Sines and cosines in the Poincaré disk model of the hyperbolic plane

Theorem 1 Assume that ABCA is a right triangle, with its right angle at C, in the hyperbolic plane
represented by the Poincaré disk model. Then
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Proof: Without loss of generality we may assume that A is at the center of the Poincaré disk.

The lines AB and AC are represented by straight lines, the line BC' is represented by an arc of a circle
C1 centered at O1. Let B’ resp. C’ be the second intersection of OB resp OC with this circle and By
be the orthogonal projection of O to the line OB.

Since the Poincaré disk and the circle C are orthogonal to each other, the power of A = O with
respect to Cp is 1 (=the radius of the Poincaré disk). Hence the Euclidean distance OB satisfies
OB - OB’ = 1. We also know that the Euclidean distance OB equals tanh(c/2). Thus
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Similarly, since the Euclidean distance OC' equals tanh(b/2), we get CC’ = 2/sinh(b). The angle of
ABCp at B is the angle between the tangent of C; at B and the line OB. Due to the Star Trek
Lemma, this is the half of the central angle ZBO;B’, which is equal to ZBO;B;. Hence sin(B) may
be calculated from the right triangle O1B1Ba, and we get
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We may calculate cos(A) using cos(A) = AB;/AO;. Here
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Similarly, AO; = AC' + CC"/2 yields AO; = 1/tanh(b) and so we obtain
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In analogy to the formulas for sin(B) and cos(A) we also have
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Since 1 = sin?(A) + cos?(A), we get
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Multiplying both sides with cosh?(b) sinh?(c) we get
cosh?(b) sinh?(¢) = sinh?(a) cosh?(b) 4 sinh?(b) - cosh?(c).
Using the identity sinh?(z) = cosh?(x) — 1 we may get rid of the hyperbolic sines and write
cosh?(b)(cosh?(c) — 1) = (cosh?(a) — 1) cosh?(b) + (cosh?(b) — 1) - cosh?(c), i.e.,

cosh?(b) cosh?(¢) — cosh?(b) = cosh?(a) cosh?(b) — cosh?(b) + cosh?(b) cosh?(c) — cosh?(c).
Adding cosh?(b) + cosh?(c) — cosh?(b) cosh?(c) yields

cosh?(c) = cosh?(a) cosh?(b).

Since the range of the hyperbolic cosine function is a subset of the positive real numbers, we may take
the square root on both sides and get the hyperbolic Pythagorean theorem:

Theorem 2 Ifa,b, c are the sides of a hyperbolic right triangle, c is the hypotenuse and the hyperbolic
plane is the Poincaré disk model then

cosh(c) = cosh(a) cosh(b).



