Étiquetage des régions dans les arrangements d'hyperplans

Gábor Hetyei

Department of Mathematics and Statistics University of North Carolina at Charlotte http://webpages.uncc.edu/ghetyei/

12 février, 2024 GT "Combinatoire et interactions" LaBRI, Université de Bordeaux I

Preliminaries

- Hyperplane arrangements
- Zaslavsky's formulas
- Inequality based approaches

Inequalities for deformed graphical arrangements

- The general setup
- Sparse deformations
- Separated deformations

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Hyperplane arrangements

æ

(日)

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Hyperplane arrangements

A hyperplane arrangement A is a finite collection of hyperplanes in a *d*-dimensional real vector space, which partition the space into regions.

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Example: Linial arrangement $(x_1 + x_2 + x_3 = 0)$

(日)

э

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Example: Linial arrangement $(x_1 + x_2 + x_3 = 0)$

<ロト < 同ト < ヨト < ヨト

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Example: Linial arrangement $(x_1 + x_2 + x_3 = 0)$

1 bounded and 6 unbounded regions

イロト イヨト イヨト

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Example: Linial arrangement $(x_1 + x_2 + x_3 = 0)$

1 bounded and 6 unbounded regions

イロト イヨト イヨト

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Deformations of the braid arrangement

(日)

B> B

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$.

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$. A *deformation* of the braid arrangement consists of replacing each hyperplane $x_i - x_j = 0$ with a set of hyperplanes

$$x_i - x_j = a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}.$$

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$. A *deformation* of the braid arrangement consists of replacing each hyperplane $x_i - x_j = 0$ with a set of hyperplanes

$$x_i - x_j = a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}.$$

The truncated affine arrangements $\mathcal{A}_{n-1}^{a,b}$ (where $a + b \ge 2$) contain the hyperplanes are $x_i - x_j = 1 - a, 2 - a, \dots, b - 1$ for $1 \le i < j \le n$.

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$. A *deformation* of the braid arrangement consists of replacing each hyperplane $x_i - x_j = 0$ with a set of hyperplanes

$$x_i - x_j = a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}.$$

The truncated affine arrangements $\mathcal{A}_{n-1}^{a,b}$ (where $a + b \ge 2$) contain the hyperplanes are $x_i - x_j = 1 - a, 2 - a, \ldots, b - 1$ for $1 \le i < j \le n$. $\mathcal{A}_{n-1}^{0,2}$ is the Linial arrangement, $\mathcal{A}_{n-1}^{1,2}$ is the Shi arrangement $\mathcal{A}_{n-1}^{a,a+1}$ with $a \ge 1$ is the extended Shi arrangement, $\mathcal{A}_{n-1}^{2,2}$ is the Catalan arrangement, and $\mathcal{A}_{n-1}^{a,a}$ with $a \ge 2$ is the a-Catalan arrangement.

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

| 4 同 🕨 🔺 🗏 🕨 🤘

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

To count the regions, we may use *Zaslavsky's formulas* ("inclusion-exclusion") or solve systems of linear inequalities directly.

The characteristic polynomial

To count the regions, we may use *Zaslavsky's formulas* ("inclusion-exclusion") or solve systems of linear inequalities directly. Using Zaslavsky's formula appears to be more suitable in general to avoid considering many cases.

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

To use it, we need to know L_A , the poset of nonempty intersections (ordered by reverse inclusion)

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

To use it, we need to know L_A , the poset of nonempty intersections (ordered by reverse inclusion)

< 同 ト < 三 ト < 三 ト

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

Next we compute the Möbius function (for the intervals containing the minimum element):

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

Next we compute the Möbius function (for the intervals containing the minimum element):

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

The characteristic polynomial

Next we compute the Möbius function (for the intervals containing the minimum element):

and compute the *characteristic polynomial* $\chi(\mathcal{A}, q) = \sum_{x \in L_{\mathcal{A}}} \mu(\widehat{0}, x)q^{\dim(x)} = 1 - 3q + 3q^2.$

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Zaslavsky's formulas

æ

э

(日)

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Zaslavsky's formulas

The numbers r(A) and b(A) of all, respectively bounded regions are given by

$$r(\mathcal{A})=(-1)^d\chi(\mathcal{A},-1) \quad ext{and} \quad b(\mathcal{A})=(-1)^{\mathsf{rk}(\mathcal{L}_\mathcal{A})}\chi(\mathcal{A},1).$$

