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Hyperplane arrangements

A hyperplane arrangement A is a finite collection of hyperplanes in
a d-dimensional real vector space, which partition the space into
regions.
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Example: Linial arrangement (x; + xo + x3 = 0)
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Example: Linial arrangement (x; + xo + x3 = 0)

xo —x3 =1 x1 —x3 =1

(1,0,-1) (2/3,-1/3,-1/3)

X17X2:1

(1/3,1/3,-2/3)
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Example: Linial arrangement (x; + xo + x3 = 0)

xo —x3 =1 x1 —x3 =1

(1,0,-1) (2/3,-1/3,-1/3)

X17X2:1

(1/3,1/3,-2/3)

1 bounded and 6 unbounded regions

G. Hetyei étiquetage des régions



Preliminaries

Example: Linial arrangement (x; + xo + x3 = 0)

xo —x3 =1 x1 —x3 =1

(1,0,-1) (2/3,-1/3,-1/3)

X17X2:1

(1/3,1/3,-2/3)

1 bounded and 6 unbounded regions

G. Hetyei étiquetage des régions



Hyperplane arrangements
Preliminaries aslavsky's formulas
based approaches

Deformations of the braid arrangement
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Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A,_1) is the
collection of hyperplanes {x; —x; =0 : 1 <i<j < n}in Vp_q,
the subspace of R”, given by x3 +x0 + -+ + x, = 0.
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Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A,_1) is the
collection of hyperplanes {x; —x; =0 : 1 <i<j < n}in Vp_q,
the subspace of R”, given by x3 +x0 + -+ x, =0. A
deformation of the braid arrangement consists of replacing each
hyperplane x; — x; = 0 with a set of hyperplanes

1 . (n)

x,-—xj-:a,-j ,aij ,...,a,-j
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Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A,_1) is the
collection of hyperplanes {x; —x; =0 : 1 <i<j < n}in Vp_q,
the subspace of R”, given by x3 +x0 + -+ x, =0. A
deformation of the braid arrangement consists of replacing each
hyperplane x; — x; = 0 with a set of hyperplanes

Xi — Xj = a,(jl), 32-2), N a,(Jn”)
The truncated affine arrangements Af,’fl (where a+ b > 2)
contain the hyperplanes are x; —x; =1—a,2—a,...,b—1 for
1<i<j<n.
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Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A,_1) is the
collection of hyperplanes {x; —x; =0 : 1 <i<j < n}in Vp_q,
the subspace of R”, given by x3 +x0 + -+ x, =0. A
deformation of the braid arrangement consists of replacing each
hyperplane x; — x; = 0 with a set of hyperplanes

(1)

17 )

@ )

ISRRRRE:)

x—xj—a i

a;
The truncated affine arrangements Af,’fl (where a+ b > 2)
contain the hyperplanes are x; —x; =1—a,2—a,...,b—1 for
1<i<j<n. .A?,’El is the Linial arrangement, A},’_zl is the Shi
Aa,a+1
n—1

arrangement with a > 1 is the extended Shi arrangement,

Aifl is the Catalan arrangement, and Aa 31 with a > 2 is the
a-Catalan arrangement.
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The characteristic polynomial

To count the regions, we may use Zaslavsky's formulas
(“inclusion-exclusion™) or solve systems of linear inequalities
directly.
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The characteristic polynomial

To count the regions, we may use Zaslavsky's formulas
(“inclusion-exclusion™) or solve systems of linear inequalities
directly. Using Zaslavsky's formula appears to be more suitable in
general to avoid considering many cases.
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The characteristic polynomial

To use it, we need to know L 4, the poset of nonempty intersections
(ordered by reverse inclusion)
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The characteristic polynomial

To use it, we need to know L 4, the poset of nonempty
intersections (ordered by reverse inclusion)

(1,0,-1) (2/3,-1/3,-1/3) (1/3,1/3,-2/3)

X1—X2:1 X2—X3:1 X1—3:1

{(x1,x2,x3) : x1 +x +x3 =0}
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The characteristic polynomial

Next we compute the Mdbius function (for the intervals containing
the minimum element):
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The characteristic polynomial

Next we compute the Mdbius function (for the intervals containing
the minimum element):

1 1 1
1
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The characteristic polynomial

Next we compute the Mdbius function (for the intervals containing
the minimum element):

1 1 1
1

and compute the characteristic polynomial
X(A, q) = 2 e, 1(0,x)g¥m) = 1 —3q + 362
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Zaslavsky's formulas
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Zaslavsky's formulas

The numbers r(A) and b(.A) of all, respectively bounded regions
are given by

r(A) = (~1)7x(A,~1) and  b(A) = (=1)""x(A4,1).
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Zaslavsky's formulas

The numbers r(A) and b(.A) of all, respectively bounded regions
are given by

r(A) = (~1)7x(A,~1) and  b(A) = (=1)""x(A4,1).

