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Knot and link diagrams

A knot is a closed curve embedded in space that does not intersect
itself. We may represent it as a self-intersecting curve in the plane,
indicating which strand goes above the other one at each crossing.
A link is a collection of knots.

The diagrams of topologically equivalent knots and links may be
transformed into each other by a sequence of Reidemeister moves.
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Oriented links and signed crossings

An oriented link consists of oriented curves. We may put signs on
the crossing:it is the sign of the shortest rotation moving the upper
strand right above the lower strand.

−+

The writhe is the sum of all signs.
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Braids and Seifert circles

Fact: Every oriented link diagram may be transformed into a
braid. (The number of crossings may go up.)
The braid index is the least number of Seifert circles in the braid
representation of an oriented link.
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Braids and Seifert circles

The Seifert circles of an oriented link diagram are obtained by
smoothing all crossings.

Fact: Every oriented link
diagram may be transformed into a braid. (The number of
crossings may go up.)
The braid index is the least number of Seifert circles in the braid
representation of an oriented link.
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An oriented link diagram is a braid if its Seifert circles are
concentric.
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Alternating links

A link diagram is alternating if along each strand, overcrossings
and undercrossings alternate.
The Seifert graph of an oriented link diagram is the graph whose
vertices are indexed by the Seifer circles and each crossing is
represented by an edge.
A link diagram is reduced if its Seifert graph contains no isthmus.
Fact: If link has a reduced alternating diagram, then in this the
number of crossings is minimal.
(This has nothing to do with the signs: the threfoil knot has three
crossings . . . )
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Rational links

A rational link or 2-bridge link is a link that can be transformed
only using 2nd and 3d Reidemeister moves into a link diagram that
has two minima and two maxima as critical points. Cutting near
the maxima we obtain a 2-tangle.
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Finite simple continued fractions

They are of the form

[c0, . . . , cn] = c0 +
1

c1 +
1

c2 +
.. .

1

cn−1 +
1

cn

where the partial denominators c0, . . . , cn are integers and cn 6= 0.
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where the partial denominators c0, . . . , cn are integers and cn 6= 0.
(For example π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, . . .].)
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Finite simple continued fractions

They are of the form

[c0, . . . , cn] = c0 +
1

c1 +
1

c2 +
.. .

1

cn−1 +
1

cn

where the partial denominators c0, . . . , cn are integers and cn 6= 0.
(For example π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, . . .].)
(OK this was not finite.)
(But there is no problem if you round down to the nearest integer,
take the reciprocal of the rest and repeat. It will converge, fast.)
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Finite simple continued fractions

They are of the form

[c0, . . . , cn] = c0 +
1

c1 +
1

c2 +
.. .

1

cn−1 +
1

cn

where the partial denominators c0, . . . , cn are integers and cn 6= 0.
(For rational numbers, if you keep rounding down you are getting
the quotients in Euclid’s algorithm.)
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Rational links represented by continued fractions
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Rational links represented by continued fractions

We encode an unoriented rational link diagram by
p/q = [0, a1, a2, . . . , an] where p/q ≤ 1 and satisfies a1 · · · an 6= 0,
the numbers |a1|, . . . , |an| are the numbers of consecutive half-turn
twists in the twistboxes B1, . . . ,Bn following the sign convention
below
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−a2m +

−

a1

−a2

a3

−a2m

a2m+1

−a2

a1 a3
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2-tangles, 2-bridge links and continued fractions

Theorem (Conway)

Two 2-tangles are equivalent if the associated continued fractions
evaluate to the same rational number.

Theorem (Schubert)

p/q and p′/q′ encode equivalent oriented links if and only if q = q′

and p±1 ≡ p′ mod (2q), and they encode equivalent unoriented
links if and only if q = q′ and p±1 ≡ p′ mod (q).

Corollary

Every 2-bridge link has an alternating diagram.

Because every rational number has a continued fraction
representation in which all partial denominators have the same sign.
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How to fix the wrong orientation

Reflect about a horizontal line:

[0,−1,−2,−1,−1,−2] = −13/18
1− 5/8 = 1− [0, 3, 1, 1, 2]
[0, 3, . . .]↔ [0, 1, 2, . . .]
Note also [0, 3, 1, 1, 2] = [0, 3, 1, 1, 1, 1] since a + 1/1 = a + 1.
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How to fix the wrong orientation

Original oriented link:

5/18 = [0, 3, 1, 1, 2] (Independently of the orientation.)

Reflect
about a horizontal line:

[0,−1,−2,−1,−1,−2] = −13/18
1− 5/8 = 1− [0, 3, 1, 1, 2]
[0, 3, . . .]↔ [0, 1, 2, . . .]
Note also [0, 3, 1, 1, 2] = [0, 3, 1, 1, 1, 1] since a + 1/1 = a + 1.
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Murasugi’s braid index formula

Theorem (Murasugi)

Assume an oriented rational link is represented by
[2d0, 2d1, . . . , 2dn]. Then the braid index of the link is∑n

i=0 |di | − t + 1 where t is the number of indices i such that
didi+1 < 0.

