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Abstract—Property graphs are a promising data model for rich
metadata management in high-performance computing (HPC)
systems because of their ability to represent not only metadata
attributes but also the relationships between them. A property
graph can be used to record the relationships between users,
jobs, and data, for example, with unique annotations for each
entity. This high-volume, power-law distributed use case is a
natural fit for an out-of-core distributed property graph database.
Such a system must support live updates (to ingest production
information in real time), low-latency point queries (for frequent
metadata operations such as permission checking), and large-
scale traversals (for provenance data mining).

Large-scale property graph traversals are particularly chal-
lenging for distributed graph databases, however. Most existing
graph databases implement a “level-synchronous” breadth-first
search algorithm that relies on global synchronization in each
traversal step. This traversal model performs well in many
problem domains; but a rich metadata management system
is characterized by imbalanced graphs, long traversal lengths,
and concurrent workloads, each of which has the potential
to introduce or exacerbate stragglers. We define stragglers as
abnormally slow steps (or servers) in a graph traversal that lead
to low overall throughput for synchronous traversal algorithms.

The straggler problem can be mitigated by the use of asyn-
chronous traversal algorithms. Asynchronous traversal has been
successfully demonstrated in graph processing frameworks, but
such systems require the graph to be loaded into a separate
batch-processing framework.

In this work, we propose GraphTrek, a general asynchronous
graph traversal engine working with graph databases for pro-
cessing rich metadata management in their native format. We
also outline a traversal-aware query language and key op-
timizations (traversal-affiliate caching and execution merging)
necessary for efficient performance. Our experiments show that
the asynchronous graph traversal engine is more efficient than
its synchronous counterpart in the case of HPC rich metadata
processing, where more servers are involved and larger traversals
are needed.
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I. INTRODUCTION

High-performance computing (HPC) platforms can generate
huge amounts of metadata about different entities including
jobs, users, and files. Simple metadata, which describes the
predefined attributes of these entities (e.g., file size, name, and
permissions), has been well recorded and used in current sys-
tems. Rich metadata, which describes the detailed information
about different entities and their relationships, extends simple

metadata to an in-depth level. Rich metadata can contain
arbitrary user-defined attributes and flexible relationships. A
typical example of such rich metadata is provenance, which
maintains a complete history of a dataset, including the pro-
cesses that generated it; the user who started the processes; and
even the environment variables, parameters, and configuration
files used during execution [1]. Property graph is a promising
data model for rich metadata management in HPC systems
because of its ability to represent not only metadata attributes
but also the relationships between them. A property graph can
be used to record the relationships between users, jobs, and
data.

In our research, we are developing a rich metadata manage-
ment system based on the new concept of unifying metadata
into one generic property graph [1]. Such a system must
support large-scale traversals for different usage scenarios,
such as provenance data mining, hierarchical data traversal,
and user audit. In order to effectively manage property graphs,
distributed property graph databases have been developed,
such as Neo4j [2], DEX [3], OrientDB [4], G-Store [5], and
Titan [6]. In addition to storing the property graphs, a major
requirement of those property graph databases is to effectively
answer graph traversal queries from user applications. Graph
traversal usually serves as the basic building block for various
algorithms and queries. In fact, it is so fundamental that
traversal of simple graphs (defined as a set of nodes connected
by weighted edges) has been used as a benchmark metric
(Graph500) for measuring the performance of supercomput-
ers [7], [8]. Traversal for property graphs is likewise critical
and needs to be efficiently supported.

Typically, the core execution engine of graph traversal
is implemented by following the general structure of the
parallel “level-synchronous” breadth-first search (BFS) algo-
rithm, dating back three decades [9], [10]. Given a graph
G, level-synchronous BFS systematically explores G from a
source vertex s level by level. The level is the distance or
hops it travels. BFS implies that all the vertices at level k
from vertex s should be “visited” before vertices at level
k + 1; hence, global synchronization is needed at the end
of each traversal step. The “level-synchronous” breadth-first
search structure has been adopted not only in graph databases
but also in many distributed graph-processing frameworks,
including Pregel [11], Giraph [12], and GraphX [13]. The



Bulk Synchronous Parallel (BSP) model is popular in this
context because of its simplicity and performance benefits
under balanced workload.

However, such global synchronization could cause serious
performance problems in our property graph-based metadata
management case. First, as an online database system, our
system needs to support concurrent graph traversals. The in-
terferences among traversals easily create stragglers [14], [15],
which can cause poor resource utilization and significant idling
during each global synchronization. Second, the imbalance of
the graph partitions, along with the possible variations in at-
tribute sizes among different vertices and edges, leads to highly
uneven loads on different servers (an indication of stragglers)
while traversing. The wide existence of small-world graphs in
HPC metadata (e.g., degree of vertices follows the power-law
distribution [16], [1]) makes this problem even worse. Third,
for heterogeneous HPC metadata property graphs, possible
graph traversal steps could be much larger than the graph
diameter, which traditionally limits the maximal traversal steps
in simple or homogeneous graphs, for example, the six degrees
of separation theory in social networks [17]. In our use case,
we might check different attributes or edges in different steps.
Longer traversals introduce more synchronizations and lead to
a higher chance of performance penalty caused by stragglers.