In our example

and
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Zaslavsky's formulas

The numbers r(A) and b(.A) of all, respectively bounded regions
are given by

r(A) = (=1)%x(4,-1) and  b(A) = (~1)* (A, 1).
In our example
r(A) = (-1)?(1-3-(-1)+3-(-1)3) =7

and

b(A) = (-1)*(1 -3+3)=1.

Related approaches: finite field method (case of integer
coefficients), Whitney's formula and the gain graph method
(deformations of graphical arrangements).
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Regions defined by sets of inequalities

X27X3:1 X17X3:1
xp—x >1 x1—xp > 1
x1—xg >1 Xo —x3 < 1 x —x3 <1
X —x3 > 1 x1—x3 > 1 x1—x3 <1
xp —x3 >1
(1,0,-1) (2/3,-1/3,-1/3)

X17X2:1

x1—xp <1
xp —x3 <1
x1 —x3 > 1

x1—xp <1
xp —x3 <1
xp —x3 <1

x1—x <1
X —x3 >1
x1—x3 >1

(1/3,1/3,-2/3)
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Regions defined by sets of inequalities

xp —x3 =1 x1—x3 =1
xp—x >1 x1—xp > 1
x1—x>1 X3 —x3 <1 x —x3 <1
x—x3>1 x1—x3 > 1 x1—x3 <1

xp —x3 >1
(1,0,—-1) (2/3,-1/3,-1/3)

X17X2:1

x1—x <1 x1—x <1

x1—x <1 i27§3§% X2 —x3 <1
— 1 — X3

e non <

(1/3,1/3,-2/3)

One possibility is missing:
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Regions defined by sets of inequalities

xp —x3 =1 x1—x3 =1
xp—x >1 x1—xp > 1
x1—x>1 X3 —x3 <1 x —x3 <1
x—x3>1 x1—x3 > 1 x1—x3 <1

xp —x3 >1
(1,0,—-1) (2/3,-1/3,-1/3)

X17X2:1

x1—x <1 x1—x <1

x1—x <1 i27§3§% X2 —x3 <1
— 1 — X3

e non <

(1/3,1/3,-2/3)

x1—xp2>1and xo —x3 > 1 imply x; — x3 > 1.
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Examples of the inequality based approach
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Examples of the inequality based approach

The hyperplanes x; —x;j =1—a,2—a,...,a (where 1 < i <j < n)
define the extended Shi arrangement in V,,_1, These have a
Stanley-Pak labeling and an Athanasiadis-Linusson labeling.
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Examples of the inequality based approach

The hyperplanes x; —x;j =1—a,2—a,...,a (where 1 < i <j < n)
define the extended Shi arrangement in V,,_1, These have a
Stanley-Pak labeling and an Athanasiadis-Linusson labeling.

For a graph G on {1,2,...,n} and a set of parameters

{aij : {i,j} € E(G)}, the set of hyperplanes

{xi —xj =ajj : {i,j} € E(G)} define a bigraphical arrangement.
They have a Hopkins-Perkinson labeling.
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Two key lemmas
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Two key lemmas

The following variant of the Farkas Lemma was also used by
Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if
there is a nonzero real m x 1 row vector y satisfyingy >0, yA=10
and yb < 0.
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Two key lemmas

The following variant of the Farkas Lemma was also used by
Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if
there is a nonzero real m x 1 row vector y satisfyingy >0, yA=10
and yb < 0.

We will apply the flow decomposition theorem to circulations:
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Two key lemmas

The following variant of the Farkas Lemma was also used by
Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if
there is a nonzero real m x 1 row vector y satisfyingy >0, yA=10
and yb < 0.

