we observe is that Lustre debug macros use a variable “rc” to represent Linux
error number and print out both “rc” and its value in most cases (e.g., “rc 0/0” in y5), while in some
cases only the value is shown (e.g., “-110” in y1).

It is interesting to see that in v2.8, MGS dose not report any error messages under the three fault
models (i.e., empty in the “Logs on MGS” column). This is consistent with Lustre’s design that
MGS/MGT is mostly used for configuration when building Lustre, instead of the core functionalities.

Table 11. Characterization of Logs Generated in the Debug Buffer of Lustre v2.8 After Faults.

The“Node(s) Affected” column shows the node(s) to which the faults are injected. “–” means no error message is
reported. “y1” to “y7” are seven types of messages reported in the logs. The meaning of each type is shown at the
bottom part of the table. The “Message Example” column shows a snippet of each type of messages adapted from
the logs.

Node(s) Fault Logs on Logs on Logs on Logs on Logs on
Affected Models MGS MDS OSS#1 OSS#2 OSS#3

a-DevFail – y1 y1 y1 y1
MGS b-Inconsist – y1,y4 y1,y4 y1,y4 y1,y4

c-Network – y1 y1 y1 y1
a-DevFail – y6 y2 y2 y2

MDS b-Inconsist – y4,y5,y6 y2,y4,y5 y2,y4,y5 y2,y4,y5
c-Network – y1,y3 y2 y2 y2
a-DevFail – y3 y7 – –

OSS#1 b-Inconsist – y3,y4,y5 y4,y7 y4 y4
c-Network – y3 y1,y2 – –

three a-DevFail – y3 y7 y7 y7
OSSes b-Inconsist – y3,y4,y5 y4,y7 y2,y4 y4,y7

c-Network – y3 y1,y2 y1,y2 y1,y2
MDS a-DevFail – y6 y7 y2 y2
+ b-Inconsist – y4,y5,y6 y4,y5,y7 y2,y4,y5 y2,y4,y5

OSS#1 c-Network – y1,y3 y1,y2 y2 y2
Type Meaning Message Example
y1 MGS Recovery failed ...ptlrpc_connect_interpret() recovery of MGS on MGC 192.x.x.x...failed (-110)
y2 MDS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-MDT0000_UUID...failed (-110)
y3 OSS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-OST0001_UUID...failed (-110)
y4 Log updating failed ...updating log 2 succeed 1 fail [...lustre-sptlrpc(fail)...
y5 Lock service failed ...ldlm_request.c:1317: ldlm_cli_update_pool()...@Zero SLV or Limit found...rc 0/0
y6 Failing over MDT ...obd_config.c:652:class_cleanup() Failing over lustre-MDT0000...
y7 Failing over OST ...obd_config.c:652:class_cleanup() Failing over lustre-OST0001...

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:41

On the other hand, all three fault models can trigger extensive log messages on MDS and OSS. For
example, when “a-DevFail” happens on MDS (the “MDS” row), all OSS nodes can notice the failure,
and they try to recover MDT but eventually fail (i.e., y2). This is because the OST handler on each
OSS node keeps monitoring the connection with MDT (via mdt_health_check), and automatically
tries to reconnect until timeout.
Also, “b-Inconsist” may generate various types of logs, depending on different inconsistencies

caused by different local corruptions. When “b-Inconsist” happens on MDS (the “MDS” row), many
services such as logging (i.e., y4) and locking (i.e., y5) may be affected. This is consistent with
Lustre’s design that MDS/MDT is critical for all regular operations.

Besides, when “a-DevFail” or “b-Inconsist” happens on MDS or OSS, it may trigger the failover
of the affected node (i.e., y6, y7). Because a complete failover configuration on Lustre requires
additional sophisticated software and hardware support [25], we cannot evaluate the effectiveness
of the failover feature further using our current platform, and we leave it as future work.
However, we notice a potential mismatch between the documentation and the failover logs

observed. Based on the documentation [25], the failover functionality of Lustre is designed for
MDS/OSS sever processes instead of MDT/OST devices. For example, two MDS nodes configured as
a failover pair must share the same MDT device, and when one MDS sever fails the remaining MDS
can begin serving the unserved MDT. Because “a-DevFail” affects only the device (i.e., it emulates
a whole device failure as discussed in §3.2), and does not kill the MDS/OSS sever processes, it is
unclear how failing over server processes could handle the device failure.