< A > <

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Zaslavsky's formulas

The numbers r(A) and b(A) of all, respectively bounded regions are given by

$$r(\mathcal{A})=(-1)^d\chi(\mathcal{A},-1) \quad ext{and} \quad b(\mathcal{A})=(-1)^{\mathsf{rk}(\mathcal{L}_\mathcal{A})}\chi(\mathcal{A},1).$$

In our example

$$r(\mathcal{A}) = (-1)^2 (1 - 3 \cdot (-1) + 3 \cdot (-1)^2) = 7$$

and

$$b(A) = (-1)^2(1 - 3 + 3) = 1.$$

< A > <

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Zaslavsky's formulas

The numbers r(A) and b(A) of all, respectively bounded regions are given by

$$r(\mathcal{A})=(-1)^d\chi(\mathcal{A},-1) \quad ext{and} \quad b(\mathcal{A})=(-1)^{\mathsf{rk}(\mathcal{L}_\mathcal{A})}\chi(\mathcal{A},1).$$

In our example

$$r(\mathcal{A}) = (-1)^2(1 - 3 \cdot (-1) + 3 \cdot (-1)^2) = 7$$

and

$$b(A) = (-1)^2(1 - 3 + 3) = 1.$$

Related approaches: finite field method (case of integer coefficients), Whitney's formula and the gain graph method (deformations of graphical arrangements).

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Regions defined by sets of inequalities

• (日本)

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Regions defined by sets of inequalities

• (日本)

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Regions defined by sets of inequalities

One possibility is missing:

▲ 御 ▶ ▲ 王

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Regions defined by sets of inequalities

 $x_1 - x_2 > 1$ and $x_2 - x_3 > 1$ imply $x_1 - x_3 > 1$.

《口》《聞》《臣》《臣》

Hyperplane arrangements Zaslavsky's formulas Inequality based approaches

Examples of the inequality based approach

< 🗇 🕨 < 🖃 🕨

Examples of the inequality based approach

The hyperplanes $x_i - x_j = 1 - a, 2 - a, ..., a$ (where $1 \le i < j \le n$) define the *extended Shi arrangement* in V_{n-1} , These have a *Stanley-Pak labeling* and an *Athanasiadis-Linusson labeling*.

Examples of the inequality based approach

The hyperplanes $x_i - x_j = 1 - a, 2 - a, ..., a$ (where $1 \le i < j \le n$) define the *extended Shi arrangement* in V_{n-1} , These have a *Stanley-Pak labeling* and an *Athanasiadis-Linusson labeling*. For a graph *G* on $\{1, 2, ..., n\}$ and a set of parameters $\{a_{i,j} : \{i, j\} \in E(G)\}$, the set of hyperplanes $\{x_i - x_j = a_{i,j} : \{i, j\} \in E(G)\}$ define a *bigraphical arrangement*. They have a *Hopkins-Perkinson labeling*.

・ 同 ト ・ ヨ ト ・ ヨ ト

The general setup Sparse deformations Separated deformations

Two key lemmas

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

The general setup Sparse deformations Separated deformations

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \ge 0$, yA = 0 and $yb \le 0$.

The general setup Sparse deformations Separated deformations

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \ge 0$, yA = 0 and $yb \le 0$.

We will apply the flow decomposition theorem to circulations:

The general setup Sparse deformations Separated deformations

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \ge 0$, yA = 0 and $yb \le 0$.

We will apply the flow decomposition theorem to circulations:

Theorem (Gallai)

Every not identically zero circulation f can be written as a positive linear combination of directed cycles. Moreover, a directed edge e appears in at least one of these cycles if and only if f(e) > 0.

イロト イボト イヨト イヨト
The general setup Sparse deformations Separated deformations

Weighted digraphical polytopes

æ

-≣->

イロト イヨト イヨト イ

The general setup Sparse deformations Separated deformations

Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of inequalities

$$m_{ij} < x_i - x_j < M_{ij}, \quad 1 \le i < j \le n$$

in V_{n-1} . (We allow $m_{ij} = -\infty$ and $M_{ij} = \infty$.)