Previous work suggested that asynchronous approaches have
potential to minimize the effects of load imbalance across dif-
ferent cores in single multicore machine [18]. GraphLab [19],
PowerGraph [20] and other distributed frameworks [21], [22],
also have investigated the use of asynchronous execution
models, which could implement the traversal operations in
general. However, these approaches are more suitable for the
distributed, batch-oriented graph computation that runs on the
entire graph instead of interactive traveling and querying on
the partially interested graphs, which are common in our HPC
rich metadata management system.

In this research, we explore how to integrate an asyn-
chronous traversal engine directly into a graph database sys-
tem. We propose optimizations, including traversal-affiliate

caching and execution merging, to fully exploit the perfor-
mance advantage of the asynchronous traversal engine. In
addition, we summarize the typical graph traversal patterns
for the property graph-based rich metadata management and
propose a general traversal language to describe these diverse
patterns. We show that the asynchronous engine can sup-
port such language with detailed progress report functionality
matching that of a synchronous engine.

The main contributions of this work are threefold:

• Analysis and summary of the graph traversal patterns in
property graph databases for HPC rich metadata man-
agement. Based on these patterns, we propose a graph
traversal language to support them.

• Design and implementation of an asynchronous dis-
tributed traversal engine for property graph databases. We
also propose optimizations specifically designed for the
asynchronous traversal engine: traversal-affiliate caching

and execution merging to improve the performance.
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Fig. 1. An example metadata graph applied to HPC Systems.

• Evaluation and demonstration of the performance benefits
compared with those of a synchronous traversal engine
on both synthetic graphs and real-world graphs.

The rest of this paper is organized as follows. Section II
summarizes the graph traversal pattern by analyzing HPC
metadata applications. In Section III, we introduce the Graph-
Trek traversal language designed for these patterns, and we
show how to use it to implement the given use cases. In
Section IV, we describe the asynchronous traversal engine
in detail, followed by several optimization strategies in Sec-
tion V. In Section VI, we discuss the design choices in
implementing such traversal frameworks. Section VII presents
the evaluations, including comparisons with synchronous im-
plementation and asynchronous without optimizations. In Sec-
tion VIII, we present conclusions and discuss future work.

II. TRAVERSAL PATTERNS FROM REAL APPLICATIONS

In this section, we analyze use cases specific to HPC
metadata management, which can be modeled by using a
property graph. Through this analysis, we summarize the graph
traversal patterns as the foundation of our proposed traversal
language. A more complete discussion and analysis of these
use cases can be found in our previous work [1].

A. Graphs in HPC Metadata Management

HPC metadata can be intuitively abstracted as a graphlike
structure. For example, metadata—including users, executions
of programs (jobs), data files accessed, or simply a directory—
can be neatly mapped into different vertices in property
graphs, as shown in Fig. 1. Between these entities, different
interactions and relationships can be represented as different
types of directed edges with properties attached. For example,
the run edge indicates that the user started the corresponding
execution instance, the exe edge denotes which executable
file(s) an execution used, and the read/write edges indicate the
types of operations performed on files from executions. Some
entity properties are shown for vertices, such as UID/GID, file
names, and parameters used by the execution. These properties
are by no means exhaustive; and additional properties can
easily be added, such as file permissions and creation time.

B. Use Cases

In this section we highlight examples of the types of queries
that could be performed on rich metadata that is stored by
using a property graph data model.



1) Data auditing: Data auditing is critical in large comput-
ing facilities where different users share the same cluster. For
example, one type of audit query is the following: Find the set

of files read by a specific user during a given timeframe. Based
on the property graph abstraction, this query can be mapped
to a graph traversal operation in two steps: (1) beginning at
the given user, traverse the edges with the run property type to
compute the set of executions the user has performed, filtering
the results by the given time frame; and (2) traverse the read

edges from the executions to the resulting files.
2) Provenance Support: Provenance has a wide usage in

metadata management systems, including data sharing, repro-
ducibility, and workflow management [23], [24], [25], [26].
After modeling rich metadata such as user/file system interac-
tions as property graphs, we can answer provenance questions
such as the following: Find the execution whose model is A

and input files have annotation as B (here, model indicates
the critical component of the execution, and annotation refers
to the user-specified attributes on data files). This kind of
query, which is a generalized version of a problem from
the First Provenance Challenge [27], can be expressed as a
graph traversal search that starts from execution vertices to file

vertices while checking needed attributes during the traversal.
In contrast to typical graph traversal operations, this query
requires the source vertices (executions) as the returned value
instead of the final file vertices.