Lemma
p/q has a continued fraction expansion with only even partial
denominators if and only if pq is even.

If pq is odd then q − p is even and (q − p)/q = 1− p/q encodes
the mirror image of the link encoded by p/q.
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Example and Remarks

9/13 = [0, 13/9] = [0, 2,−9/5] = [0, 2,−2, 5] = [0, 2,−2, 4, 1].
4/13 = [0, 13/4] = [0, 4,−4/3] = [0, 4,−2, 3/2] = [0, 4,−2, 2,−2]

1. If q is odd then p/q represents a knot, 1− p/q represents the
mirror image of the same knot, and exactly one of p and
q − p is even.

2. If q is even, then p/q represents a link with 2 components.
Murasugi’s theorem applies to p/q and 1− p/q as well, hence
both orientations of the second component are covered.

Issue: How to apply Murasugi’s theorem to alternating rational
links (where signs don’t alternate)?
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Matrix representation

Introducing

M(c) =

(
c 1
1 0

)
we may write (

p
q

)
= M(c0)M(c1) · · ·M(cn)

(
1
0

)
for p/q = [c0, . . . , cn]. We may think of continued fractions as

transformations of the projective line, we may even write 1/0 =∞.
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An old simple rule

Lagrange published this rule in his Appendix to Euler’s Algebra:

[a,−b] = a− 1

b
= a− 1 +

1

1 + 1
b−1

= [a− 1, 1, b − 1].

Proposition

For δ ∈ {−1, 1}, we may replace [. . . , ci , ci+1, ci+2, . . . , cj , . . . , cn]
with [. . . , ci + δ,−δ, δ − ci+1,−ci+2, . . . ,−cj , . . . ,−cn].

Proof:

M(ci )M(ci+1)

(
p
q

)
= M(ci + δ)M(−δ)M(δ − ci+1)

(
δp
−δq

)
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Using the rule

[a, 3, 5, b] = [a, 3, 5, b] = [a, 4,−1,−4,−b] = [a, 4,−1,−4,−b]
= [a, 4,−2, 1, 3, b] = [a, 4,−2, 1, 3, b] = [a, 4,−2, 2,−1,−2,−b]
= [a, 4,−2, 2,−1,−2,−b] = [a, 4,−2, 2,−2, 1,−1,−b]
= [a, 4,−2, 2,−2, 1,−1,−b] = [a, 4,−2, 2,−2, 2,−1, 0,−b]
= [a, 4,−2, 2,−2, 2,−1− b]
In the last step we used [. . . , u, 0, v , . . .] = [. . . , u + v , . . .].
We replaced 3 with 3 + 1, 5 with 5− 1 copies of ±2, and we
increased the absolute value of b by 1.
We may increase the absolute value of any odd ci by one, and
replace ci+1 with |ci+1| − 1 copies of ±2, and increase the absolute
value of ci+2 by 1.
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value of ci+2 by 1.
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Transforming primitive blocks

We may use the previous observation to transcribe primitive blocks
of the form [odd, ∗, even, ∗, even, ∗, . . . , ∗even, ∗, odd].
For example, we have [1, 2, |3, 4, 2, 1, 6, 3, 5|, 3] =
[1, 2, |4,−2, 2,−2, 3, 1, 6, 3, 5|, 3] =
[1, 2, |4,−2, 2,−2, 4,−7,−3,−5|,−3] =
[1, 2, |4,−2, 2,−2, 4,−8, 2,−2, 6|, 3].

Theorem
Every nonzero rational number p/q may be written in two ways as
a finite simple continued fraction in a nonalternating form. Exactly
one of of these nonalternating forms has a primitive block
decomposition. This primitive block decomposition contains no
exceptional trivial primitive block if and only if pq is even.

An exceptional trivial primitive block is a single odd partial
denominator at the right end.
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An automaton parsing the primitive blocks

o

o
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o

o,ee

o
+

− +

+

−

−

Miracle: The crossing sign ε(ai ) changes exactly when we move
to the next block.
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A braid index formula

Theorem
Suppose pq is even, and let p/q = [c0, . . . , cn] be the unique
nonalternating continued fraction expansion that has a primitive
block decomposition with [cmi , cmi+1, . . . , cmi+2ki ], 1 ≤ i ≤ ` being
the primitive blocks. Then the braid index associated to p/q may
be computed by the following formula

1 +
∑
1≤i≤`

∑
0≤j≤ki

|cmi+2j |/2.

For example, the braid index associated to
1402/1813 = [0, |1, 3, 2, 2, 3, |5, 1, 3] is
1 + (1 + 2 + 3)/2 + (5 + 3)/2 = 8.
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A braid index formula

Theorem
Suppose pq is even, and let p/q = [c0, . . . , cn] be the unique
nonalternating continued fraction expansion that has a primitive
block decomposition with [cmi , cmi+1, . . . , cmi+2ki ], 1 ≤ i ≤ ` being
the primitive blocks. Then the braid index associated to p/q may
be computed by the following formula

1 +
∑
1≤i≤`

∑
0≤j≤ki

|cmi+2j |/2.