We will apply the flow decomposition theorem to circulations:

Theorem (Gallai)

Every not identically zero circulation f can be written as a positive
linear combination of directed cycles. Moreover, a directed edge e
appears in at least one of these cycles if and only if f(e) > 0.
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Weighted digraphical polytopes
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Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of
inequalities

mj <xi—x;<Mj, 1<i<j<n

in anl- (We allow mjj = —00 and MU — OO)
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Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of
inequalities

mj <xi—x;<Mj, 1<i<j<n

in Vo_1. (We allow mjj = —o0 and Mj; = 00.)

We create an associated weighted digraph: For each i < j, if
mj; > —o0, we create directed edge i — j with weight mj; and if
Mj; < oo we also create a directed edge i <— j with weight —Mj;.
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Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of
inequalities

mj <xi—x;<Mj, 1<i<j<n

in Vo_1. (We allow mjj = —o0 and Mj; = 00.)

We create an associated weighted digraph: For each i < j, if

mj; > —o0, we create directed edge i — j with weight mj; and if
Mj; < oo we also create a directed edge i <— j with weight —Mj;.
An m-ascending cycle in the associated weighted digraph is a
directed cycle, along which the sum of the labels is nonnegative.
We call the associated weighted digraph m-acyclic, if it contains no
m-ascending cycle.
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The key observation
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The key observation

A weighted digraphical polytope given by a system of inequalities is
not empty if and only if the associated weighted digraph associated
is m-acyclic.

G. Hetyei étiquetage des régions



The general setup
Sparse deformations
Inequalities for deformed graphical arrangements Separated deformations

The key observation

A weighted digraphical polytope given by a system of inequalities is
not empty if and only if the associated weighted digraph associated
is m-acyclic.

(Sketch) By Carver's variant of the Farkas Lemma the polytope is
empty if and only if there is an “m-ascending circulation”. By the
Flow Decomposition Theorem every m-ascending circulation

contains an m-ascending cycle. [
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The key observation

A weighted digraphical polytope given by a system of inequalities is
not empty if and only if the associated weighted digraph associated
is m-acyclic.
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The key observation

A weighted digraphical polytope given by a system of inequalities is
not empty if and only if the associated weighted digraph associated
is m-acyclic.

If we think of the weight w(e) as money we gain when we walk
along e then the system of inequalities has a nonempty solution set
if and only if we lose money along any closed walk.

V.
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Semiacyclic tournaments
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Semiacyclic tournaments

The general setup
Sparse deformations
Separated deformations

X27X3:1

<

3

<

(1,0,-1)

X1 — X3 = 1
1V2

3
(2/3,-1/3,-1/3)

<

<

X17X2:1

1v2

3

(1/3,1/3,—-2/3)

<

3
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Semiacyclic tournaments

X27X3:1 X17X3:1
lv2 1?2 1V2
3 3
(1,0,—-1) (2/3,-1/3,-1/3)

X17X2:1

1VZ
Avg Avs
3 3

(1/3,1/3,—-2/3)
1v2
3

1 —2— 3 — 1is an ascending cycle.
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Semiacyclic tournaments

X27X3:1 X17X3:1
lv2 1?2 1V2
3 3
(1,0,—-1) (2/3,-1/3,-1/3)

X17X2:1

1VZ
Avg Avs
3 3

(1/3,1/3,—-2/3)
1v2
3

1 —2— 3 — 1is an ascending cycle.
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Bounded regions
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Bounded regions

A weighted digraphical polytope, is not empty and bounded if and
only if the associated weighted digraph is m-acyclic and it is
strongly connected.
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Bounded regions

A weighted digraphical polytope, is not empty and bounded if and
only if the associated weighted digraph is m-acyclic and it is
strongly connected.

If all arrows go from V5 to V4 then (xi,. .., x,) may be replaced
with (x,...,x},) where

Y x\,—l—ﬁ ifve W
v X\,—@ ifvel,

G. Hetyei étiquetage des régions



The general setup
Sparse deformations
Inequalities for deformed graphical arrangements Separated deformations

Bounded regions

A weighted digraphical polytope, is not empty and bounded if and
only if the associated weighted digraph is m-acyclic and it is
strongly connected.

