Change of basis formulas

Given a basis $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ of \mathbb{R}^n , we associate to it the matrix $P_{\mathcal{B}} = [\mathbf{b}_1, ..., \mathbf{b}_n]$.

Example. When
$$
n = 2
$$
 set $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$. We then have

$$
\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1/2 \end{bmatrix} \right\} \text{ and } P_{\mathcal{B}} = \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix}.
$$

The B-coordinates of a vector \bf{x} are its coefficients in the basis \bf{B} . They are recorded as the vector $[\mathbf{x}]_B$. When we do not indicate the basis, then we have the standard basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ in mind. The coordinates in the standard basis are given by the equation

$$
[\mathbf{x}] = P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}}.\tag{1}
$$

Example. If $[\mathbf{x}]_{\mathcal{B}} =$ $\left\lceil 3 \right\rceil$ 2 and P_B is the matrix above, then $[\mathbf{x}] = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ 1 1/2 1 · $\lceil 3 \rceil$ 2 1 = $\lceil 6$ 4 1 .

If you are given $[\mathbf{x}]$ and you are looking for $[\mathbf{x}]_B$ then (1) implies

$$
[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \cdot [\mathbf{x}]. \tag{2}
$$

Example. For the matrix P_B as above we have P_B^{-1} = $\begin{bmatrix} 1/2 & 0 \\ -1 & 2 \end{bmatrix}$. Hence for the vector $[\mathbf{x}] = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ 4 1 , we get

$$
[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1/2 & 0 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}
$$

If you are given a second basis C and a vector $[x]_B$ given in the basis B, and you want to find $[\mathbf{x}]_c$, you may do so by combining equations (1) and (2) as follows.

$$
[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \cdot [\mathbf{x}] = P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}}.
$$
\n(3)

.

The matrix $P_{\mathcal{C}}^{-1}$ $C_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}}$ is denoted by $P_{\mathcal{C} \leftarrow \mathcal{B}}$ in our textbook.

Example. For the matrix

$$
P_{\mathcal{C}} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}
$$

we have

$$
P_{\mathcal{C}}^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \text{ and } P_{\mathcal{C}\leftarrow\mathcal{B}} = P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 3/2 & 1/4 \\ -1/2 & 1/4 \end{bmatrix}.
$$

For the matrix $[\mathbf{x}]_B$ as above, we get

$$
[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 3/2 & 1/4 \\ -1/2 & 1/4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}.
$$

Note that, since we know [**x**] in this example, we may also find $[\mathbf{x}]_c$ using (2) as follows:

$$
[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \cdot [\mathbf{x}] = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}.
$$

The matrix [T] of a linear transformation T is the matrix, whose *i*-th column is $T(\mathbf{e}_i)$.

Example. The matrix of the rotation around the origin by positive 90 degree is $[T] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Given a vector $[\mathbf{x}]$, the coordinates of $T(\mathbf{x})$ are given by

$$
[T(\mathbf{x})] = [T] \cdot [\mathbf{x}]. \tag{4}
$$

Example. The rotation above takes our sample vector $[\mathbf{x}]$ into

$$
[T(\mathbf{x})] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}.
$$

The effect of the transformation T in a different basis \mathcal{B} can be expressed using (1) and (2) as follows:

$$
[T(\mathbf{x})]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \cdot [T(\mathbf{x})] = P_{\mathcal{B}}^{-1} \cdot [T] \cdot [\mathbf{x}] = P_{\mathcal{B}}^{-1} \cdot [T] \cdot P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}}.
$$

Hence the matrix of the transformation T in the basis \mathcal{B} is

$$
[T]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \cdot [T] \cdot P_{\mathcal{B}}.\tag{5}
$$

Example. The matrix of the rotation around the origin by positive 90 degree in our basis β is

$$
\begin{bmatrix} 1/2 & 0 \ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 0 & -1/2 \ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} -1/2 & -1/4 \ 5 & 1/2 \end{bmatrix}
$$

Rotating around the origin by positive 90 degrees our vector with β -coordinates $[\mathbf{x}]_\beta =$ $\lceil 3 \rceil$ 2 1 gives

$$
[T(\mathbf{x})]_{\mathcal{B}} = \begin{bmatrix} -1/2 & -1/4 \\ 5 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 16 \end{bmatrix}.
$$

The standard coordinates of this vector are

$$
[T(\mathbf{x})] = \begin{bmatrix} 2 & 0 \\ 1 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 16 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}.
$$