・ 同 ト ・ ヨ ト ・ ヨ ト

The general setup Sparse deformations Separated deformations

Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of inequalities

$$m_{ij} < x_i - x_j < M_{ij}, \quad 1 \le i < j \le n$$

in V_{n-1} . (We allow $m_{ij} = -\infty$ and $M_{ij} = \infty$.) We create an *associated weighted digraph*: For each i < j, if $m_{ij} > -\infty$, we create directed edge $i \rightarrow j$ with weight m_{ij} and if $M_{ij} < \infty$ we also create a directed edge $i \leftarrow j$ with weight $-M_{ij}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of inequalities

$$m_{ij} < x_i - x_j < M_{ij}, \quad 1 \le i < j \le n$$

in V_{n-1} . (We allow $m_{ij} = -\infty$ and $M_{ij} = \infty$.) We create an *associated weighted digraph*: For each i < j, if $m_{ij} > -\infty$, we create directed edge $i \rightarrow j$ with weight m_{ij} and if $M_{ij} < \infty$ we also create a directed edge $i \leftarrow j$ with weight $-M_{ij}$. An *m*-ascending cycle in the associated weighted digraph is a directed cycle, along which the sum of the labels is nonnegative. We call the associated weighted digraph *m*-acyclic, if it contains no *m*-ascending cycle.

< ロ > < 同 > < 三 > < 三 >

The general setup Sparse deformations Separated deformations

The key observation

æ

Ξ.

・ロト ・回ト ・ ヨト・

The general setup Sparse deformations Separated deformations

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

The general setup Sparse deformations Separated deformations

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Proof.

(Sketch) By Carver's variant of the Farkas Lemma the polytope is empty if and only if there is an "*m*-ascending circulation". By the Flow Decomposition Theorem every *m*-ascending circulation contains an *m*-ascending cycle.

The general setup Sparse deformations Separated deformations

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

The general setup Sparse deformations Separated deformations

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Corollary

If we think of the weight w(e) as money we gain when we walk along e then the system of inequalities has a nonempty solution set if and only if we lose money along any closed walk.

The general setup Sparse deformations Separated deformations

Semiacyclic tournaments

æ

-

(日)

The general setup Sparse deformations Separated deformations

Semiacyclic tournaments

æ

The general setup Sparse deformations Separated deformations

Semiacyclic tournaments

The general setup Sparse deformations Separated deformations

Semiacyclic tournaments

The general setup Sparse deformations Separated deformations

Bounded regions

æ

イロト イ団ト イヨト イヨト

The general setup Sparse deformations Separated deformations

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

< A > <

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

If all arrows go from V_2 to V_1 then (x_1,\ldots,x_n) may be replaced with (x_1',\ldots,x_n') where

$$x'_{\nu} = \begin{cases} x_{\nu} + \frac{t}{|V_1|} & \text{if } \nu \in V_1 \\ x_{\nu} - \frac{t}{|V_2|} & \text{if } \nu \in V_2 \end{cases}$$

< 🗇 🕨 < 🖃 🕨

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

Example

Each region of the Linial arrangement is described by a set of inequalities $\{m_{ij} < x_i - x_j < M_{ij} : 1 \le i < j \le n\}$, each inequality is either $-\infty < x_i - x_j < 1$ or $1 < x_i - x_j < \infty$. The associated weighted digraph is a tournament, it contains no m-ascending cycle if and only if it is semiacyclic. Bounded regions correspond to strongly connected semiacyclic tournaments.

The general setup Sparse deformations Separated deformations

Exponential arrangements

æ

(日)

The general setup Sparse deformations Separated deformations

Exponential arrangements

Let $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, ...)$ be a sequence of deformations of the braid arrangement, such that each \mathcal{A}_n is a hyperplane arrangement in \mathbb{R}^n . For each $S \subseteq \{1, 2, ...\}$ we define \mathcal{A}_n^S as the subcollection of hyperplanes $x_i - x_j = c$ of \mathcal{A}_n satisfying $\{i, j\} \subseteq S$. \mathcal{A} is *exponential* if $r(\mathcal{A}_n^S)$ depends only on k = |S| and it is the number $r(\mathcal{A}_k)$ of regions of \mathcal{A}_k .

