The spherical Pythagorean theorem

Proposition 1 On a sphere of radius R, any right triangle ANABC with ZC' being the right angle
satisfies cos(c/R) = cos(a/R) cos(b/R).

Proof: We complement the proof presented in [1, page 206]. Let O be the center of the sphere, we may
assume its coordinates are (0,0,0). We may rotate the sphere so that A has coordinates O—1>4 = (R,0,0)
and C' lies in the zy-plane. Rotating around the z axis by 8 := ZAOC takes A into C. The edge OA
moves in the zy-plane, by 3, thus the coordinates of C' are OC' = (Rcos(), Rsin(f),0). Since we
have a right angle at C, the plane of AOBC is perpendicular to the plane of AOAC and it contains
the z axis. An orthonormal basis of the plane of AOBC' is given by 1/R - 0C = (cos(B),sin(p),0)
and the vector 07 (0,0,1). A rotation around O in this plane by « := ZBOC takes C into B:

OB = cos(a) - oC + sin(a) - R - 07 = (Rcos(B) cos(a), Rsin(B) cos(a), sin(a)).

Introducing v := LAOB, we have

OA.-0B R cos(a) cos(p)
cos(y) = 72 = 72 )
The statement now follows from o = a/R, f = b/R and v = ¢/R. O

To prove the rest of the formulas of spherical trigonometry, we need to show the following.

Proposition 2 Any spherical right triangle ANABC with ZC being the right angle satisfies
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Proof: We complement the proof presented in [1, page 208]. After replacing a/R, b/R and ¢/R with
a, b, and ¢ we may assume R = 1. This time we rotate the triangle in such a way that OC = (0,0, 1),
A is in the zz plane and B is in the yz-plane. A rotation around O in the xz plane by b = LZAOC
takes C' into A, thus we have N

OA = (sin(b), 0, cos(b)).

Similarly, a rotation around O in the yz-plane by a = ZBOC takes C into B, thus we have
OB = (0,sin(a), cos(a)).
— —
The angle A is between OA X O? and OA x O? Here

OA x OB = —cos(b) sin(a), — sin(b) cos(a), sin(a) sin(b)) and OA x 00 = (0, —sin(d), 0).



The length of OA x OB is ‘O—zzl‘ . ‘O@‘ -sin(c) = sin(c), the length of 04 x OC is sin(b).
To prove (1) we use the fact that
‘(O_flxcﬁ)x(O—fGCﬁ)‘:‘O_flx(ﬁ)-’axm‘-sin(m. (3)
Since
(— cos(b) sin(a), — sin(b) cos(a), sin(a) sin(b)) x (0, —sin(b), 0) = (sin(a) sin(b), 0, sin(b) cos(b) sin(a))

the left hand side of (3) is

\/sin2(a) sint(b) + sin?(b) cos?(b) sin?(a) = sin(b) sin(a) \/sin2(b) + cos?(b) = sin(b) sin(a).
The right hand side of (3) is is sin(b) sin(c) sin(A4). Thus we have
sin(b) sin(a) = sin(b) sin(c) sin(A),
yielding (1).
To prove (2) we use the fact that
(cﬁx(ﬁ)-((ﬂx(ﬁ):\(ﬁx(ﬁ}.‘ﬁx@]msm). (4)
The left hand side is sin(b) cos(a), the right hand side is sin(b) sin(c) cos(A4). Thus we obtain

sin?(b) cos(a) = sin(b) sin(c) cos(A),

yielding
cos(A) = sin(l?) cos(a) _ tan(b) cos(a) COS(b)'
sin(c) tan(c) cos(c)
Equation (2) now follows from Proposition 1. o
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