## Rational links represented by reduced alternating diagrams

## Gábor Hetyei

Department of Mathematics and Statistics
University of North Carolina at Charlotte
http://webpages.uncc.edu/ghetyei/
joint work with Yuanan Diao and Claus Ernst
September 28, 2020, Discrete CATS seminar arXiv:1908.09458 [math.GN]

Knots and links

Continued fractions

Transforming continued fractions

## Knot and link diagrams



## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself.

## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself. We may represent it as a self-intersecting curve in the plane, indicating which strand goes above the other one at each crossing.

## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself. We may represent it as a self-intersecting curve in the plane, indicating which strand goes above the other one at each crossing.


## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself. We may represent it as a self-intersecting curve in the plane, indicating which strand goes above the other one at each crossing. A link is a collection of knots.

## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself. We may represent it as a self-intersecting curve in the plane, indicating which strand goes above the other one at each crossing. A link is a collection of knots.


## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself. We may represent it as a self-intersecting curve in the plane, indicating which strand goes above the other one at each crossing.
A link is a collection of knots.
The diagrams of topologically equivalent knots and links may be transformed into each other by a sequence of Reidemeister moves.

## Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect itself. We may represent it as a self-intersecting curve in the plane, indicating which strand goes above the other one at each crossing.
A link is a collection of knots.
The diagrams of topologically equivalent knots and links may be transformed into each other by a sequence of Reidemeister moves.




## Oriented links and signed crossings

## Oriented links and signed crossings

An oriented link consists of oriented curves.

## Oriented links and signed crossings

An oriented link consists of oriented curves. We may put signs on the crossing:it is the sign of the shortest rotation moving the upper strand right above the lower strand.

## Oriented links and signed crossings

An oriented link consists of oriented curves. We may put signs on the crossing:it is the sign of the shortest rotation moving the upper strand right above the lower strand.


## Oriented links and signed crossings

An oriented link consists of oriented curves. We may put signs on the crossing:it is the sign of the shortest rotation moving the upper strand right above the lower strand.


The writhe is the sum of all signs.

## Braids and Seifert circles

## Braids and Seifert circles

The Seifert circles of an oriented link diagram are obtained by smoothing all crossings.

## Braids and Seifert circles

The Seifert circles of an oriented link diagram are obtained by smoothing all crossings.


## Braids and Seifert circles

The Seifert circles of an oriented link diagram are obtained by smoothing all crossings.


## Braids and Seifert circles

The Seifert circles of an oriented link diagram are obtained by smoothing all crossings.


## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.

## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.


## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.


## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.

## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.


## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.


## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.


## Braids and Seifert circles

An oriented link diagram is a braid if its Seifert circles are concentric.


## Braids and Seifert circles

Fact: Every oriented link diagram may be transformed into a braid.

## Braids and Seifert circles

Fact: Every oriented link diagram may be transformed into a braid. (The number of crossings may go up.)

## Braids and Seifert circles

Fact: Every oriented link diagram may be transformed into a braid. (The number of crossings may go up.)
The braid index is the least number of Seifert circles in the braid representation of an oriented link.

## Alternating links

## Alternating links

A link diagram is alternating if along each strand, overcrossings and undercrossings alternate.

## Alternating links

A link diagram is alternating if along each strand, overcrossings and undercrossings alternate.
The Seifert graph of an oriented link diagram is the graph whose vertices are indexed by the Seifer circles and each crossing is represented by an edge.

## Alternating links

A link diagram is alternating if along each strand, overcrossings and undercrossings alternate.
The Seifert graph of an oriented link diagram is the graph whose vertices are indexed by the Seifer circles and each crossing is represented by an edge.
A link diagram is reduced if its Seifert graph contains no isthmus.

## Alternating links

A link diagram is alternating if along each strand, overcrossings and undercrossings alternate.
The Seifert graph of an oriented link diagram is the graph whose vertices are indexed by the Seifer circles and each crossing is represented by an edge.
A link diagram is reduced if its Seifert graph contains no isthmus. Fact: If link has a reduced alternating diagram, then in this the number of crossings is minimal.

## Alternating links

A link diagram is alternating if along each strand, overcrossings and undercrossings alternate.
The Seifert graph of an oriented link diagram is the graph whose vertices are indexed by the Seifer circles and each crossing is represented by an edge.
A link diagram is reduced if its Seifert graph contains no isthmus. Fact: If link has a reduced alternating diagram, then in this the number of crossings is minimal.
(This has nothing to do with the signs: the threfoil knot has three crossings ...)

## Rational links

## Rational links

A rational link or 2-bridge link is a link that can be transformed only using 2nd and 3d Reidemeister moves into a link diagram that has two minima and two maxima as critical points.

## Rational links

A rational link or 2-bridge link is a link that can be transformed only using 2nd and 3d Reidemeister moves into a link diagram that has two minima and two maxima as critical points.