C. Traversal Patterns

Many other use cases have needs similar to those of the
cases discussed above. Based on these use cases, we summa-
rize the typical traversal patterns as follows:

1) Like BFS, graph traversal starts from a set of vertices
and travels in steps. In each step, since it travels through
property graphs, it needs to filter these vertices according
to attributes. It then selects given types of edges for the
next set of vertices.

2) Unlike BFS, graph traversal may revisit the same vertex
in different steps in order to check different attributes
or edges. This kind of revisit is considered as cyclic or
redundant in BFS, but it is acceptable in our use case.
For example, the same file may first be visited as input
data and then as executable again. But we do consider
that revisiting on the same vertex in the same step is
redundant.

3) Unlike BFS, graph traversal need not always return
the destination vertices. As the provenance example
shows, any vertices accessed during the traversal could
be needed by users.

Based on these observations, we introduce the traversal
language GraphTrek in the following section.

III. GRAPHTREK TRAVERSAL LANGUAGE

A number of query languages either directly represent
or can be used for property graphs [28]. These lan-
guages include SPARQL [29] for RDF data [30], GraphGrep
for regular expression queries in graphs [31], Cypher for

Neo4j graph databases [32], Gremlin from the Thinkerpop
project [33], specific query language for provenance [34],
Quasar for QMDS [35], and SQL (SemiJoin) for relational
databases [36], [37], [38]. Among these languages, previous
research [39] suggests that a low-level language like Gremlin
provides better performance because it allows users to manu-
ally control each traversal step in detail. But, extremely low-
level abstractions—for example, the vertex-centric or edge-

centric graph programming primitives used in distributed
graph-processing frameworks such as Giraph and Pregel—
place too many implementation burdens on the users, who
basically need to implement their own BFS algorithm using
these primitives to finish a traversal. In this research, we
propose a more restrictive traversal language that allows users
to manually control each step while remaining simple, such
that users can easily create such queries on the fly.

GraphTrek defines an iterative query-building language to
represent property graph traversal operations. Currently, the
language is implemented in Java. The primary class defined
is called GTravel, whose methods return the caller GTravel
instance to allow call chaining. Several core methods are
defined in GTravel (because of space limits, we omit more
functions such as progress report):

• Vertex/Edge selector: v(), e()

The vertex selector method v() represents an entry point
for a graph. These IDs can be initially retrieved with
searching or indexing mechanisms provided by any un-
derlying graph storage. The edge selector method e()

selects specific edges from the working set of vertices
(frontier) by its label argument, at the point the method
call is placed in the call chain.

• Property filters va() and ea()

Property filters take property key, type of filter, and
comparison property values as arguments to filter out
vertices and edges. The filter types currently include EQ,
IN, and RANGE, which indicate that the given properties
of vertices or edges must be equal to the value, within a
set of values, or in between the given ranges, respectively.
Note that multiple property filters can be applied in one
step to filter more entities by using the AND operation.
OR is not explicitly supported in the current version,
but users can issue different traversals and combine their
results for this purpose.

• Return indicator rtn()

A return method tells the graph traversal engine that
the working set of vertices at the point of the call
should be returned to the user, but only for those vertices
whose resulting traversals reach the end of the call chain.
Normally, graph traversals return the final destination
vertices or all visited vertices. But, as our HPC prove-
nance example shows, it is useful to be able to return the
intermediate results, such as executions whose connected
vertices satisfy given conditions. For such traversals, we
simply add rtn() to the call chain after the traversal step
of interest, in order to return the needed vertices.



A. Traversal Commands Applied to Use Cases

Given the graph traversal language, we can easily describe
the traversal operations for the use cases discussed in the
preceding section.

1) Data Auditing: The query Find all files ending in .txt

read by “userA” within a timeframe can be expressed as
follows. First, a vertex selector is used to choose the right user
vertex (i.e., userA). Then, the traversal follows the “run” and
“read” edges with property filters applied. As rtn() suggests,
this command will return the file vertices encountered.

1 GTravel.v(userA).e(’run’)

.ea(’start_ts’, RANGE, [t_s, t_e])

3 .e(’read’)

.va{’type’, EQ, ’text’}.rtn()

2) Provenance Support: The example provenance request
Find the execution whose model is A and inputs have annota-

tion as B is shown below. In this command, we first select all
the vertices with given type (i.e., execution) and then denote
that these execution vertices are the return vertices using rtn().
In this way, the paths that satisfy all these constraints will
return their source execution vertices to users.

GTravel.v().va(’type’, EQ, ’Execution’).rtn()

2 .va(’model’, EQ, ’A’)

.e(’read’)

4 .va(’annotation’, EQ, ’B’)

IV. ASYNCHRONOUS TRAVERSAL EXECUTION

A graph traversal begins from the moment users submit
their GTravel instances and ends when users receive all
returned vertices. In this section, we introduce the proposed
asynchronous traversal execution in detail.

A. Traversal Submission

The graph traversal instance (GTravel) encapsulates multi-
ple steps into a single batch. To start a graph traversal, users
build the GTravel instance by chaining different operations
sequentially and then submit it to GraphTrek.