The general setup Sparse deformations Separated deformations

Exponential arrangements

Let $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, ...)$ be a sequence of deformations of the braid arrangement, such that each \mathcal{A}_n is a hyperplane arrangement in \mathbb{R}^n . For each $S \subseteq \{1, 2, ...\}$ we define \mathcal{A}_n^S as the subcollection of hyperplanes $x_i - x_j = c$ of \mathcal{A}_n satisfying $\{i, j\} \subseteq S$. \mathcal{A} is *exponential* if $r(\mathcal{A}_n^S)$ depends only on k = |S| and it is the number $r(\mathcal{A}_k)$ of regions of \mathcal{A}_k . Stanley showed that the exponential generating functions of all resp. bounded regions are connected by

$$B_{\mathcal{A}}(t) = 1 - rac{1}{R_{\mathcal{A}}(t)}.$$

The general setup Sparse deformations Separated deformations

Exponential arrangements (cont'd)

э

イロト イヨト イヨト イ

The general setup Sparse deformations Separated deformations

Exponential arrangements (cont'd)

Since *m*-acyclicity can be independently verified on strong components, we can directly show

▲ 同 ▶ → 三 ▶

The general setup Sparse deformations Separated deformations

Exponential arrangements (cont'd)

Since *m*-acyclicity can be independently verified on strong components, we can directly show

$$r(\mathcal{A}_n) = \sum_{\substack{k=1 \ n_1 + \dots + n_k = n \\ n_1, \dots, n_k > 0}}^n \binom{n}{n_1, n_2, \dots, n_k} \prod_{i=1}^k b(\mathcal{A}_{n_i}) \quad \text{for all } n \ge 1.$$

▲ 同 ▶ → 三 ▶

The general setup Sparse deformations Separated deformations

Posets of gains

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Posets of gains

Definition

Given a valid *m*-acyclic weighted digraph *D* on $\{1, 2, ..., n\}$, we define $i <_D j$ if there is a directed path $i = i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_k = j$ such that the weight of each directed edge $i_s \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1, 2, ..., n\}$, ordered by $<_D$ the poset of gains induced by *D*.

Posets of gains

Definition

Given a valid *m*-acyclic weighted digraph *D* on $\{1, 2, ..., n\}$, we define $i <_D j$ if there is a directed path $i = i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_k = j$ such that the weight of each directed edge $i_s \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1, 2, ..., n\}$, ordered by $<_D$ the poset of gains induced by *D*.

The relation $i <_D j$ is a partial order because of the *m*-acyclic property.

・ 一 マ ト ・ 日 ト ・

Posets of gains

Definition

Given a valid *m*-acyclic weighted digraph *D* on $\{1, 2, ..., n\}$, we define $i <_D j$ if there is a directed path $i = i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_k = j$ such that the weight of each directed edge $i_s \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1, 2, ..., n\}$, ordered by $<_D$ the poset of gains induced by *D*.

The relation $i <_D j$ is a partial order because of the *m*-acyclic property.

Example

The posets of gains of the Linial arrangement are the *sleek posets*.

< ロ > < 同 > < 三 > < 三

Outline

Preliminaries

Inequalities for deformed graphical arrangements

The general setup Sparse deformations Separated deformations

Sparse deformations

æ

イロト イ団ト イヨト イヨト

Sparse deformations

Definition

a deformation of the braid arrangement, is *sparse* if $1 \le n_{i,j} \le 2$ holds for all i < j, and the signs of the numbers $a_{i,j}^{(k)}$ satisfy the following for all i < j:

•
$$a_{i,j}^{(1)} > 0$$
 holds, whenever $n_{i,j} = 1$,
• $a_{i,j}^{(1)} < 0 < a_{i,j}^{(2)}$ holds, whenever $n_{i,j} = 2$.
We call \mathcal{A} an *interval order arrangement* if $n_{i,j} = 2$ holds for all $i < j$.

Sparse deformations

Proposition

Consider a sparse deformation of the braid arrangement and any valid m-acyclic weighted digraph D associated to it. In the induced poset of gains, $i <_D j$ holds exactly when there is a single directed edge $i \rightarrow j$ of positive weight. For any pair $\{i, j\}$ of incomparable vertices satisfying i < j, the edge $j \rightarrow i$ is always present, and any edge between i and j has negative weight.