## Rational links

A rational link or 2-bridge link is a link that can be transformed only using 2nd and 3d Reidemeister moves into a link diagram that has two minima and two maxima as critical points.


## Rational links

A rational link or 2-bridge link is a link that can be transformed only using 2nd and 3d Reidemeister moves into a link diagram that has two minima and two maxima as critical points.


## Rational links

A rational link or 2-bridge link is a link that can be transformed only using 2nd and 3d Reidemeister moves into a link diagram that has two minima and two maxima as critical points.


Cutting near the maxima we obtain a 2 -tangle.

## Finite simple continued fractions

## Finite simple continued fractions

They are of the form

$$
\left[c_{0}, \ldots, c_{n}\right]=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ddots \frac{1}{c_{n-1}+\frac{1}{c_{n}}}}}
$$

## Finite simple continued fractions

They are of the form

$$
\left[c_{0}, \ldots, c_{n}\right]=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ddots \frac{1}{c_{n-1}+\frac{1}{c_{n}}}}}
$$

where the partial denominators $c_{0}, \ldots, c_{n}$ are integers and $c_{n} \neq 0$.

## Finite simple continued fractions

They are of the form

$$
\left[c_{0}, \ldots, c_{n}\right]=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ddots \frac{1}{c_{n-1}+\frac{1}{c_{n}}}}}
$$

where the partial denominators $c_{0}, \ldots, c_{n}$ are integers and $c_{n} \neq 0$. (For example $\pi=[3,7,15,1,292,1,1,1,2,1, \ldots]$.)

## Finite simple continued fractions

They are of the form

$$
\left[c_{0}, \ldots, c_{n}\right]=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ddots \frac{1}{c_{n-1}+\frac{1}{c_{n}}}}}
$$

where the partial denominators $c_{0}, \ldots, c_{n}$ are integers and $c_{n} \neq 0$. (For example $\pi=[3,7,15,1,292,1,1,1,2,1, \ldots]$.)
(OK this was not finite.)

## Finite simple continued fractions

They are of the form

$$
\left[c_{0}, \ldots, c_{n}\right]=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ddots \frac{1}{c_{n-1}+\frac{1}{c_{n}}}}}
$$

where the partial denominators $c_{0}, \ldots, c_{n}$ are integers and $c_{n} \neq 0$. (For example $\pi=[3,7,15,1,292,1,1,1,2,1, \ldots]$.)
(OK this was not finite.)
(But there is no problem if you round down to the nearest integer, take the reciprocal of the rest and repeat. It will converge, fast.)

## Finite simple continued fractions

They are of the form

$$
\left[c_{0}, \ldots, c_{n}\right]=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ddots \frac{1}{c_{n-1}+\frac{1}{c_{n}}}}}
$$

where the partial denominators $c_{0}, \ldots, c_{n}$ are integers and $c_{n} \neq 0$. (For rational numbers, if you keep rounding down you are getting the quotients in Euclid's algorithm.)

## Rational links represented by continued fractions

## Rational links represented by continued fractions

We encode an unoriented rational link diagram by
$p / q=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $p / q \leq 1$ and satisfies $a_{1} \cdots a_{n} \neq 0$, the numbers $\left|a_{1}\right|, \ldots,\left|a_{n}\right|$ are the numbers of consecutive half-turn twists in the twistboxes $B_{1}, \ldots, B_{n}$ following the sign convention below

## Rational links represented by continued fractions

We encode an unoriented rational link diagram by $p / q=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $p / q \leq 1$ and satisfies $a_{1} \cdots a_{n} \neq 0$, the numbers $\left|a_{1}\right|, \ldots,\left|a_{n}\right|$ are the numbers of consecutive half-turn twists in the twistboxes $B_{1}, \ldots, B_{n}$ following the sign convention below


## Rational links represented by continued fractions

We encode an unoriented rational link diagram by $p / q=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $p / q \leq 1$ and satisfies $a_{1} \cdots a_{n} \neq 0$, the numbers $\left|a_{1}\right|, \ldots,\left|a_{n}\right|$ are the numbers of consecutive half-turn twists in the twistboxes $B_{1}, \ldots, B_{n}$ following the sign convention below


$$
\frac{p}{q}=[0,2,-3,-1,3,3]
$$

## Rational links represented by continued fractions

We encode an oriented rational link diagram by
$p / q=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $p / q \leq 1$ and satisfies $a_{1} \cdots a_{n} \neq 0$, the numbers $\left|a_{1}\right|, \ldots,\left|a_{n}\right|$ are the numbers of consecutive half-turn twists in the twistboxes $B_{1}, \ldots, B_{n}$ following the sign convention below

## Rational links represented by continued fractions

We encode an oriented rational link diagram by $p / q=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $p / q \leq 1$ and satisfies $a_{1} \cdots a_{n} \neq 0$, the numbers $\left|a_{1}\right|, \ldots,\left|a_{n}\right|$ are the numbers of consecutive half-turn twists in the twistboxes $B_{1}, \ldots, B_{n}$ following the sign convention below