Most existing graph databases (e.g., OrientDB and Titan)
simply split the multistep traversal into multiple queries.
Clients issue one query each time and aggregate results
together to build the next query, as Fig. 2(a) shows. We
consider this as a client-side traversal since the client plays a
central controller role during the traversal. This design usually
leads to performance problems because the clients need all the
intermediate results transferred from servers through the busy
client-server network. Furthermore, compared with servers, the
client is error-prone, thus significantly affecting the system
stability.

GraphTrek relies on a different strategy, namely, server-

side traversal. As Fig. 2b shows, the client sends the GTravel
instance to one selected backend server (s3 in this example) to
start a graph traversal. This selected server (s3) will serve as
the coordinator for this traversal. The traversal is executed
among backend servers and returns the status and results
to the coordinator. In this way, server-side traversal reduces
unnecessary client-server communications and takes advantage
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Fig. 2. Comparison of client-side traversal and server-side traversal.

of data locality and fast network transmission between backend
servers. This server-side traversal is similar to job submission
in graph-processing frameworks such as Giraph, Pregel, and
GraphX.

B. Asynchronous Execution

The server-side traversal is scheduled upon the coordinator’s
receipt of the client’s GTravel instance. The coordinator de-
velops a multistep execution plan from the traversal command
execution plan and executes it asynchronously, as shown in
Fig. 3. Because of space limits, we omit the property filters
on vertices and edges, which in this case are applied locally
on each server.
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Fig. 3. Asynchronous execution of a traversal command. Numbered circles
represent the order of operations, black circles represent data (vertex/edge)
transfers, and green circles represent traversal status updates.

In this example, the two-step GTravel instance (gt1) begins
from userA. The coordinator server first learns that userA is
stored in server2 from the underlying graph databases and
then sends the request to server2 with an extra parameter
specifying the current step 1. Upon receiving the request,
server2 will iterate all the “run” edges from the given vertices
and filter them based on specified filter functions. Optimiza-
tions can be applied in underlying storage for iterating edges:
since we usually iterate edges by type, storing all the edges
of one vertex together based on their type will provide better
performance for such behavior. With the storage optimizations,
the edge iteration on server2 would become sequential, which
could obtain the best performance on block-based storage
devices.



After iterating edges, we can get a new set of vertices,
which will be the starting vertices in the second step, just
like userA in the first step. Without any synchronization,
server2 will concurrently send the GTravel instance (gt1) to
all servers that the vertices are stored at (server3 and server4
in this example). Similarly, the extra parameter that denotes the
second step is also attached with the request. Upon receiving
this data, server3 and server4 will perform the similar edge
iterations to get a new set of vertices and will dispatch requests
to more servers. If the current execution is the last step in
the traversal command, instead of dispatching the traversal
to a further step, the server will return the vertices to the
coordinator server, shown as step 3 in Fig. 3. (Returning non-
“end” vertices will be discussed in Section IV-D.) Once all
the vertices are fully returned, the coordinator server starts
to reply the client, and the whole graph traversal finishes. A
buffered pipeline can be created to transfer results from the
coordinator to the clients if the return dataset is too large. We
left this optimization as future work.

Graph traversal in GraphTrek follows the breadth-first struc-
ture: each vertex iterates all its neighbors in parallel, and
there is no accessing order among these neighbors. However,
different from traditional BFS implementation, which needs
synchronization among different steps, our proposed design
and implementation allow each server to start the next step
without explicit synchronizing with other servers. Hence, it
can coordinate the unnecessary waiting for the slow servers
and provides a better overall performance.

C. Status and Progress Tracing

In asynchronous graph traversal, each server independently
executes its actions and spreads the traversal to more servers
if needed. No global traversal status can be obtained. This
introduces correctness concern like silent failure, which means
that if the asynchronous execution fails, the system may not
be informed. Because of the existence of such failures, the
coordinator server will not be able to decide whether the
entire traversal has finished correctly or not. In GraphTrek,
we introduce a status-tracing mechanism to identify failures
to help guarantee the traversal correctness. We leave the
implementation of full fault tolerance features like restarting
traversal from where it failed as the next step.

Consider one backend server as an example. During the
traversal, it repeats the same operation: it receives the GTravel
instance from another server, performs the needed vertex and
edge filtering to get a new set of vertices, then concurrently
sends the traversal instance to more servers according to the
new set of vertices. We consider this whole procedure on a
specific server as one traversal execution. A asynchronous
graph traversal consists of many such concurrent traversal

executions. Intuitively, tracing the status of each execution will
give us a global view of the traversal. To trace each execution,
in GraphTrek, we log the creation and termination events of
executions in the coordinator server. If any execution was
logged as created but did not terminate (as the result of a
timeout or similar reasons), we consider that the server failed.