Each region of the Linial arrangement is described by a set of
inequalities {mj; < x;j — xj < Mjj : 1 <i < j < n}, each inequality
is either —0o < x; — x; <1 or1 < x; — x; < co. The associated
weighted digraph is a tournament, it contains no m-ascending
cycle if and only if it is semiacyclic. Bounded regions correspond to
strongly connected semiacyclic tournaments.
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Exponential arrangements
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Exponential arrangements

Let A= (A, Ap,...) be a sequence of deformations of the braid
arrangement, such that each A, is a hyperplane arrangement in
R". For each S C {1,2,...} we define A3 as the subcollection of
hyperplanes x; — x; = ¢ of A, satisfying {i,j} CS. Ais
exponential if r(Ay) depends only on k = |S| and it is the number
r(Ayg) of regions of Ay.
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Exponential arrangements

Let A= (A, Ap,...) be a sequence of deformations of the braid
arrangement, such that each A, is a hyperplane arrangement in
R". For each S C {1,2,...} we define A3 as the subcollection of
hyperplanes x; — x; = ¢ of A, satisfying {i,j} CS. Ais
exponential if r(Ay) depends only on k = |S| and it is the number
r(Ayg) of regions of Ax. Stanley showed that the exponential
generating functions of all resp. bounded regions are connnected by
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Exponential arrangements (cont'd)
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Exponential arrangements (cont'd)

Since m-acyclicity can be independently verified on strong
components, we can directly show
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Exponential arrangements (cont'd)

Since m-acyclicity can be independently verified on strong
components, we can directly show

n k
r(A,) = Z Z <n1, ng,r.l. ) nk) 11:11 b(A,) forall n>1.

k=1 ni+-+ne=n
ni,...,n>0
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Posets of gains
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Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on {1,2,...,n}, we
define i <p j if there is a directed path i =iy —> i1 = - = ik =
such that the weight of each directed edge is — is+1 is
nonnegative. We call the set {1,2,..., n}, ordered by <p the
poset of gains induced by D.
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Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on {1,2,...,n}, we
define i <p j if there is a directed path i =iy —> i1 = - = ik =
such that the weight of each directed edge is — is+1 is
nonnegative. We call the set {1,2,..., n}, ordered by <p the
poset of gains induced by D.

The relation i <p j is a partial order because of the m-acyclic
property.
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Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on {1,2,...,n}, we
define i <p j if there is a directed path i =iy —> i1 = - = ik =
such that the weight of each directed edge is — is+1 is
nonnegative. We call the set {1,2,..., n}, ordered by <p the
poset of gains induced by D.

The relation i <p j is a partial order because of the m-acyclic
property.

The posets of gains of the Linial arrangement are the sleek posets.
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Sparse deformations
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Sparse deformations

Definition

a deformation of the braid arrangement, is sparseif 1 < n;; <2
holds for all / < j, and the signs of the numbers a( ) satisfy the
following for all i < j:

o a(l) > 0 holds, whenever n; ; = 1,

Q a ) <0< a( ) holds, whenever n; j = 2.
We caII A an /nterval order arrangement if n; ; = 2 holds for all
i <j.
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Sparse deformations

Proposition

Consider a sparse deformation of the braid arrangement and any
valid m-acyclic weighted digraph D associated to it. In the induced
poset of gains, i <p j holds exactly when there is a single directed
edge i — j of positive weight. For any pair {i,j} of incomparable
vertices satisfying i < j, the edge j — i is always present, and any
edge between i and j has negative weight.
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Sparse deformations

Let D be a valid m-acyclic weighted digraph associated to a sparse
deformation of the braid arrangement in V,_1. If D is strongly
connected then the incomparability graph of the induced poset of
gains is connected. The converse is also true when n;j = 2 holds
foralll1 <i<j<n.
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Sparse deformations

Consider the Linial arrangement and the semiacyclic tournament D
containing a directed edge i <— j of weight —1 for each i < j. This
is a valid m-acyclic weighted digraph, it is in fact acyclic. The
induced poset of gains is an antichain, the incomparability graph is
the complete graph, it is connected. However, D is not strongly
connected.
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a-generalized Linial arrangements
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a-generalized Linial arrangements

Definition

Let a=(a1,a2,...,an) € R>¢". The a-generalized Linial
arrangement is

xi—xj=a; for1<i<j<ninV, ;.
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a-generalized Linial arrangements

Definition

Let a=(a1,a2,...,an) € R>¢". The a-generalized Linial
arrangement is

xi—xj=a; for1<i<j<ninV, ;.