## Rational links represented by continued fractions

We encode an oriented rational link diagram by $p / q=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $p / q \leq 1$ and satisfies $a_{1} \cdots a_{n} \neq 0$, the numbers $\left|a_{1}\right|, \ldots,\left|a_{n}\right|$ are the numbers of consecutive half-turn twists in the twistboxes $B_{1}, \ldots, B_{n}$ following the sign convention below


$$
\frac{p}{q}=[0,2,-3,-1,3,3]
$$

## 2-tangles, 2-bridge links and continued fractions

## 2-tangles, 2-bridge links and continued fractions

Theorem (Conway)
Two 2-tangles are equivalent if the associated continued fractions evaluate to the same rational number.

## 2-tangles, 2-bridge links and continued fractions

Theorem (Conway)
Two 2-tangles are equivalent if the associated continued fractions evaluate to the same rational number.

Theorem (Schubert)
$p / q$ and $p^{\prime} / q^{\prime}$ encode equivalent oriented links if and only if $q=q^{\prime}$ and $p^{ \pm 1} \equiv p^{\prime} \bmod (2 q)$, and they encode equivalent unoriented links if and only if $q=q^{\prime}$ and $p^{ \pm 1} \equiv p^{\prime} \bmod (q)$.

## 2-tangles, 2-bridge links and continued fractions

## Theorem (Conway)

Two 2-tangles are equivalent if the associated continued fractions evaluate to the same rational number.

Theorem (Schubert)
$p / q$ and $p^{\prime} / q^{\prime}$ encode equivalent oriented links if and only if $q=q^{\prime}$ and $p^{ \pm 1} \equiv p^{\prime} \bmod (2 q)$, and they encode equivalent unoriented links if and only if $q=q^{\prime}$ and $p^{ \pm 1} \equiv p^{\prime} \bmod (q)$.

Corollary
Every 2-bridge link has an alternating diagram.

## 2-tangles, 2-bridge links and continued fractions

## Theorem (Conway)

Two 2-tangles are equivalent if the associated continued fractions evaluate to the same rational number.

Theorem (Schubert)
$p / q$ and $p^{\prime} / q^{\prime}$ encode equivalent oriented links if and only if $q=q^{\prime}$ and $p^{ \pm 1} \equiv p^{\prime} \bmod (2 q)$, and they encode equivalent unoriented links if and only if $q=q^{\prime}$ and $p^{ \pm 1} \equiv p^{\prime} \bmod (q)$.

Corollary
Every 2-bridge link has an alternating diagram.
Because every rational number has a continued fraction representation in which all partial denominators have the same sign.

## How to fix the wrong orientation

## How to fix the wrong orientation

Original oriented link:

## How to fix the wrong orientation

Original oriented link:


## How to fix the wrong orientation

Original oriented link:

$5 / 18=[0,3,1,1,2]$ (Independently of the orientation.)

## How to fix the wrong orientation

Fold up lowest strand:


## How to fix the wrong orientation

Fold up lowest strand:


## How to fix the wrong orientation

Fold up lowest strand:


## How to fix the wrong orientation

Reflect about a horizontal line:


## How to fix the wrong orientation

Reflect about a horizontal line:


## How to fix the wrong orientation

Reflect about a horizontal line:


## How to fix the wrong orientation

Reflect about a horizontal line:

$[0,-1,-2,-1,-1,-2]=-13 / 18$

## How to fix the wrong orientation

Reflect about a horizontal line:


$$
\begin{aligned}
& {[0,-1,-2,-1,-1,-2]=-13 / 18} \\
& 1-5 / 8=1-[0,3,1,1,2]
\end{aligned}
$$

## How to fix the wrong orientation

Reflect about a horizontal line:


$$
\begin{aligned}
& {[0,-1,-2,-1,-1,-2]=-13 / 18} \\
& 1-5 / 8=1-[0,3,1,1,2] \\
& {[0,3, \ldots] \leftrightarrow[0,1,2, \ldots]}
\end{aligned}
$$

## How to fix the wrong orientation

Reflect about a horizontal line:

$[0,-1,-2,-1,-1,-2]=-13 / 18$
$1-5 / 8=1-[0,3,1,1,2]$
$[0,3, \ldots] \leftrightarrow[0,1,2, \ldots]$
Note also $[0,3,1,1,2]=[0,3,1,1,1,1]$ since $a+1 / 1=a+1$.

## Murasugi's braid index formula

## Murasugi's braid index formula

Theorem (Murasugi)
Assume an oriented rational link is represented by
$\left[2 d_{0}, 2 d_{1}, \ldots, 2 d_{n}\right]$. Then the braid index of the link is $\sum_{i=0}^{n}\left|d_{i}\right|-t+1$ where $t$ is the number of indices $i$ such that $d_{i} d_{i+1}<0$.