A.2 Failure Logs of Lustre v2.10.8

Besides Lustre v2.8, we have also studied the logs of Lustre v2.10.8 under the same experiments,
and summarized them in Table 12. Note that we have discussed LFSCK-specific debug buffer logs
of Lustre v2.10.8 in Table 9 (§5.3), so we skip them in here.

As shown in Table 12, the first seven types of error messages (i.e., y1-y7) are almost the same as
the corresponding messages in Table 11. Message y4 has a slightly different wording, but it is still
related to Lustre’s logging service.

On the other hand, we observe more types of error messages on v2.10.8 (i.e., y8 – y12 in Table 12)
compared to v2.8 (in Table 11). Specifically, y8 to y11 (i.e., Client’s request failed, Client was evicted,
Client-server connection failed, Client-OST I/O errors) are client related failures; and y12 represents
failures of accessing metadata on OST.
Besides generating different types of error messages, another key difference between v2.10.8

(Table 12) and v2.8 (Table 11) is that MGS does report some information under faults in v2.10.8
(Table 12). In particular, under the “b-Inconsist” or “c-Network” fault models, MGS can report that
the client’s request has failed due to time out or network error (i.e., y8). This implies that MGS
is aware of Lustre’s internal traffic failures. Moreover, when both MDS and OSS#1 suffer from
“a-DevFail” (the “MDS+OSS#1” row), MGS notifies that the client is evicted by Lustre’s locking
services (i.e., y9). In the meantime, MDS reports that the connection between client and servers
fails (i.e., y10), and logs from OST#2 and OST#3 shows that they encounter errors when dealing
with clients I/O requests (i.e., y11). This observation suggests that Lustre v2.10 has a more extensive
logging to help understand system failures across nodes.

Also, we observe that Local metadata unaccessible (i.e., y12) can be triggered when “c-Network”
happens on OSSes (the “OSS#1” and “three OSSes” rows), and it can only be collected from OSSes.
This type of error message appears when OSS’s local metadata becomes inaccessible. Most of their
Linux error numbers are “-5”, which means an I/O error occurs when Lustre tries to look up OSS’s
local metadata. Moreover, we find that y12 often appears together with LSFCK-triggered error
messages (Table 9 in §5.3). This is because LFSCK is responsible for checking and repairing the

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:42 R. Han, et al.

Table 12. Characterization of Logs Generated in the Debug Buffer of Lustre v2.10.8 After Faults.

Similar to Table 11, this table shows detailed Debug Buffer logs from Lustre v2.10.8. the“Node(s) Affected” column
shows the node(s) to which the faults are injected. “–” means no error message is reported. “y1” to “y12” are twelve
types of messages reported in the logs. The meaning of each type is shown at the bottom part of the table. The
“Message Example” column shows a snippet of each type of messages adapted from the logs.

Node(s) Fault Logs on Logs on Logs on Logs on Logs on
Affected Models MGS MDS OSS#1 OSS#2 OSS#3

a-DevFail – – – – –
MGS b-Inconsist y8 y1,y4 y1,y4 y1,y4 y1,y4

c-Network y8 y1,y4 y1 y1 y1
a-DevFail – y2,y4 y2,y8 y2,y8 y2,y8

MDS b-Inconsist – y2,y4,y6 y2 y2 y2
c-Network y8 y1,y3,y8 y2,y8 y2,y8 y2,y8
a-DevFail – – y12 – –