Proposition

If D is a valid m-acyclic weighted digraph associated to an
a-generalized Linial arrangement, then D contains no alternating
cycle.
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a-generalized Linial arrangements

Definition

Let a=(a1,a2,...,an) € R>¢". The a-generalized Linial
arrangement is

xi—xj=a; for1<i<j<ninV, ;.

Proposition

If D is a valid m-acyclic weighted digraph associated to an
a-generalized Linial arrangement, then D contains no alternating
cycle.

Alternation acyclic tournaments label the regions of the
homogenized Linial arrangement {x; —x; =y; : 1 <i<j < n}.
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Separated deformations
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Separated deformations

Definition

We call a deformation of the braid arrangement A separated if 0

belongs to the set {alg-l),al(jz), e a,(-J-n”)} foreach 1 <i<j<n.
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Separated deformations

Definition

We call a deformation of the braid arrangement A separated if 0

belongs to the set {alg-l),al(jz), e a,(-J-n”)} foreach 1 <i<j<n.

For a separated deformation of the braid arrangement, the induced
poset of gains associated to any valid m-acyclic weighted digraph
is a totally ordered set.
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Separated deformations

Definition

We call a deformation of the braid arrangement A separated if 0

belongs to the set {alg-l),a,(jz), e a,(-J-n”)} foreach 1 <i<j<n.

For a separated deformation of the braid arrangement, the induced
poset of gains associated to any valid m-acyclic weighted digraph
is a totally ordered set.

Equivalently, each region is included in a region
Xs(1) > Xo(2) > *** > Xg(n) Of the braid arrangement.
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A structure theorem
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A structure theorem

Let R be a region of a separated deformation of the braid
arrangement and let o(1)o(2) - --o(n) be its total order of gains.
Then there is a unique decomposition

o= (o(io)---0(in)) - (o(L+1)---0(i))- - (o(ik—1+1)---0(ik))

satisfying
Q@ Foreachj=-1,0,....k—1,
RN span(eg(,-jH), €o(ii+2)s 5 eo(,-jﬂ)) is bounded.

@ IfS C{1,2,...,n} contains indices j; and j> such that o(ji)
and o(j2) belong to different subwords in the above
decomposition then R M span((ey(j) : j € S) is unbounded.
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Gain functions
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Gain functions

Definition

For each i € {1,2,...,n} we define the gain function g(o(i)) as
the maximum weight of a directed path beginning at o(1) and
ending at o (/). In particular, we set g(c(1)) = 0. Here o is the
total order of gains.
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Gain functions

Definition

For each i € {1,2,...,n} we define the gain function g(o(i)) as
the maximum weight of a directed path beginning at o(1) and
ending at o (/). In particular, we set g(c(1)) = 0. Here o is the
total order of gains.

Every gain function has the weakly increasing property

g(o(1)) < g(0(2)) < --- < g(a(n)).
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Gain functions

Definition

We call a deformation A of the braid arrangement integral if all
the numbers a,’-"j appearing in in its definition are integers. We say
that A satisfies the weak triangle inequality if for all triplets

(i,4, k), the inequalities w(i,j) > 0 and w(j, k) > 0 imply

w(i, k) < w(i,j)+w(,k)+1

in any valid m-acyclic associated weighted digraph.
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Gain functions

Let A be a separated integral deformation of the braid
arrangement satisfying the weak triangle inequality, and let D be
an associated m-acyclic weighted digraph. Let o be the total order
of gains associated to D and let g be the gain function. Then, for
each i > 1 there is a directed path from o(1) to o(i) such that all
weights in the path are nonnegative and the total weight of the
edges in the path is g(o(i)) — g(o(1)).
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Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V,,_;
contiguous if, for every i < j, the set {a,(-l-), 352-), e al(g-"’j)} is a

contiguous set [a(i, ), B(i,j)] = {a(i,)),a(i,)) + 1,...,8(i,j)} of
integers.
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Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V,,_;
contiguous if, for every i < j, the set {a(l) (3), e, al(g-"’j)} is a
contiguous set [a(/, ), B(i,J)] = {a(i,j),a(i,j) +1,..., B(i,j)} of
integers.
Since x; — X; = ¢ & Xj — Xx; = —C, we may set

a(j,i)=—=pB(i,j) and B(,i)=—afi,j) forl<i<j<n.
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Minimal obstructions