## Murasugi's braid index formula

Theorem (Murasugi)
Assume an oriented rational link is represented by
$\left[2 d_{0}, 2 d_{1}, \ldots, 2 d_{n}\right]$. Then the braid index of the link is $\sum_{i=0}^{n}\left|d_{i}\right|-t+1$ where $t$ is the number of indices $i$ such that $d_{i} d_{i+1}<0$.

## Lemma

$p / q$ has a continued fraction expansion with only even partial denominators if and only if $p q$ is even.

## Murasugi's braid index formula

## Theorem (Murasugi)

Assume an oriented rational link is represented by
$\left[2 d_{0}, 2 d_{1}, \ldots, 2 d_{n}\right]$. Then the braid index of the link is $\sum_{i=0}^{n}\left|d_{i}\right|-t+1$ where $t$ is the number of indices $i$ such that $d_{i} d_{i+1}<0$.

## Lemma

$p / q$ has a continued fraction expansion with only even partial denominators if and only if $p q$ is even.
If $p q$ is odd then $q-p$ is even and $(q-p) / q=1-p / q$ encodes the mirror image of the link encoded by $p / q$.

## Example and Remarks

## Example and Remarks

$$
9 / 13=[0,13 / 9]
$$

## Example and Remarks

$$
9 / 13=[0,13 / 9]=[0,2,-9 / 5]
$$

## Example and Remarks

$$
9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]
$$

## Example and Remarks

$$
9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1] .
$$

## Example and Remarks

$$
\begin{aligned}
& 9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1] . \\
& 4 / 13=[0,13 / 4]
\end{aligned}
$$

## Example and Remarks

$$
\begin{aligned}
& 9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1] . \\
& 4 / 13=[0,13 / 4]=[0,4,-4 / 3]
\end{aligned}
$$

## Example and Remarks

$$
\begin{aligned}
& 9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1] . \\
& 4 / 13=[0,13 / 4]=[0,4,-4 / 3]=[0,4,-2,3 / 2]
\end{aligned}
$$

## Example and Remarks

$$
\begin{aligned}
& 9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1] . \\
& 4 / 13=[0,13 / 4]=[0,4,-4 / 3]=[0,4,-2,3 / 2]=[0,4,-2,2,-2]
\end{aligned}
$$

## Example and Remarks

$9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1]$.

$$
4 / 13=[0,13 / 4]=[0,4,-4 / 3]=[0,4,-2,3 / 2]=[0,4,-2,2,-2]
$$

1. If $q$ is odd then $p / q$ represents a knot, $1-p / q$ represents the mirror image of the same knot, and exactly one of $p$ and $q-p$ is even.

## Example and Remarks

$9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1]$.
$4 / 13=[0,13 / 4]=[0,4,-4 / 3]=[0,4,-2,3 / 2]=[0,4,-2,2,-2]$

1. If $q$ is odd then $p / q$ represents a knot, $1-p / q$ represents the mirror image of the same knot, and exactly one of $p$ and $q-p$ is even.
2. If $q$ is even, then $p / q$ represents a link with 2 components. Murasugi's theorem applies to $p / q$ and $1-p / q$ as well, hence both orientations of the second component are covered.

## Example and Remarks

$9 / 13=[0,13 / 9]=[0,2,-9 / 5]=[0,2,-2,5]=[0,2,-2,4,1]$.
$4 / 13=[0,13 / 4]=[0,4,-4 / 3]=[0,4,-2,3 / 2]=[0,4,-2,2,-2]$

1. If $q$ is odd then $p / q$ represents a knot, $1-p / q$ represents the mirror image of the same knot, and exactly one of $p$ and $q-p$ is even.
2. If $q$ is even, then $p / q$ represents a link with 2 components. Murasugi's theorem applies to $p / q$ and $1-p / q$ as well, hence both orientations of the second component are covered.
Issue: How to apply Murasugi's theorem to alternating rational links (where signs don't alternate)?

## Matrix representation

## Matrix representation

Introducing

$$
M(c)=\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right)
$$

## Matrix representation

Introducing

$$
M(c)=\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right)
$$

we may write

$$
\binom{p}{q}=M\left(c_{0}\right) M\left(c_{1}\right) \cdots M\left(c_{n}\right)\binom{1}{0}
$$

## Matrix representation

Introducing

$$
M(c)=\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right)
$$

we may write

$$
\binom{p}{q}=M\left(c_{0}\right) M\left(c_{1}\right) \cdots M\left(c_{n}\right)\binom{1}{0}
$$

for $p / q=\left[c_{0}, \ldots, c_{n}\right]$.