< 同 × I = >

Sparse deformations

Theorem

Let D be a valid m-acyclic weighted digraph associated to a sparse deformation of the braid arrangement in V_{n-1} . If D is strongly connected then the incomparability graph of the induced poset of gains is connected. The converse is also true when $n_{i,j} = 2$ holds for all $1 \le i < j \le n$.

The general setup Sparse deformations Separated deformations

Sparse deformations

Example

Consider the Linial arrangement and the semiacyclic tournament D containing a directed edge $i \leftarrow j$ of weight -1 for each i < j. This is a valid *m*-acyclic weighted digraph, it is in fact acyclic. The induced poset of gains is an antichain, the incomparability graph is the complete graph, it is connected. However, D is not strongly connected.

The general setup Sparse deformations Separated deformations

<u>a</u>-generalized Linial arrangements

э

イロト イ団ト イヨト イヨト

The general setup Sparse deformations Separated deformations

<u>a</u>-generalized Linial arrangements

Definition

Let $\underline{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}_{\geq 0}^n$. The <u>a</u>-generalized Linial arrangement is

 $x_i - x_j = a_i$ for $1 \le i < j \le n$ in V_{n-1} .

<ロト < 部ト < 注ト < 注</p>

The general setup Sparse deformations Separated deformations

a-generalized Linial arrangements

Definition

Let $\underline{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}_{\geq 0}^n$. The <u>a</u>-generalized Linial arrangement is

$$x_i - x_j = a_i$$
 for $1 \le i < j \le n$ in V_{n-1} .

Proposition

If D is a valid m-acyclic weighted digraph associated to an \underline{a} -generalized Linial arrangement, then D contains no alternating cycle.

< (□) ト < 三

The general setup Sparse deformations Separated deformations

a-generalized Linial arrangements

Definition

Let $\underline{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}_{\geq 0}^n$. The <u>a</u>-generalized Linial arrangement is

$$x_i - x_j = a_i$$
 for $1 \le i < j \le n$ in V_{n-1} .

Proposition

If D is a valid m-acyclic weighted digraph associated to an <u>a</u>-generalized Linial arrangement, then D contains no alternating cycle.

Alternation acyclic tournaments label the regions of the homogenized Linial arrangement $\{x_i - x_j = y_j : 1 \le i < j \le n\}$.

▲ □ ▶ ▲ □ ▶
The general setup Sparse deformations Separated deformations

Separated deformations

æ

э

(日)

The general setup Sparse deformations Separated deformations

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\{a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}\}$ for each $1 \leq i < j \leq n$.

▲ 同 ▶ → 三 ▶

The general setup Sparse deformations Separated deformations

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\{a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}\}$ for each $1 \leq i < j \leq n$.

Corollary

For a separated deformation of the braid arrangement, the induced poset of gains associated to any valid m-acyclic weighted digraph is a totally ordered set.

The general setup Sparse deformations Separated deformations

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\{a_{ij}^{(1)}, a_{ij}^{(2)}, \ldots, a_{ij}^{(n_{ij})}\}$ for each $1 \leq i < j \leq n$.

Corollary

For a separated deformation of the braid arrangement, the induced poset of gains associated to any valid m-acyclic weighted digraph is a totally ordered set.

Equivalently, each region is included in a region $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$ of the braid arrangement.

The general setup Sparse deformations Separated deformations

A structure theorem

< ロ > < 部 > < き > < き >

æ

The general setup Sparse deformations Separated deformations

A structure theorem

Theorem

Let \mathcal{R} be a region of a separated deformation of the braid arrangement and let $\sigma(1)\sigma(2)\cdots\sigma(n)$ be its total order of gains. Then there is a unique decomposition $\sigma = (\sigma(i_0)\cdots\sigma(i_1))\cdot(\sigma(i_1+1)\cdots\sigma(i_2))\cdots(\sigma(i_{k-1}+1)\cdots\sigma(i_k))$ satisfying

• For each
$$j = -1, 0, ..., k - 1$$
,
 $\mathcal{R} \cap \text{span}(e_{\sigma(i_j+1)}, e_{\sigma(i_j+2)}, ..., e_{\sigma(i_{j+1})})$ is bounded.

If S ⊆ {1,2,...,n} contains indices j₁ and j₂ such that σ(j₁) and σ(j₂) belong to different subwords in the above decomposition then R ∩ span((e_{σ(j)} : j ∈ S) is unbounded.