If B(i, k) < B(i,j) + B(, k) + 1 holds for all {i,j, k}. then any
valid associated weighted digraph is m-acyclic if and only if it
contains no m-ascending cycle of length at most four.
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Minimal obstructions

If B(i, k) < B(i,j) + B(, k) + 1 holds for all {i,j, k}. then any
valid associated weighted digraph is m-acyclic if and only if it

contains no m-ascending cycle of length at most four. )

If the truncated affine arrangement AZ’fl satisfies a,b > 0, then a
valid associated weighted digraph is m-acyclic if and only if it
contains no m-ascending cycle of length at most four.
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Minimal obstructions

There is a minimal m-ascending cycle of length 5 in A;}f for
n>5.

> ©
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The Pak-Stanley labeling
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The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality.
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The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality. For a weight function
we only need to verify
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The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality. For a weight function
we only need to verify

w(i, k) > min(B(i,)), w(i,j) + w(j, k)) for i <,-1j <,-1 k, and
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The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality. For a weight function
we only need to verify

w(i, k) > min(B(i,)), w(i,j) + w(j, k)) for i <,-1j <,-1 k, and

w(i, k) < w(i,j)+w(,k)+1 fori<,-1j<g-1 k.
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The Pak-Stanley labeling

Definition
We define the Pak-Stanley label (f(1),...,f(n)) of a region as

F()= Y w(i,j)+K(i.j) : i <,-1jandi>j}.

i<,-1j
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The Pak-Stanley labeling

Definition
We define the Pak-Stanley label (f(1),...,f(n)) of a region as

F()= Y w(i,j)+K(i.j) : i <,-1jandi>j}.

i<,-1j

Thesum >, . w(i,j) is the number of separations, and
{(i,j) : i <,-1j and i > j}| is the number of inversions.
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The Pak-Stanley labeling

Lemma (Stanley)

Given i < -1 j, if i > j or w(i,j) > 0 holds then we have
(i) > f(j).
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The Pak-Stanley labeling

Lemma (Stanley)

Given i < -1 j, if i > j or w(i,j) > 0 holds then we have
(i) > f(j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the
a-parking functions of length n, each occurring exactly once.
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The Pak-Stanley labeling

Lemma (Stanley)

Given i <y -1 j, if i > j or w(i,j) > 0 holds then we have
(i) > f(j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the
a-parking functions of length n, each occurring exactly once.

Given an a-parking function (f(1),...,f(n)), we insert the labels
into o one by one and show the uniqueness of the place and of the
function values w(i,j) one step at a time. (Still “tedious”, but fits
on a single page.)
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The Pak-Stanley labeling

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley's above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions. )
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Athanasiadis-Linusson diagrams
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Athanasiadis-Linusson diagrams

Definition

The regions of a contiguous, separated and integral deformation of
the braid arrangement
{xi—xi=m:1<i<j<nmel[-p(,i),pB(iJj)]} have
Athanasiadis-Linusson diagrams if {$(i,j) : i # j} contains at
most two consecutive nonnegative integers for each
Jj€{L,2,...,n}. We set 3(j) = min;x; 5(i, ) for all j.
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Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the
following:
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Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the
following:

2 1 4 3 5

@ Fix a representative x of the region. This satisfies
Xs(1) = X5(2) = " 2 Xo(n)-
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Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the
following:

2 1 2 1 4 3 4 3 5

@ Fix a representative x of the region. This satisfies
Xs(1) = X5(2) = " 2 Xo(n)-

@ For each j satisfying 5(j) > 0 we also mark
xj+B(),x; +B()—1,...,x; + 1 on the reversed number line
and we draw an arc connecting x; + k + 1 with x; + k for
k=0,1,...,58() — 1. We label all of these points with j.
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Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the
following:

2 1 2 1 4 3 4 3 5

@ Fix a representative x of the region. This satisfies
Xs(1) = X5(2) = " 2 Xo(n)-

@ For each j satisfying 5(j) > 0 we also mark
xj+B(),x; +B()—1,...,x; + 1 on the reversed number line
and we draw an arc connecting x; + k + 1 with x; + k for
k=0,1,...,58() — 1. We label all of these points with j.