## Matrix representation

Introducing

$$
M(c)=\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right)
$$

we may write

$$
\binom{p}{q}=M\left(c_{0}\right) M\left(c_{1}\right) \cdots M\left(c_{n}\right)\binom{1}{0}
$$

for $p / q=\left[c_{0}, \ldots, c_{n}\right]$. We may think of continued fractions as transformations of the projective line, we may even write $1 / 0=\infty$.

## An old simple rule

## An old simple rule

Lagrange published this rule in his Appendix to Euler's Algebra:

## An old simple rule

Lagrange published this rule in his Appendix to Euler's Algebra:

$$
[a,-b]=a-\frac{1}{b}=a-1+\frac{1}{1+\frac{1}{b-1}}=[a-1,1, b-1] .
$$

## An old simple rule

Lagrange published this rule in his Appendix to Euler's Algebra:

$$
[a,-b]=a-\frac{1}{b}=a-1+\frac{1}{1+\frac{1}{b-1}}=[a-1,1, b-1] .
$$

## Proposition

For $\delta \in\{-1,1\}$, we may replace $\left[\ldots, c_{i}, c_{i+1}, c_{i+2}, \ldots, c_{j}, \ldots, c_{n}\right]$ with $\left[\ldots, c_{i}+\delta,-\delta, \delta-c_{i+1},-c_{i+2}, \ldots,-c_{j}, \ldots,-c_{n}\right]$.

## An old simple rule

Lagrange published this rule in his Appendix to Euler's Algebra:

$$
[a,-b]=a-\frac{1}{b}=a-1+\frac{1}{1+\frac{1}{b-1}}=[a-1,1, b-1] .
$$

## Proposition

For $\delta \in\{-1,1\}$, we may replace $\left[\ldots, c_{i}, c_{i+1}, c_{i+2}, \ldots, c_{j}, \ldots, c_{n}\right]$ with $\left[\ldots, c_{i}+\delta,-\delta, \delta-c_{i+1},-c_{i+2}, \ldots,-c_{j}, \ldots,-c_{n}\right]$.
Proof:

$$
M\left(c_{i}\right) M\left(c_{i+1}\right)\binom{p}{q}=M\left(c_{i}+\delta\right) M(-\delta) M\left(\delta-c_{i+1}\right)\binom{\delta p}{-\delta q}
$$

## Using the rule

## Using the rule

$[a, 3,5, b]$

## Using the rule

$$
[a, 3,5, b]=[a, \underline{3}, \underline{5}, b]
$$

## Using the rule

$$
[a, 3,5, b]=[a, \underline{3}, \underline{5}, b]=[a, 4,-1,-4,-b]
$$

## Using the rule

$$
[a, 3,5, b]=[a, \underline{3}, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4, \underline{-1}, \underline{-4},-b]
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, \underline{3}, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1, \underline{-4},-b]} \\
& =[a, 4,-2,1,3, b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, \underline{3}, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1, \underline{-4},-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]=[a, 4,-2,2,-1,-2,-b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1, \underline{-4},-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]=[a, 4,-2,2,-1,-2,-b] \\
& =[a, 4,-2,2, \underline{-1}, \underline{-2},-b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]=[a, 4,-2,2,-1,-2,-b] \\
& =[a, 4,-2,2, \underline{-1}, \underline{-2},-b]=[a, 4,-2,2,-2,1,-1,-b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, \underline{3}, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]=[a, 4,-2,2,-1,-2,-b] \\
& =\left[a, 4,-2,2,-\frac{1}{-2},-\frac{-2}{1,-b]=[a, 4,-2,2,-2,1,-1,-b]}\right. \\
& =[a, 4,-2,2,-2, \underline{1},-b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]=[a, 4,-2,2,-1,-2,-b] \\
& =\left[a, 4,-2,2,-\frac{1}{2},-2,-b\right]=[a, 4,-2,2,-2,1,-1,-b] \\
& =[a, 4,-2,2,-2, \underline{1},-1,-b]=[a, 4,-2,2,-2,2,-1,0,-b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3,5, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, \underline{3}, b]=[a, 4,-2,2,-1,-2,-b] \\
& =\left[a, 4,-2,2,-1, \frac{-2,-b]=[a, 4,-2,2,-2,1,-1,-b]}{=\left[a, 4,-2,2,-2, \frac{1}{1},-1,-b\right]=[a, 4,-2,2,-2,2,-1,0,-b]}\right. \\
& =[a, 4,-2,2,-2,2,-1-b]
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2,1,3, b]=[a, 4,-2,2,-1,-2,-b] \\
& =\left[a, 4,-2,2,-1,-\frac{-2}{},-b\right]=[a, 4,-2,2,-2,1,-1,-b] \\
& =[a, 4,-2,2,-2, \underline{1},-1,-b]=[a, 4,-2,2,-2,2,-1,0,-b] \\
& =[a, 4,-2,2,-2,2,-1-b] \\
& \text { In the last step we used }[\ldots, u, 0, v, \ldots]=[\ldots, u+v, \ldots] .
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3, \underline{5}, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2, \underline{1}, 3, b]=[a, 4,-2,2,-1,-2,-b] \\
& =[a, 4,-2,2,-1,-2,-b]=[a, 4,-2,2,-2,1,-1,-b] \\
& =[a, 4,-2,2,-2, \underline{1},-1,-b]=[a, 4,-2,2,-2,2,-1,0,-b] \\
& =[a, 4,-2,2,-2,2,-1-b] \\
& \text { In the last step we used }[\ldots, u, 0, v, \ldots]=[\ldots, u+v, \ldots] \text {. } \\
& \text { We replaced } 3 \text { with } 3+1,5 \text { with } 5-1 \text { copies of } \pm 2, \text { and we } \\
& \text { increased the absolute value of } b \text { by } 1 \text {. }
\end{aligned}
$$