OSS#1 b-Inconsist y8 y3,y5,y8 y4,y7 y4 y4
c-Network y8 y3,y8 y1,y2,y8 – –

three a-DevFail – – y12 y12 y12
OSSes b-Inconsist y8 y3,y5,y8 y4,y7 y4,y7 y4,y7

c-Network y8 y3,y8 y1,y2,y8 y1,y2,y8 y1,y2,y8
MDS a-DevFail y8,y9 y2,y3,y4,y10 y2,y8 y2,y8,y11 y2,y8,y11
+ b-Inconsist y8 y2,y3,y4,y5,y6,y8,y10 y2,y4,y7 y2,y4 y2,y4

OSS#1 c-Network y8 y1,y3,y8 y1,y2,y8 y2,y8 y2,y8
Type Meaning Message Example
y1 MGS Recovery failed ...ptlrpc_connect_interpret() recovery of MGS on MGC 192.x.x.x...failed (-110)

...ptlrpc_fail_import() import MGS@MGC10.x.x.x@tcp_0 for...not replayable...
y2 MDS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-MDT0000_UUID...failed (-110)
y3 OSS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-OST0001_UUID...failed (-110)
y4 Log updating failed ...mgc_process_log() MGC.x.x.x@tcp: configuration from log lustre-sptlrpc failed (-2).
y5 Lock service failed ...ldlm_request.c:1317: ldlm_cli_update_pool()...@Zero SLV or Limit found...
y6 Failing over MDT ...obd_config.c:652:class_cleanup() Failing over lustre-MDT0000...
y7 Failing over OST ...obd_config.c:652:class_cleanup() Failing over lustre-OST0001...
y8 Client’s request failed ...ptlrpc_expire_one_request()...Request sent has timed out for slow reply:...rc 0/-1

...ptlrpc_expire_one_request()...Request sent has failed due to network error:...rc 0/-1
y9 Client was evicted ...ldlm_failed_ast()...MGS: A client on nid...tcp was evicted... : rc -107

...ldlm_handle_ast_error()...client...returned error from...(...rc -107), evict it ns: ...
y10 Client-server connection failed ...ptlrpc_check_status() ...: operation ost_connect to node...failed: rc = -5/-16/-30
y11 Client-OST I/O errors ...tgt_client_del()...failed to update server data, skip client ... zeroing, rc -5

...tgt_client_new() ...Failed to write client lcd at idx..., rc -5/-30
...osd_ldiskfs_write_record() sdb: error reading offset... rc = -5

y12 Local metadata unaccessible ...osd_ldiskfs_read() sdb: can’t read ...@...on ino... : rc = -5
...osd_idc_find_or_init() can’t lookup: rc = -5

...osd_trans_commit_cb() transaction @... commit error: 2

metadata. The second phase of LFSCK (“lfscl_layout”) needs to access the metadata on OSSes, which
will trigger y12 under the fault models.

In summary, we find the messages in the debug buffer of Lustre (if reported) to be detailed and
informative. As shown in the “Message Example” of Table 11 and able 12. the messages usually
include specific file names, line numbers, and function calls involved, which are valuable for
understanding and diagnosing the system behavior. On the other hand, some log messages may
not directly reflect the root cause of failures, which may imply that a more precise mechanism for
detecting faults is needed.

A.3 Failure Logs of BeeGFS v7.1.3

Table 13 summarizes the BeeGFS logs. As shown in the table, the logs can be roughly classified into
15 types (“y1” to “y15”). Each log message usually contains multiple sentences describing the issue
in details, including specific IDs of relevant nodes and/or files (“Message Example”). Therefore,

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 1:43

compared to the logs of Lustre (Table 11, Table 12 and Table 10X in §A.1 and §A.2), we find that
BeeGFS’s logging is more sophisticated.

Table 13. Characterization of Logs of BeeGFS v7.1.3 After Faults. The“Node(s) Affected” column shows
the node(s) to which the faults are injected. “–” means no error message is reported. “y1” to “y15” are 15 types of
messages reported in the logs. The meaning of each type is shown at the bottom part of the table. The “Message
Example” column shows a snippet of each type of messages adapted from the logs.