Since we currently do not implement a full fault tolerance
feature, this failure will simply cause the traversal to be
restarted. We leave the fine-grained failure recovery as future
work.

In Fig. 3, the green circles show the example tracing reports
from the backend servers to the coordinator during graph
traversal. Whenever one server successfully sends the GTravel
instance to other servers to start the next step, it will report
an execution creation event to the coordinator telling it that
the new execution is created in the target servers. In addition,
after the GTravel instances have been successfully sent, the
server will report the execution termination event denoting its
own termination. An execution will not be considered finished
in the coordinator unless it has registered all its downstream
executions in the coordinator server and has reported its own
termination. Similarly, a graph traversal does not finish unless
all the executions created are marked as terminated in the
coordinator server.

The status reports of the traversal executions from the back-
end servers also help track the traversal progress. Although it
is not feasible to have the exact current step of the traversal
as it is executed in an asynchronous way, the count of current
unfinished traversal executions in each step can still help users
estimate the remaining work and time.

D. Traversal Return

Traversal stops when it reaches the last step of GTravel
instance. Typically, these final executions will transmit the
final vertices to the coordinator and to the clients. But as
rtn() suggests, GraphTrek also allows users to return the
intermediate or even the source vertices. In order to support
such functionality, each time a backend server starts a traversal
execution, it will check whether the generated vertices are
marked as returned by users. If yes, the server will change the
report destination of all the downstream traversal executions
to help return the needed vertices.
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Fig. 4. Example of a graph traversal that returns the intermediate vertices.

As Fig. 4 shows, changing the “reporting destination”
causes the graph traversal to execute in a slightly different
way. Assume that the vertices (v1 and v2) are generated in
a certain step of the traversal, which is marked with rtn().
Then, the servers actually storing v1 and v2 will force the



downstream servers to change their “reporting destination”
from coordinator to themselves. The servers that execute
the last step will send their final results to these “reporting
destinations.” For example, as step R shows, after one more
step traversal, the backend servers return to s2 and s3 instead
of the coordinator server. When replies arrive, servers (s2 and
s3) will know the status of downstream executions and will
send the vertices to the coordinator server accordingly. In this
way, we can return vertices in arbitrary steps in the graph
traversal.

V. ASYNCHRONOUS TRAVERSAL OPTIMIZATIONS

To achieve the best performance for asynchronous graph
traversal, we introduce several critical optimization.

A. Traversal-Affiliate Caching

One potential drawback of asynchronous traversal is the
redundant vertex visit. Unlike the repeated vertex visit intro-
duced in Section II, these redundant vertex visits are from
the same step on the same vertex and are triggered by
asynchronous execution. In Fig. 5, we show an example of
such a scenario: three different paths arrive at vH in the same
step starting from va. These three paths (i.e., a → c → H ,
a → d → H , and a → e → H) go through two servers.
Because of the asynchronous execution model, they may
arrive at three different times and cause redundant disk I/Os.
This drawback wastes precious I/O bandwidth, leading to a
performance problem.
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Fig. 5. Example of a redundant vertex visit in an asynchronous graph
traversal: a, b, ... are vertices. S1, S2, ..., are backend servers.

To avoid this problem, we introduce a traversal-affiliate
cache. In each backend server, a preallocated cache is created
once the servers start. During the graph traversal, the server
caches the current execution into this buffer with the identi-
fication of a {travel-id, current-step, vertex-id} triple. While
serving a new request, the server first checks whether it has
been served before by querying the cache. If there is a cache
hit, then the server can safely abandon the request. By doing
so, we also avoid spreading graph traversal multiple times.

Although the traversal-affiliate caching buffers only three-
element triples, complex and concurrent graph traversal re-
quests can still fill it up. To substitute the cached elements,
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Fig. 6. Request queue in local server under scheduling and merging.

we use the time-based replacement strategy: for each traversal
instance, the triples with the smallest step Ids are substituted.
The rationale comes from the fact that the existence of a larger
step Id indicates that the oldest steps are already finished. This
is still true even under the asynchronous execution model.
The distance between the largest step and the smallest step
is controlled by using an optimized execution scheduling and
merging strategy introduced in next subsection.

B. Execution Scheduling and Merging

In the proposed asynchronous graph traversal, each server
receives a traversal instance and current step from its ancestor
servers. It puts the received requests into a local queue and
replies to the ancestor servers before processing these requests.
In this way, the ancestor servers can finish asynchronously,
and the local server will have a number of buffered requests.
A pool of worker threads is waiting on this queue for new
requests. This leads to a dynamic queue size in each server:
if a server is slower or with heavier loads, its internal queue
is longer, and more requests are buffered. This presents an
opportunity to improve performance via scheduling and merg-
ing. Otherwise, the queue is shorter, and the server responds
quickly for new requests.