@ For each {i,j} € {1,2,...,n} we also draw an arc between x;
and x; + 5() if 501,J) = B() + 1 x — x5 > B, ) holds.
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Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the
following:
@ Fix a representative x of the region. This satisfies
Xg(1) > Xo(2) = " > Xo(n)-
@ For each j satisfying 5(j) > 0 we also mark
xj+B(),xi +B()—1,...,x;+ 1 on the reversed number line
and we draw an arc connecting x; + k + 1 with x; + k for
k=0,1,...,8() — 1. We label all of these points with j.
@ For each {i,j} C {1,2,...,n} we also draw an arc between x;
and x; + B(j) if B(i,j) = B(j) + 1 x; — x; > ((i,j) holds.
@ We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams
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Athanasiadis-Linusson diagrams
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Athanasiadis-Linusson diagrams

2 1 2 1 4 3 4 3 5
Without 5 this is an example of Athanasiadis and Linusson in A§’2.
For all {i,j} C {1,2,3,4} we have §(i,j) =2 if i < j and
B(i,j)=1if i >j. We add 3(i,5) = 5(5,i) =0 for i = 1,2, 4,
and we add 5(3,5) =1 and ((3,5) = 0.
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Athanasiadis-Linusson diagrams

2 1 2 1 4 3 4 3 5

For each i € {1,2,...,n} we define f(i) as the position of the
leftmost element of the continuous component of i. We call the
resulting (f(1),7(2),...,f(n)) the S-parking function of the
region.
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Athanasiadis-Linusson diagrams

2 1 2 1 4 3 4 3 5

For each i € {1,2,...,n} we define f(i) as the position of the
leftmost element of the continuous component of i. We call the
resulting (f(1),7(2),...,f(n)) the S-parking function of the
region. Here we have f(1) =2, f(2) = f(4) =1 and

f(3) = f(5) = 6.

G. Hetyei étiquetage des régions



The general setup
Sparse deformations
Inequalities for deformed graphical arrangements Separated deformations

Athanasiadis-Linusson diagrams

2 1 2 1 4 3 4 3 5

For each i € {1,2,...,n} we define f(i) as the position of the
leftmost element of the continuous component of i. We call the
resulting (f(1),7(2),...,f(n)) the S-parking function of the
region. Here we have f(1) =2, f(2) = f(4) =1 and

f(3) = f(5) = 6. As before, we may reconstruct the diagram from
its B-parking function.
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Athanasiadis-Linusson trees
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Athanasiadis-Linusson trees

© Replace the labels j with ji, f,..., jﬁ(j)“, numbered left to
right, so that we can distinguish the copies.
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Athanasiadis-Linusson trees

© Replace the labels j with ji, f,..., jﬁ(j)“, numbered left to
right, so that we can distinguish the copies.

@ The copies of the labels satisfying f(j) = 1 become the
children of the root 0.
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Athanasiadis-Linusson trees

© Replace the labels j with ji, f,..., jﬁ(j)“, numbered left to
right, so that we can distinguish the copies.

@ The copies of the labels satisfying f(j) = 1 become the
children of the root 0.

© We number the nodes in the tree level-by-level and in
increasing order of the labels (breadth-first-search order).
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Athanasiadis-Linusson trees

© Replace the labels j with ji, f,..., jﬁ(j)“, numbered left to
right, so that we can distinguish the copies.

@ The copies of the labels satisfying f(j) = 1 become the
children of the root 0.

© We number the nodes in the tree level-by-level and in
increasing order of the labels (breadth-first-search order).

© Once we inserted the copies of all labels j satisfying 7(j) < i,
all copies of the labels j satisfying f(j) = i will be the children
of the node whose number is i.
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Athanasiadis-Linusson trees
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Athanasiadis-Linusson trees
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Athanasiadis-Linusson trees
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Athanasiadis-Linusson trees

Definition

For a sequence 3 € N” we define the 3-extended Shi arrangement
as the hyperplane arrangement

XI_XJ:_B(J)v_B(./)—{_]-:)B(J)—i_l 1§I<J§n in anl-
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Athanasiadis-Linusson trees

Definition
For a sequence 3 € N” we define the 3-extended Shi arrangement
as the hyperplane arrangement