< ロ > < 同 > < 三 > < 三 >

The general setup Sparse deformations Separated deformations

Gain functions

< ロ > < 部 > < き > < き >

æ

The general setup Sparse deformations Separated deformations

Gain functions

Definition

For each $i \in \{1, 2, ..., n\}$ we define the gain function $g(\sigma(i))$ as the maximum weight of a directed path beginning at $\sigma(1)$ and ending at $\sigma(i)$. In particular, we set $g(\sigma(1)) = 0$. Here σ is the total order of gains.

▲ 同 ▶ → 三 ▶

The general setup Sparse deformations Separated deformations

Gain functions

Definition

For each $i \in \{1, 2, ..., n\}$ we define the gain function $g(\sigma(i))$ as the maximum weight of a directed path beginning at $\sigma(1)$ and ending at $\sigma(i)$. In particular, we set $g(\sigma(1)) = 0$. Here σ is the total order of gains.

Lemma

Every gain function has the weakly increasing property

$$g(\sigma(1)) \leq g(\sigma(2)) \leq \cdots \leq g(\sigma(n)).$$

▲ 同 ▶ → 三 ▶

The general setup Sparse deformations Separated deformations

Gain functions

Definition

We call a deformation \mathcal{A} of the braid arrangement *integral* if all the numbers $a_{i,j}^k$ appearing in in its definition are integers. We say that \mathcal{A} satisfies the *weak triangle inequality* if for all triplets (i,j,k), the inequalities $w(i,j) \ge 0$ and $w(j,k) \ge 0$ imply

$$w(i,k) \leq w(i,j) + w(j,k) + 1$$

in any valid *m*-acyclic associated weighted digraph.

The general setup Sparse deformations Separated deformations

Gain functions

Theorem

Let \mathcal{A} be a separated integral deformation of the braid arrangement satisfying the weak triangle inequality, and let D be an associated m-acyclic weighted digraph. Let σ be the total order of gains associated to D and let g be the gain function. Then, for each i > 1 there is a directed path from $\sigma(1)$ to $\sigma(i)$ such that all weights in the path are nonnegative and the total weight of the edges in the path is $g(\sigma(i)) - g(\sigma(1))$.

The general setup Sparse deformations Separated deformations

Contiguous integral deformations

э

(日)

The general setup Sparse deformations Separated deformations

Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V_{n-1} contiguous if, for every i < j, the set $\{a_{i,j}^{(1)}, a_{i,j}^{(2)}, \ldots, a_{i,j}^{(n_{i,j})}\}$ is a contiguous set $[\alpha(i,j), \beta(i,j)] = \{\alpha(i,j), \alpha(i,j) + 1, \ldots, \beta(i,j)\}$ of integers.

The general setup Sparse deformations Separated deformations

Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V_{n-1} contiguous if, for every i < j, the set $\{a_{i,j}^{(1)}, a_{i,j}^{(2)}, \ldots, a_{i,j}^{(n_{i,j})}\}$ is a contiguous set $[\alpha(i,j), \beta(i,j)] = \{\alpha(i,j), \alpha(i,j) + 1, \ldots, \beta(i,j)\}$ of integers.

Since $x_i - x_j = c \Leftrightarrow x_j - x_i = -c$, we may set

 $lpha(j,i) = -eta(i,j) \quad ext{and} \quad eta(j,i) = -lpha(i,j) \quad ext{for } 1 \leq i < j \leq n.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The general setup Sparse deformations Separated deformations

Minimal obstructions

< ロ > < 部 > < き > < き >

æ

The general setup Sparse deformations Separated deformations

Minimal obstructions

Theorem

If $\beta(i,k) \leq \beta(i,j) + \beta(j,k) + 1$ holds for all $\{i,j,k\}$. then any valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

▲ 同 ▶ → 三 ▶

The general setup Sparse deformations Separated deformations

Minimal obstructions

Theorem

If $\beta(i,k) \leq \beta(i,j) + \beta(j,k) + 1$ holds for all $\{i,j,k\}$. then any valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

Theorem

If the truncated affine arrangement $\mathcal{A}_{n-1}^{a,b}$ satisfies $a, b \ge 0$, then a valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

< 🗇 🕨 < 🖃 🕨

The general setup Sparse deformations Separated deformations

Minimal obstructions

There is a minimal *m*-ascending cycle of length 5 in $\mathcal{A}_{n-1}^{-1,3}$ for $n \ge 5$.