A worker thread takes one queued request at a time for
processing. The upper queue in Fig. 6 shows an initial status
after receiving a number of requests from ancestor servers.
We show only a single graph traversal in this figure. During
scheduling, the worker thread always chooses the request
with the smallest step Id in the queue. In this way, all the
requests are ordered by their step Ids, as the middle queue
in Fig. 6 shows. Using this execution scheduling strategy, we
can process the slow steps with higher priority in order to help
them catch up. This approach also helps control the maximal
step difference between the fastest one and the slowest one in
the traversal, thus reducing the traversal-affiliate cache usage.

In addition to execution scheduling, we introduce execution
merging. As Fig. 6 shows, we consolidate different steps on
the same vertex; for example, traversal executions on v2 for
step 1 and step 2 will be combined as one disk request. In this
way, we need only to retrieve the vertex attributes or to scan
its edges once locally. This optimization significantly reduces
the amount of disk I/O.

The scheduling and merging on the buffered queue provide



an automatic load-balancing mechanism among asynchronous
executions inside the same graph traversal. If executions are
slower because of stragglers, more requests will be buffered
in the queue, providing an opportunity to schedule and merge
executions more efficiently. These optimizations significantly
improve the execution of asynchronous graph traversals.

VI. DISCUSSION OF IMPLEMENTATION AND EVALUATION

We have designed GraphTrek as a graph traversal engine
working as a standalone component along with the backend
storage systems (i.e., the property graph databases). As Fig. 3
shows, the asynchronous graph traversal engine runs on each
backend server based on the graph databases instances. These
traversal engine components communicate with each other
through RPC calls and retrieve data and information from the
local daemon of the underlying graph storage systems. The
information that the graph storages provide mainly includes
the location of a given vertex and edges.

Although numerous distributed property graph databases
have been proposed and developed, they are all general graph
databases without considering the requirements of our HPC
metadata management use case. For example, Titan stores
the property graphs on general column-based NoSQL storage
systems such as HBase [40] or Cassandra [41], where all
vertices are mapped as different rows; edges and attributes are
mapped as separate columns in the same row; key-value stor-
ages were also used to implement graph functionalities [42].
Systems such as Noe4j store the graph structure and attributes
separately in order to gain performance on queries of graph
structure. In this paper, we evaluated GraphTrek based on our
own concise but complete graph storage system developed for
HPC metadata management [43].

Specifically, we map the attributes and the connected edges
of a vertex into different key-value pairs that are sequentially
stored for better scan performance. Also, the same type of
edges are stored together; different types of vertices are
mapped into key-value pairs in separate namespaces. In each
server, we deploy RocksDB [44] to store these key-value pairs
persistently. The graph traversal engine communicates with
each other through RPC calls, which are implemented by
ZeroMQ [44] as a high-speed network transmission protocol.

In addition to different storage layouts, graph partition
strategies can make a huge difference in the performance
on the graph traversal. From the commonly used edge-cut

partition, which places the vertices across different servers
by their hash values, to the vertex-cut partitioning strategies,
which places the edges to different servers with a considerable
amount of variations [45], [20], [46], many design choices
have to be made based on the use cases. However, due
to inevitable interferences, even with the best load-balanced
strategy, stragglers will still exist and asynchronous execution
is still a key to minimize the affects of such stragglers. To
simplify, in this study, we focus on the edge-cut partition, as
most graph databases do.

For comparison, we also implemented synchronous graph
traversal in our framework for use as a baseline. In a syn-

chronous graph traversal, a control server typically is used
to synchronize each step of the traversal. This control server
can be a client or a selected backend server. Using a client
as a controller makes traversal is more vulnerable to failures
and has worse performance because of the slow client-server
communication. Thus, in our synchronous graph traversal im-
plementation, we follow the same server-side traversal design
to obtain a fair comparison. The execution of the synchronous
traversal is straightforward. Each time, the controller makes
sure that all previous executions have finished and then starts
the next step. In order to obtain the best performance, the
data flows are transferred between involved backend servers
without going through the controller. Each server waits for
the signal from the controller to start the next step, in order
to realize global synchronization between sequential steps.

VII. EVALUATION

In this section, we evaluate the performance of GraphTrek
on synthetic graphs and on a real-world HPC rich metadata
management use case. We implement the synchronous graph
traversal (denoted Syn-GT), plain asynchronous traversal with-
out any optimizations (denoted Asyn-GT), and GraphTrek
(denoted GraphTrek) for comparison.

On the hardware side, all evaluations were conducted on
the Fusion cluster at Argonne National Laboratory. It contains
320 nodes, and we used 2 to 32 nodes as backend servers
in these evaluations. Each node has a dual-socket, quad-core
2.53 GHz Intel Xeon CPU with 36 GB memory and 250
GB local hard disk. All nodes are connected by high-speed
network interconnection (InfiniBand QDR 4 GB/s per link,
per direction). The global parallel file system includes a 90
TB GPFS file system and a 320 TB PVFS file system.