XI_XJZ_B(J)v_B(J)—{_la)B(J)—i_l 1§I<J§n in anl-

The number of regions in a (3-extended Shi arrangement A is

n—1

r(A) = (BU)+1)+1

Jj=1
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Athanasiadis-Linusson trees

Definition
For a sequence 3 € N” we define the 3-extended Shi arrangement
as the hyperplane arrangement

XI_XJZ_B(J)v_B(J)—{_la)B(J)—i_l 1§I<J§n in anl-

The number of regions in a (3-extended Shi arrangement A is

n—1

The proof uses a colored variant of the Priifer code-algorithm.
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a-Catalan arrangements
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a-Catalan arrangements

B e V. TN an

11412 46132 46532 46532615335
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a-Catalan arrangements

B e V. TN an

11412 46132 46532 46532615335

The Athanasiadis-Linusson diagrams are very simple: they connect
points with the same label only.
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a-Catalan arrangements

B e V. TN an

11412 46132 46532 46532615335

The Athanasiadis-Linusson diagrams are very simple: they connect

points with the same label only. For a fixed
Xo(1) > Xo(2) >+ > Xo(n) the parking trees are in bijection with
the rooted incomplete a-ary trees on (a — 1)n + 1 vertices.
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a-Catalan arrangements

B e V. TN an

11412 46132 46532 46532615335

The Athanasiadis-Linusson diagrams are very simple: they connect
points with the same label only. For a fixed

Xo(1) > Xo(2) >+ > Xo(n) the parking trees are in bijection with
the rooted incomplete a-ary trees on (a — 1)n + 1 vertices. Their
number is the a-Catalan number m(an”).
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a-Catalan arrangements

B e V. TN an

11412 46132 46532 46532615335

The Athanasiadis-Linusson diagrams are very simple: they connect
points with the same label only. For a fixed
Xo(1) > Xo(2) >+ > Xo(n) the parking trees are in bijection with
the rooted incomplete a-ary trees on (a — 1)n + 1 vertices. Their
number is the a-Catalan number —5.— (). Multiplying it with
n! we get

r(A2?)=an(an—1)---((a—1)n+2)

n—1

first found by Postnikov and Stanley.
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A mysterious labeling
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

3 5
........ 26
........................... 4
L NN
Ur(j) = (i) i Un(f)) —(x(7) € [L —a,a—1]
w(n (i), 7(j)) = § —o0 if {(m(j)) —U(n(7)) <1-a

a—1 if {(m(j)) — 4(m(i)) >a—1
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

The total order of gains 0 = -y o 7 is the order of the labels
7(1),...,7(n) in increasing order of their levels, where w(i) is
listed before ww(j) if £(m(i)) = £(w(j)) and i < j hold.
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

Here we get 0 = 142635.
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

Here we get 0 = 142635.

Proposition

For the weighted digraph encoded by (m,\) the gain function is
the level function: we have g(o(i)) = ¢(o(i)).
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

Here we get 0 = 142635.

The correspondence between the pairs (w,\) and the valid
weighted m-acyclic digraphs encoded by them is a bijection.
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A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

Here we get 0 = 142635.

The correspondence between the pairs (w,\) and the valid
weighted m-acyclic digraphs encoded by them is a bijection.

We only prove injectivity and then we use the Postnikov-Stanley
formula.

G. Hetyei étiquetage des régions



The general setup
Sparse deformations
Inequalities for deformed graphical arrangements Separated deformations

A mysterious labeling

Fix a permutation 7 and an a-Catalan path A.

Here we get 0 = 142635.

Proposition

A region of A2?, is bounded if and only if the total order of gains
o satisfies w(o(i),o(i+ 1)) <a—1for1 <i<n-—1.
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The number of possible types of the trees of the gain function is a
Catalan number.

For a fixed n and a fixed tree of gain functions, the number of

regions of A2?, associated to it is a polynomial of a.
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A concluding conjecture

The number of possible types of the trees of the gain function is a
Catalan number.

For a fixed n and a fixed tree of gain functions, the number of
regions of A2?, associated to it is a polynomial of a.

This conjecture implies that the n-th a-Catalan number,
considered as a polynomial of a, could be written as a sum of C,
polynomials, where C, is the n-th Catalan number.
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Labeling regions in deformations of graphical arrangements
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