Node(s) Fault MGS MDS OSS#1 OSS#2 OSS#3
Affected Models Logs Logs Logs Logs logs

a-DevFail y1,y2 – – – –
MGS b-Inconsist – – – – –

c-Network y1,y2,y3,y4,y5 y7,y8 – – –
a-DevFail – y9,y10,y11 – – –

MDS b-Inconsist – y9.y10,y11 – – –
c-Network y4 y5,y7,y8,y12,y13 – – –
a-DevFail – – y14 – –

OSS#1 b-Inconsist – – – – –
c-Network y3 y7,y8,y12,y14,y15 – – –

three a-DevFail – – y14 y14 y14
OSSes b-Inconsist – – – – –

c-Network y3 y7,y8,y12,y14,y15 y5,y7,y8,y12,y13 y5,y7,y8,y12,y13 y5,y7,y8,y12,y13
MDS a-DevFail – y9,y10,y11 y14 – –
+ b-Inconsist – y9,y10,y11 – – –

OSS#1 c-Network y4,y6 y5,y7,y8,y12,y13 y7,y8 – –
Type Meaning Message Example

...TempFileTk.cpp:29 >> Could not open temporary file. tmpname:...
y1 Temporary file failure ...TempFileTk.cpp:65 >> Could not write to temporary file tmpname:...

...TempFileTk.cpp:44 >> Failed to unlink tmpfile after error...Read-only file system...
y2 Target state write failed ...MgmtdTargetStateStore.cpp:431 >> Could not save target states. nodeType...
y3 OSS auto-offline ...Auto-offline >> No...received from storage target for...seconds...set...offline...

...Auto-offline >> No...received from storage target for...seconds...set...probably-offline...
y4 MDS auto-offline ...Auto-offline >> No...received from metadata node for...seconds...set...offline...

...Auto-offline >> No...received from metadata node for...seconds...set...probably-offline...
y5 Unreachable network ...StandardSocket::sendto >> Attempted to send message to unreachable network:...

...InternodeSyncer.cpp:418 >> Downloading...from management node failed...
y6 Download from MGS failed ...InternodeSyncer.cpp:784 >> Download from management node failed...

...Update states and mirror groups >> Downloading...from management node failed...
y7 Connect failed ...NodeConn... >> Connect failed...Error: Unable to establish connection...

...NodeConn... >> Connect failed on all available routes...
y8 Retrying communication ...MessagingTk... >> Retrying communication...message type: GetNodes...

...MessagingTk.cpp:281 >> Retrying communication...message type: CloseChunkFile...
y9 Entry directory lost ...Inode... >> Unable to open entries directory:...No such file or directory
y10 Inode read failed ...MetaStore... >> Failed to read inodes from hash dirs...

...StorageTkEx... >> Unable to open dentries directory...No such file or directory
y11 Directory entry related failures ...DirEntry... >> Unable to create dentry file:...No such file or directory

...make meta dir-entry >> Failed to create: name:...entryID:...in path:...
...DirEntryStore...>> Unable to open dentry directory...No such file or directory

...Messaging (RPC) >> Communication error: Receive timed out from...
y12 RPC related failure ...Messaging (RPC) >> Communication error: Receive timed out from:...

...Messaging (RPC) >> Unable to connect to:...
y13 MGS release failed ...XNodeSync >> Pushing node free space to management node failed.

...ChunkFetcherSlave.cpp:108 >> readdir failed...Input/output error...
...ChunkDirStore... >> Unable to create chunk path:...Read-only file system

...ChunkStore.cpp:661 >> Unable to create path for file...Read-only file system...
y14 Chunk related failure ...SessionLocalFile (open) >> Failed to open chunkFile:...

...Close Helper... >> Problems occurred during release of storage server file handles...
...Close Helper (close chunk files S) >> Problems occurred during close of chunk files...
...Stat Helper (refresh chunk files) >> Problems occurred during file attribs refresh...

...Close chunk file work >> Communication with storage target failed...
y15 Communication with OSS failed ...Close Helper... >> Communication with storage target failed:...Communication error

...Stat chunk file work >> Communication with storage target failed...