On the software side, GraphTrek servers are currently able
to run using either local storage or parallel file systems by
changing the locations of RocksDB database files. They can
be placed on local disks for better performance or on parallel
file systems (e.g., GPFS in the Fusion environment) for fault
tolerance against server failures. In the following evaluations,
unless explicitly pointed out, we evaluated GraphTrek atop
GPFS as an initial step toward a fault tolerance strategy. In
fact, in production, the HPC rich metadata should be kept
in a resilient manner, so the performance on GPFS gives a
more reasonable performance estimation than does using local
disks (around 10% performance benefits of local disks for both
synchronous and asynchronous traversal is detected during our
evaluation).

For experiments with synthetic graphs, we used scale-free
graphs generated by the RMAT graph generator [47]. The
RMAT graph generator uses a “recursive matrix” model to
create graphs that model real-world graphs as social net-
work graphs. We generated directed property graphs with
220 vertices and an average out-degree of 16. The vertices
and edges in these synthetic graphs are the same type, with
randomly generated attributes attached (the attribute size is
128 bytes). The graph (denoted RMAT-1 graph) was generated
with parameters a = 0.45, b = 0.15, c = 0.15, and d = 0.25,



which create a power-law graph with moderate out-degree
skewness. In addition to this parameter set, we tried different
RMAT configurations during the evaluation. They all gener-
ated largely similar results, so we included only this single set
because of space limitations.

We execute 2-step, 4-step, and 8-step graph traversal ex-
amples starting from the same randomly selected vertex on 2
to 32 backend servers. No extra workloads are generated on
any backend servers during the experiments; any workload
imbalance is due to the properties of the graph itself. All
evaluations are carried out from a cold start in order to force
disk access in the traversal engine. Note that the graph size
is held constant as we vary the number of servers. In larger-
scale experiments each individual server therefore stores fewer
vertices and edges.

A. Sensitivity to Asynchronous Traversal Optimizations

We begin our evaluation by investigating the impact of
the asynchronous traversal optimizations described in Sec-
tion V. GraphTrek introduces two optimizations, traversal-
affiliate caching and execution scheduling/merging, to improve
the performance of asynchronous graph traversal. To verify the
benefits of these optimizations, we evaluate the performance
analysis of Sync-GT, ASync-GT, and GraphTrek in a specific
case, an 8-step graph traversal on the RMAT-1 graph, as shown
in Table I. Other examples are omitted since they show similar
results.

TABLE I
PERFORMANCE COMPARISON ON RMAT-1 GRAPH

No. Servers Sync-GT Async-GT GraphTrek
2 47.8 s 63.7 s 45.2 s
4 28.5 s 33.1 s 22.5 s
8 17.1 s 20.6 s 13.4 s
16 10.3 s 12.1 s 8.3 s
32 7.2 s 7.4 s 5.6 s

In this series of tests, the Async-GT is the plain asyn-
chronous engine without optimizations. As the results indicate,
it has worse performance than both the GraphTrek and Sync-
GT. Since the Async-GT and GraphTrek are implemented
in a similar manner, the main performance difference comes
from the proposed optimizations. To further understand the
benefits of these optimizations, we placed instruments inside
the GraphTrek engine to collect the statistics during the
execution. In each server, we collected three statistics: (1)
redundant visits, which indicates the number of repeated
vertex requests detected by the traversal-affiliate caching; (2)
combined visits, which counts the number of vertex requests
that can be combined together by the execution merging; and
(3) real I/O visits, which counts the real vertex accesses to
backend storage systems. The sum of these three numbers
equals the total vertex requests received in one server during
the traversal. Figure 7 shows the results of a typical run of an
8-step graph traversal on 32 servers (servers are reordered for
better presentation).
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Fig. 7. Statistics collected from an 8-step traversal on 32 servers.

These statistics show a significant reduction from the re-
ceived requests to real I/O visits as a result of the proposed
optimizations. The redundant vertex visits actually dominate
the majority of received requests. Traversal-affiliate caching
can effectively remove them in each server, thereby boost-
ing performance. On the other hand, another optimization—
execution merging—has different impacts on the different
servers: the combined visit is much more obvious in the first 10
servers than in the other servers. From an in-depth analysis of
these 10 servers, we found that they actually stored more high-
degree vertices. Because of this imbalance of graph structure,
they were much slower than the other servers while serving
the same number of vertex requests. Thus, in an asynchronous
engine, the local queue can buffer more requests, and the
execution merging was able to merge more vertices together.
So, as Fig. 7 shows, these servers end up with fewer real
vertex requests and hence can catch up with other servers.
This optimization significantly reduces the actual disk I/Os
and helps improve the overall performance.

Based on these results, we omit the Async-GT evaluation
from all subsequent experiments and focus on the comparison
between asynchronous traversal with optimizations (Graph-
Trek) and synchronous traversal (Sync-GT).

B. Synthetic Workloads

In this section we use a wider sampling of synthetic
workloads. The results obtained by using RMAT-1 are shown
in Fig. 8 to Fig. 10. The number of servers is shown on the
x-axis, while the y-axis shows the elapsed time (ms) for graph
traversal requests.