## Using the rule

$$
\begin{aligned}
& {[a, 3,5, b]=[a, 3,5, b]=[a, 4,-1,-4,-b]=[a, 4,-1,-4,-b]} \\
& =[a, 4,-2,1,3, b]=[a, 4,-2,1,3, b]=[a, 4,-2,2,-1,-2,-b] \\
& =[a, 4,-2,2,-1,-2,-b]=[a, 4,-2,2,-2,1,-1,-b] \\
& =\left[a, 4,-2,2,-2, \frac{1}{1},-1,-b\right]=[a, 4,-2,2,-2,2,-1,0,-b] \\
& =[a, 4,-2,2,-2,2,-1-b]
\end{aligned}
$$

$$
\text { In the last step we used }[\ldots, u, 0, v, \ldots]=[\ldots, u+v, \ldots] \text {. }
$$

$$
\text { We replaced } 3 \text { with } 3+1,5 \text { with } 5-1 \text { copies of } \pm 2 \text {, and we }
$$ increased the absolute value of $b$ by 1 .

We may increase the absolute value of any odd $c_{i}$ by one, and replace $c_{i+1}$ with $\left|c_{i+1}\right|-1$ copies of $\pm 2$, and increase the absolute value of $c_{i+2}$ by 1 .

## Transforming primitive blocks



## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd,, , even, $*$, even $, *, \ldots, *$ even, $*$, odd].

## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd, $*$, even, $*$, even $, *, \ldots, *$ even, $*$, odd]. For example, we have $[1,2,|\mathbf{3}, 4, \mathbf{2}, 1,6,3,5|, 3]=$

## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd, $*$, even, $*$, even $, *, \ldots, *$ even, $*$, odd]. For example, we have $[1,2,|\mathbf{3}, 4, \mathbf{2}, 1,6,3,5|, 3]=$ $[1,2,|\mathbf{4},-2,2,-2, \mathbf{3}, 1, \mathbf{6}, 3,5|, 3]=$

## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd, $*$, even, $*$, even $, *, \ldots, *$ even, $*$, odd].
For example, we have $[1,2,|\mathbf{3}, 4, \mathbf{2}, 1,6,3,5|, 3]=$ $[1,2,|\mathbf{4},-2,2,-2, \mathbf{3}, 1, \mathbf{6}, 3,5|, 3]=$
$[1,2,|4,-2,2,-2,4,-7,-3,-5|,-3]=$

## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd, $*$, even, $*$, even $, *, \ldots, *$ even, $*$, odd].
For example, we have $[1,2,|\mathbf{3}, 4, \mathbf{2}, 1, \mathbf{6}, 3,5|, 3]=$ $[1,2,|\mathbf{4},-2,2,-2, \mathbf{3}, 1, \mathbf{6}, 3,5|, 3]=$
$[1,2,|4,-2,2,-2,4,-\mathbf{7},-3,-5|,-3]=$
$[1,2,|4,-2,2,-2,4,-8,2,-2,6|, 3]$.

## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd, $*$, even, $*$, even $, *, \ldots, *$ even, $*$, odd].
For example, we have $[1,2,|\mathbf{3}, 4, \mathbf{2}, 1, \mathbf{6}, 3,5|, 3]=$
$[1,2,|\mathbf{4},-2,2,-2, \mathbf{3}, 1, \mathbf{6}, 3,5|, 3]=$
$[1,2,|4,-2,2,-2,4,-\mathbf{7},-3,-5|,-3]=$
$[1,2,|4,-2,2,-2,4,-8,2,-2,6|, 3]$.
Theorem
Every nonzero rational number p/q may be written in two ways as a finite simple continued fraction in a nonalternating form. Exactly one of of these nonalternating forms has a primitive block decomposition. This primitive block decomposition contains no exceptional trivial primitive block if and only if pq is even.

## Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks of the form [odd, $*$, even, $*$, even $, *, \ldots, *$ even, $*$, odd].
For example, we have $[1,2,|\mathbf{3}, 4, \mathbf{2}, 1, \mathbf{6}, 3,5|, 3]=$
$[1,2,|\mathbf{4},-2,2,-2, \mathbf{3}, 1, \mathbf{6}, 3,5|, 3]=$
$[1,2,|4,-2,2,-2,4,-7,-3,-5|,-3]=$
$[1,2,|\mathbf{4},-2,2,-2,4,-\mathbf{8}, 2,-2,6|, 3]$.
Theorem
Every nonzero rational number p/q may be written in two ways as a finite simple continued fraction in a nonalternating form. Exactly one of of these nonalternating forms has a primitive block decomposition. This primitive block decomposition contains no exceptional trivial primitive block if and only if pq is even.
An exceptional trivial primitive block is a single odd partial denominator at the right end.

## An automaton parsing the primitive blocks

## An automaton parsing the primitive blocks



## An automaton parsing the primitive blocks



Miracle: The crossing sign $\varepsilon\left(a_{i}\right)$ changes exactly when we move to the next block.

## A braid index formula

## A braid index formula

Theorem
Suppose $p q$ is even, and let $p / q=\left[c_{0}, \ldots, c_{n}\right]$ be the unique nonalternating continued fraction expansion that has a primitive block decomposition with $\left[c_{m_{i}}, c_{m_{i}+1}, \ldots, c_{m_{i}+2 k_{i}}\right], 1 \leq i \leq \ell$ being the primitive blocks. Then the braid index associated to $p / q$ may be computed by the following formula

$$
1+\sum_{1 \leq i \leq \ell} \sum_{0 \leq j \leq k_{i}}\left|c_{m_{i}+2 j}\right| / 2 .
$$

## A braid index formula

Theorem
Suppose $p q$ is even, and let $p / q=\left[c_{0}, \ldots, c_{n}\right]$ be the unique nonalternating continued fraction expansion that has a primitive block decomposition with $\left[c_{m_{i}}, c_{m_{i}+1}, \ldots, c_{m_{i}+2 k_{i}}\right], 1 \leq i \leq \ell$ being the primitive blocks. Then the braid index associated to $p / q$ may be computed by the following formula

$$
1+\sum_{1 \leq i \leq \ell} \sum_{0 \leq j \leq k_{i}}\left|c_{m_{i}+2 j}\right| / 2 .
$$

For example, the braid index associated to
$1402 / 1813=[0,|1,3,2,2,3| 5,1,3$,$] is$
$1+(1+2+3) / 2+(5+3) / 2=8$.

## The Lickorish-Millet formula

## The Lickorish-Millet formula

$$
\mathcal{M}(2 r)=\left(\begin{array}{cc}
\frac{\left(1-a^{-2 r}\right) a z}{a^{2}-1} & a^{-2 r} \\
1 & 0
\end{array}\right)
$$

## The Lickorish-Millet formula

$$
\mathcal{M}(2 r)=\left(\begin{array}{cc}
\frac{\left(1-a^{-2 r}\right) a z}{a^{2}-1} & a^{-2 r} \\
1 & 0
\end{array}\right)
$$

## Proposition (Lickorish-Millett)

Let $K$ be a rational knot or link, represented by the continued fraction $\left[0, c_{1}, \ldots, c_{n}\right]$ where the $c_{i}$ are even integers. Then the HOMFLY polynomial $\mathcal{P}(K)$ is given by

$$
\mathcal{P}(K)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mathcal{M}\left((-1)^{n} c_{n}\right) \mathcal{M}\left((-1)^{n-1} c_{n-1}\right) \cdots \mathcal{M}\left(c_{2}\right) \mathcal{M}\left(-c_{1}\right)\binom{1}{\frac{a^{2}-1}{a z}}
$$

## The Lickorish-Millet formula

$$
\mathcal{M}(2 r)=\left(\begin{array}{cc}
\frac{\left(1-a^{-2 r}\right) a z}{a^{2}-1} & a^{-2 r} \\
1 & 0
\end{array}\right)
$$

## Proposition (Lickorish-Millett)

Let $K$ be a rational knot or link, represented by the continued fraction $\left[0, c_{1}, \ldots, c_{n}\right]$ where the $c_{i}$ are even integers. Then the HOMFLY polynomial $\mathcal{P}(K)$ is given by

$$
\mathcal{P}(K)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mathcal{M}\left((-1)^{n} c_{n}\right) \mathcal{M}\left((-1)^{n-1} c_{n-1}\right) \cdots \mathcal{M}\left(c_{2}\right) \mathcal{M}\left(-c_{1}\right)\binom{1}{\frac{a^{2}-1}{a z}}
$$

## Theorem

Suppose a rational link is represented by a nonalternating continued fraction $p / q=\left[0, a_{1}, \ldots, a_{n}\right]$ that has a primitive block decomposition with no exceptional primitive block. Then the HOMFLY polynomial may be written in matrix form as follows:

$$
\mathcal{P}(K)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mathcal{H}\left(a_{n}\right) \mathcal{H}\left(a_{n-1}\right) \cdots \mathcal{H}\left(a_{1}\right)\binom{1}{\frac{a^{2}-1}{a z}} .
$$

Here, after introducing $s=\operatorname{sign}\left(a_{1}\right)$, and the Fibonacci polynomials $F_{n}(x)$ defined by $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x)$, the matrices $\mathcal{H}\left(a_{1}\right), \mathcal{H}\left(a_{2}\right), \ldots, \mathcal{H}\left(a_{n}\right)$ are given by the following formulas.

