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Additional Homework problems

This dynamically updated document lists the mandatory and bonus homework problems that were
assigned on the board and can not be found in the book.
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B1 Bonus problem, due Wednesday, September 22.

Let n > 1 be a fixed positive integer and consider the set P of positive integers modulo n. For
any a ∈ P let [a] denote the set {a + kn | k ∈ Z, a + kn > 0}, i.e., the set of positive integers
congruent to a, modulo n. We have seen in class that [a] + [b] ⊆ [a + b] holds for any pair (a, b)
of positive integers. Is it true that [a] + [b] always contains [a + b]? If yes, prove your claim, if
not, show a counterexample.

B2 Bonus problem, due Wednesday, October 13.

Consider the set of all functions f : Z → Z, together with the composition operation. As we
saw it in class, this is a semigroup, and the identity element is the function ı : x 7→ x. Give
an example of a function with infinitely many right inverses but no left inverse. A function
g : Z → Z is a right inverse of f if f ◦ g = ı. Similarly, a function g : Z → Z is a left inverse of f

if g ◦ f = ı.

B3 Bonus problem, due Wednesday, November 17.

Prove that 5
√

2 is irrational.

B4 Bonus problem, due Monday, December 6.

Let V be any subset of Cn. Prove that the set I := {f(x1, . . . , xn) ∈ C[x1, . . . , xn] : f(c1, . . . , cn) =
0 for all (c1, . . . , cn) ∈ V } is an ideal of C[x1, . . . , xn].
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