From these figures we see that for graph traversals with
smaller steps and fewer servers, the synchronous implemen-
tation actually performs better than does the GraphTrek, as
Fig. 8 shows. The reason is that the short traversal does not
provide enough optimization opportunities for asynchronous
executions. GraphTrek’s relative performance improves when
more servers are involved in the traversal and the potential for
stragglers increases. Figure 9 and Figure 10 also illustrate that
GraphTrek performs well with more traversal steps. For exam-
ple, in Fig. 10, with an 8-step graph traversal, the performance
improvement over 32 servers was around 24%, compared
with the 5% improvement over 2 servers. The increased
number of traversal steps (as would be common in HPC
metadata management use cases) also significantly increases
the potential for straggler servers to affect performance. With
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Fig. 8. 2-step graph traversal on RMAT-1.
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Fig. 9. 4-step graph traversal on RMAT-1.
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Fig. 10. 8-step graph traversal on RMAT-1.
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Fig. 11. Performance comparison with simulated external stragglers. Each
bar shows an average of three runs.

different RMAT graphs, a similar performance pattern can be
observed.

C. Synthetic Workloads with External Interference

Servers may experience transient straggling behavior be-
cause of concurrent I/O activity from other traversals or exter-
nal applications. To investigate the performance impact on the
traversal engine, we emulated this phenomenon by inserting
fixed (50 ms) delay into individual vertex data accesses. Each
time, multiple delays (500 times, indicating 500 slow vertices
accesses) were created to emulate a straggler that lasts a certain
period of time. By creating fixed delays, we can make sure
that the two traversal engines are facing the same amount of
external delays. During the whole traversal, three stragglers
were created in three selected servers at chosen steps (step
1, 3, and 7). Specifically, we created one straggler chosen by
round-robin from these three selected servers in each step.
Figure 11 shows how this affected performance for an 8-step
RMAT-1 graph traversal.

The results suggest an obvious performance advantage of
GraphTrek (2x with 32-server) compared with synchronous
solutions. The asynchronous traversal can make productive
traversal progress despite the presence of external interference
because it does not require synchronization after each step of
the traversal. The execution scheduling and merging optimiza-
tions also allow straggling servers to more quickly catch up
with the other servers.

D. HPC Metadata Management Workloads

We also evaluated the impact of the proposed asynchronous
graph traversal and the GraphTrek framework for real HPC
rich metadata management use cases. To build the heteroge-
neous property graph, we imported one year of Darshan traces
(2013) from the Intrepid supercomputer at Argonne National

Laboratory into a property graph for the evaluation [48], [49].
This collection of Darshan logs characterizes the I/O activity
of approximately 42% of all core-hours consumed on the
Intrepid over the course of a year. Statistics for the generated
graph are listed in Table II. Our previous work shows that
this rich metadata graph is also a small-world graph with a
power-law distribution [1].

TABLE II
STATISTICS OF RICH METADATA GRAPH

No. of Users Jobs Executions Files Edges
177 47600 123.4 Millions 34.6 Millions 239.8 Millions

Because of page limit constraints, we show only one ex-
ample data auditing query and its performance. This query is
used for analyzing the influence of a suspicious user on the
system. It lists all files that were written by executions whose
input files are suspicious. The graph traversal can be expressed
as follows.

GTravel.v(suspectUser).e(’run’)

2 .ea(’ts’, RANGE, [ts, te]) //select jobs
.e(’hasExecutions’) //select executions

4 .e(’write’) //select outputs
.e(’readBy’) //select executions

6 .e(’write’).rtn(); //outputs of executions

Running this request for a randomized user on 32 servers
with different graph traversal implementations has different
performance results, as reported in Table III. Similar to
synthetic graphs, the GraphTrek clearly outperforms the syn-
chronous design and approach.

TABLE III
PERFORMANCE COMPARISON ON DARSHAN GRAPH

No. Servers Sync-GT Async-GT GraphTrek
32 3575 ms 4159 ms 2839 ms

VIII. CONCLUSION AND FUTURE WORK

Motivated by the needs of graph-based HPC rich metadata
management use cases, we have proposed a graph traversal
language to help describe complex queries. We also introduced
an asynchronous graph traversal engine, GraphTrek, in order
to avoid the performance bottleneck caused by stragglers
while traveling through property graphs. To achieve better
asynchronous traversal performance, we proposed two critical
optimizations, traversal-affiliate caching and execution merg-
ing, for the asynchronous traversal design. A performance



comparison of the synchronous and asynchronous traversal
engines on both synthetic datasets and real-world workloads
confirms that, for larger systems with deeper traversals, the
proposed asynchronous engine achieves better performance
than does the traditional synchronous approach.

For future work, we will focus on the fine-grained fault
tolerance capability in order to make the traversal capable
of restarting from where it fails and also explore possible
optimizations including automatic load balancing to further
improve the performance.
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