Here, after introducing $s=\operatorname{sign}\left(a_{1}\right)$, and the Fibonacci polynomials $F_{n}(x)$ defined by $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x)$, the matrices $\mathcal{H}\left(a_{1}\right), \mathcal{H}\left(a_{2}\right), \ldots, \mathcal{H}\left(a_{n}\right)$ are given by the following formulas.

$$
\mathcal{H}\left(a_{1}\right)= \begin{cases}\mathcal{M}\left(-a_{1}\right) & \text { if } a_{1} \text { is even } \\ \mathcal{M}\left(-\left(a_{1}+s\right)\right) & \text { if } a_{1} \text { is odd }\end{cases}
$$

Here, after introducing $s=\operatorname{sign}\left(a_{1}\right)$, and the Fibonacci polynomials $F_{n}(x)$ defined by $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x)$, the matrices $\mathcal{H}\left(a_{1}\right), \mathcal{H}\left(a_{2}\right), \ldots, \mathcal{H}\left(a_{n}\right)$ are given by the following formulas.

- If $\varepsilon\left(a_{i}\right) \neq \varepsilon\left(a_{i-1}\right)$ then set

$$
\mathcal{H}\left(a_{i}\right)= \begin{cases}\mathcal{M}\left(-\varepsilon\left(a_{i}\right) a_{i}\right) & \text { if } a_{i} \text { is even } \\ \mathcal{M}\left(-\varepsilon\left(a_{i}\right)\left(a_{i}+s\right)\right) & \text { if } a_{i} \text { is odd }\end{cases}
$$

Here, after introducing $s=\operatorname{sign}\left(a_{1}\right)$, and the Fibonacci polynomials $F_{n}(x)$ defined by $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x)$, the matrices $\mathcal{H}\left(a_{1}\right), \mathcal{H}\left(a_{2}\right), \ldots, \mathcal{H}\left(a_{n}\right)$ are given by the following formulas.

- If $\varepsilon\left(a_{i}\right)=\varepsilon\left(a_{i-1}\right)=(-1)^{i-1} \cdot s$ then set

$$
\mathcal{H}\left(a_{i}\right)= \begin{cases}\mathcal{M}\left(-\varepsilon\left(a_{i}\right)\left(a_{i}+2 s\right)\right) & \text { if } a_{i} \text { is even } \\ \mathcal{M}\left(-\varepsilon\left(a_{i}\right)\left(a_{i}+s\right)\right) & \text { if } a_{i} \text { is odd }\end{cases}
$$

Here, after introducing $s=\operatorname{sign}\left(a_{1}\right)$, and the Fibonacci polynomials $F_{n}(x)$ defined by $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x)$, the matrices $\mathcal{H}\left(a_{1}\right), \mathcal{H}\left(a_{2}\right), \ldots, \mathcal{H}\left(a_{n}\right)$ are given by the following formulas.

- If $\varepsilon\left(a_{i}\right)=\varepsilon\left(a_{i-1}\right)=(-1)^{i} \cdot s$ then set $\mathcal{H}\left(a_{i}\right)=$

$$
\left(\begin{array}{cc}
a^{\varepsilon\left(a_{i}\right) \cdot\left(a_{i}-s\right)} \cdot F_{\left|a_{i}\right|+1}\left(-\varepsilon\left(a_{i}\right) \cdot z\right) & a^{\varepsilon\left(a_{i}\right) \cdot a_{i}} \cdot F_{\left|a_{i}\right|}\left(-\varepsilon\left(a_{i}\right) \cdot z\right) \\
a^{\varepsilon\left(a_{i}\right) \cdot\left(a_{i}-2 s\right)} \cdot F_{\left|a_{i}\right|}\left(-\varepsilon\left(a_{i}\right) \cdot z\right) & a^{\varepsilon\left(a_{i}\right) \cdot\left(a_{i}-s\right)} \cdot F_{\left|a_{i}\right|-1}\left(-\varepsilon\left(a_{i}\right) \cdot z\right)
\end{array}\right)
$$

## THE END

## THE END

Thank you very much!

## THE END

> Thank you very much! arXiv:1908.09458 [math.GN]

## THE END

Thank you very much! arXiv:1908.09458 [math.GN]
"Invariants of rational links represented by reduced alternating diagrams," to appear in the SIAM Journal on Discrete Mathematics.