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

1:44 R. Han, et al.

Also, we find that all BeeGFS nodes, including MGS, can report extensive events, which implies
all nodes are always active (unlike Lustre’s MGS). For example, when “c-Network” happens on
MGS, multiple failure events are recorded on MGS (i.e., y1,y2,y3,y4,y5). When “c-Network” happens
on other nodes (e.g., MDS or OSS), MGS can also record failure events accordingly. This implies
that MGS is responsible for monitoring the network connection of all other nodes. If the network
connection between MGS and any other node is broken, MGS will record that the corresponding
node is “Auto-offline”.
All three fault models can trigger extensive log messages in BeeGFS. However, in contrast to

Lustre, BeeGFS’s logs often concentrate on the affected node(s). For example, when “a-DevFail”
happens on OSS (the “OSS#1” and “three OSSes” rows), only OSSes themselves generate logs
(i.e., y14), and the logs are all about data chunks on the affected OSS. No MGS or MDS logs are
generated. Similarly, when “a-DevFail” happens on MDS (the “MDS” row) and causes metadata loss
(i.e., y9,y10,y11), no OSS logs are reported.

Compared to Lustre, BeeGFS generates less logs under “b-Inconsist” fault model. For example,
only MDS has logs about “b-Inconsist” (i.e., y9,y10,y11). Note that the logs are the same as the logs
under “a-DevFail”. This implies that more fine-grained checking and logging mechanism is needed
to differentiate the two different cases.

The “c-Network” fault model leads to the largest amount of logs on BeeGFS. When “c-Network”
happens on MGS (the “MGS” row), MGS reports multiple types of logs as discussed previously;
moreover, MDS outputs logs about connection failure (i.e., y7) and communication retry (i.e., y8).
Similarly, when “c-Network” happens on MDS or OSS, the affected node may report a variety of
logs including network/connection failures (i.e., y5 and y7), RPC related failures (i.e., y12), retrying
communication (i.e., y8), MGS release failed (i.e., y13), etc. This diversity suggests that BeeGFS has
a relatively comprehensive monitoring mechanism.
In summary, we find that BeeGFS logs are more detailed and comprehensive than Lustre logs.

Particularly, the MGS is heavily involved in logging, which is consistent with BeeGFS’s design.
On the other hand, we find that BeeGFS’s logging is still suboptimal. For example, there are few
logs about data inconsistencies on OSS nodes, and device failure and metadata inconsistency are
logged in the same way, which suggests that there is still much room for improvement in terms of
accurate logging.

Accepted to appear in ACM Transactions on Storage, 2022. DOI: 10.1145/3483447

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Parallel File Systems
	2.2 Limitations of Existing Efforts
	2.3 Remote Storage Protocols

	3 How to Trigger PFS Failure Handling and Logging Operations
	3.1 Overview
	3.2 Failure State Emulator
	3.3 PFS Worker
	3.4 PFS Checker
	3.5 Orchestrator
	3.6 Non-iSCSI PFault
	3.7 Putting It All Together

	4 Experimental Methodology
	4.1 Experimental Platforms
	4.2 Target PFSes
	4.3 Workloads
	4.4 Experimental Efforts
	4.5 Confirmation with Developers

	5 Study Results
	5.1 Behavior of PFS FSCK and Post-FSCK Workloads
	5.2 Failure Logs and Root Causes
	5.3 Logs of LFSCK and BeeGFS-FSCK

	6 Lessons Learned and Future Work
	6.1 Implications on Analyzing the Failure Handling Mechanisms of PFSes
	6.2 Integration with Other Tools
	6.3 Analyzing Hardware-Dependent Features of PFS Clusters
	6.4 Improving the Failure Handling Mechanisms of PFSes
	6.5 Challenges and Opportunities for Log-Based Analysis

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References
	A Appendix: Characterization of PFS Failure Logs
	A.1 Failure Logs of Lustre v2.8
	A.2 Failure Logs of Lustre v2.10.8
	A.3 Failure Logs of BeeGFS v7.1.3