For example, the braid index associated to
1402/1813 = [0, |1, 3, 2, 2, 3, |5, 1, 3] is
1 + (1 + 2 + 3)/2 + (5 + 3)/2 = 8.
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The Lickorish-Millet formula

M(2r) =

(
(1−a−2r )az

a2−1 a−2r

1 0

)

Proposition (Lickorish–Millett)

Let K be a rational knot or link, represented by the continued
fraction [0, c1, . . . , cn] where the ci are even integers. Then the
HOMFLY polynomial P(K ) is given by

P(K )=
(
1 0

)
M((−1)ncn)M((−1)n−1cn−1) · · ·M(c2)M(−c1)

(
1

a2−1
az

)
.
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Here, after introducing s = sign(a1), and the Fibonacci
polynomials Fn(x) defined by F0(x) = 0, F1(x) = 1 and
Fn+1(x) = xFn(x) + Fn−1(x), the matrices
H (a1) ,H (a2) , . . . ,H (an) are given by the following formulas.

I If ε(ai ) = ε(ai−1) = (−1)i · s then set H(ai ) =

(
aε(ai )·(ai−s) · F|ai |+1 (−ε(ai ) · z) aε(ai )·ai · F|ai | (−ε(ai ) · z)

aε(ai )·(ai−2s) · F|ai | (−ε(ai ) · z) aε(ai )·(ai−s) · F|ai |−1 (−ε(ai ) · z)

)
.
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Theorem
Suppose a rational link is represented by a nonalternating
continued fraction p/q = [0, a1, . . . , an] that has a primitive block
decomposition with no exceptional primitive block. Then the
HOMFLY polynomial may be written in matrix form as follows:

P(K ) =
(
1 0

)
H (an)H (an−1) · · ·H (a1)

(
1

a2−1
az

)
.

Here, after introducing s = sign(a1), and the Fibonacci
polynomials Fn(x) defined by F0(x) = 0, F1(x) = 1 and
Fn+1(x) = xFn(x) + Fn−1(x), the matrices
H (a1) ,H (a2) , . . . ,H (an) are given by the following formulas.

I If ε(ai ) = ε(ai−1) = (−1)i · s then set H(ai ) =

(
aε(ai )·(ai−s) · F|ai |+1 (−ε(ai ) · z) aε(ai )·ai · F|ai | (−ε(ai ) · z)

aε(ai )·(ai−2s) · F|ai | (−ε(ai ) · z) aε(ai )·(ai−s) · F|ai |−1 (−ε(ai ) · z)

)
.
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Here, after introducing s = sign(a1), and the Fibonacci
polynomials Fn(x) defined by F0(x) = 0, F1(x) = 1 and
Fn+1(x) = xFn(x) + Fn−1(x), the matrices
H (a1) ,H (a2) , . . . ,H (an) are given by the following formulas.
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Here, after introducing s = sign(a1), and the Fibonacci
polynomials Fn(x) defined by F0(x) = 0, F1(x) = 1 and
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Here, after introducing s = sign(a1), and the Fibonacci
polynomials Fn(x) defined by F0(x) = 0, F1(x) = 1 and
Fn+1(x) = xFn(x) + Fn−1(x), the matrices
H (a1) ,H (a2) , . . . ,H (an) are given by the following formulas.
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I If ε(ai ) = ε(ai−1) = (−1)i · s then set H(ai ) =

(
aε(ai )·(ai−s) · F|ai |+1 (−ε(ai ) · z) aε(ai )·ai · F|ai | (−ε(ai ) · z)

aε(ai )·(ai−2s) · F|ai | (−ε(ai ) · z) aε(ai )·(ai−s) · F|ai |−1 (−ε(ai ) · z)

)
.

Rational links UNCC



Outline Knots and links Continued fractions Transforming continued fractions

Here, after introducing s = sign(a1), and the Fibonacci
polynomials Fn(x) defined by F0(x) = 0, F1(x) = 1 and
Fn+1(x) = xFn(x) + Fn−1(x), the matrices
H (a1) ,H (a2) , . . . ,H (an) are given by the following formulas.

I If ε(ai ) = ε(ai−1) = (−1)i · s then set H(ai ) =

(
aε(ai )·(ai−s) · F|ai |+1 (−ε(ai ) · z) aε(ai )·ai · F|ai | (−ε(ai ) · z)

aε(ai )·(ai−2s) · F|ai | (−ε(ai ) · z) aε(ai )·(ai−s) · F|ai |−1 (−ε(ai ) · z)

)
.

Rational links UNCC



Outline Knots and links Continued fractions Transforming continued fractions

THE END

Thank you very much!
arXiv:1908.09458 [math.GN]

“Invariants of rational links represented by reduced alternating diagrams,”
to appear in the SIAM Journal on Discrete Mathematics.
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