Change of basis formulas

Given a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ of \mathbb{R}^n , we associate to it the matrix $P_{\mathcal{B}} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$.

Example. When
$$n = 2$$
 set $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$. We then have $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1/2 \end{bmatrix} \right\}$ and $P_{\mathcal{B}} = \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix}$.

The \mathcal{B} -coordinates of a vector \mathbf{x} are its coefficients in the basis \mathcal{B} . They are recorded as the vector $[\mathbf{x}]_{\mathcal{B}}$. When we do not indicate the basis, then we have the standard basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ in mind. The coordinates in the standard basis are given by the equation

$$[\mathbf{x}] = P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}}.$$
 (1)

Example. If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$ and $P_{\mathcal{B}}$ is the matrix above, then $[\mathbf{x}] = \begin{bmatrix} 2 & 0\\ 1 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 3\\ 2 \end{bmatrix} = \begin{bmatrix} 6\\ 4 \end{bmatrix}$.

If you are given $[\mathbf{x}]$ and you are looking for $[\mathbf{x}]_{\mathcal{B}}$ then (1) implies

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \cdot [\mathbf{x}].$$
⁽²⁾

Example. For the matrix $P_{\mathcal{B}}$ as above we have $P_{\mathcal{B}}^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1 & 2 \end{bmatrix}$. Hence for the vector $[\mathbf{x}] = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, we get

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1/2 & 0\\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 6\\ 4 \end{bmatrix} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$$

If you are given a second basis C and a vector $[\mathbf{x}]_{\mathcal{B}}$ given in the basis \mathcal{B} , and you want to find $[\mathbf{x}]_{\mathcal{C}}$, you may do so by combining equations (1) and (2) as follows.

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \cdot [\mathbf{x}] = P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}}.$$
(3)

The matrix $P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}}$ is denoted by $P_{\mathcal{C} \leftarrow \mathcal{B}}$ in our textbook.

Example. For the matrix

$$P_{\mathcal{C}} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

we have

$$P_{\mathcal{C}}^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \text{ and } P_{\mathcal{C} \leftarrow \mathcal{B}} = P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 3/2 & 1/4 \\ -1/2 & 1/4 \end{bmatrix}$$

For the matrix $[\mathbf{x}]_B$ as above, we get

$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 3/2 & 1/4 \\ -1/2 & 1/4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

Note that, since we know $[\mathbf{x}]$ in this example, we may also find $[\mathbf{x}]_{\mathcal{C}}$ using (2) as follows:

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \cdot [\mathbf{x}] = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}.$$

The matrix [T] of a linear transformation T is the matrix, whose *i*-th column is $T(\mathbf{e}_i)$.

Example. The matrix of the rotation around the origin by positive 90 degree is $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Given a vector $[\mathbf{x}]$, the coordinates of $T(\mathbf{x})$ are given by

$$[T(\mathbf{x})] = [T] \cdot [\mathbf{x}]. \tag{4}$$

Example. The rotation above takes our sample vector $[\mathbf{x}]$ into

$$[T(\mathbf{x})] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}.$$

The effect of the transformation T in a different basis \mathcal{B} can be expressed using (1) and (2) as follows:

$$[T(\mathbf{x})]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \cdot [T(\mathbf{x})] = P_{\mathcal{B}}^{-1} \cdot [T] \cdot [\mathbf{x}] = P_{\mathcal{B}}^{-1} \cdot [T] \cdot P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}}.$$

Hence the matrix of the transformation T in the basis \mathcal{B} is

$$[T]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \cdot [T] \cdot P_{\mathcal{B}}.$$
(5)

Example. The matrix of the rotation around the origin by positive 90 degree in our basis \mathcal{B} is

$$\begin{bmatrix} 1/2 & 0 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 0 & -1/2 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} -1/2 & -1/4 \\ 5 & 1/2 \end{bmatrix}$$

Rotating around the origin by positive 90 degrees our vector with \mathcal{B} -coordinates $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\2 \end{bmatrix}$ gives

$$[T(\mathbf{x})]_{\mathcal{B}} = \begin{bmatrix} -1/2 & -1/4 \\ 5 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 16 \end{bmatrix}$$

The standard coordinates of this vector are

$$[T(\mathbf{x})] = \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 16 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}.$$