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

æ

э

(日)

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality.

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

 $w(i,k) \ge \min(\beta(i,j), w(i,j) + w(j,k))$ for $i <_{\sigma^{-1}} j <_{\sigma^{-1}} k$, and

▲ 御 ▶ ▲ 国 ▶ ▲

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

$$w(i,k) \geq \min(\beta(i,j), w(i,j) + w(j,k))$$
 for $i <_{\sigma^{-1}} j <_{\sigma^{-1}} k$, and

$$w(i,k) \leq w(i,j) + w(j,k) + 1$$
 for $i <_{\sigma^{-1}} j <_{\sigma^{-1}} k$.

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

Definition

We define the Pak-Stanley label $(f(1), \ldots, f(n))$ of a region as

$$f(i) = \sum_{i <_{\sigma^{-1}} j} w(i,j) + |\{(i,j) : i <_{\sigma^{-1}} j \text{ and } i > j\}|.$$

< 同 × I = >

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

Definition

We define the Pak-Stanley label $(f(1), \ldots, f(n))$ of a region as

$$f(i) = \sum_{i <_{\sigma^{-1}} j} w(i,j) + |\{(i,j) \ : \ i <_{\sigma^{-1}} j \text{ and } i > j\}|.$$

The sum $\sum_{i < \sigma^{-1}j} w(i,j)$ is the number of *separations*, and $|\{(i,j) : i < \sigma^{-1}j \text{ and } i > j\}|$ is the number of *inversions*.

▲ □ ▶ ▲ □ ▶ ▲

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

Lemma (Stanley)

Given $i <_{\sigma^{-1}} j$, if i > j or w(i,j) > 0 holds then we have f(i) > f(j).

(日)

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

Lemma (Stanley)

Given $i <_{\sigma^{-1}} j$, if i > j or w(i, j) > 0 holds then we have f(i) > f(j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the a-parking functions of length n, each occurring exactly once.

▲ 同 ▶ ▲ 三 ▶ ▲

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

Lemma (Stanley)

Given $i <_{\sigma^{-1}} j$, if i > j or w(i,j) > 0 holds then we have f(i) > f(j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the a-parking functions of length n, each occurring exactly once.

Given an *a*-parking function $(f(1), \ldots, f(n))$, we insert the labels *i* into σ one by one and show the uniqueness of the place and of the function values w(i,j) one step at a time. (Still "tedious", but fits on a single page.)

- 4 同 ト 4 ヨ ト 4 ヨ ト

The general setup Sparse deformations Separated deformations

The Pak-Stanley labeling

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of the extended Shi arrangement is surjective. Together with Stanley's above result we have a self-contained proof of the fact that the Pak-Stanley labeling is a bijection between the regions of the regions of the extended Shi arrangement and the *a*-parking functions.

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

(日)

э

э

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

Definition

The regions of a contiguous, separated and integral deformation of the braid arrangement

 $\{x_i - x_j = m : 1 \le i < j < n, m \in [-\beta(j, i), \beta(i, j)]\}$ have Athanasiadis-Linusson diagrams if $\{\beta(i, j) : i \ne j\}$ contains at most two consecutive nonnegative integers for each $j \in \{1, 2, ..., n\}$. We set $\beta(j) = \min_{i \ne j} \beta(i, j)$ for all j.

・ 一 マ ト ・ 日 ト ・

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

2 1 4 3 5 Solution Fix a representative \underline{x} of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.

・ 一 マ ト ・ 日 ト ・

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

- Fix a representative <u>x</u> of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.
- For each j satisfying β(j) > 0 we also mark
 x_j + β(j), x_j + β(j) 1, ..., x_j + 1 on the reversed number line and we draw an arc connecting x_j + k + 1 with x_j + k for k = 0, 1, ..., β(j) 1. We label all of these points with j.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

- Fix a representative <u>x</u> of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.
- For each j satisfying β(j) > 0 we also mark
 x_j + β(j), x_j + β(j) − 1, ..., x_j + 1 on the reversed number line and we draw an arc connecting x_j + k + 1 with x_j + k for k = 0, 1, ..., β(j) − 1. We label all of these points with j.
- For each $\{i, j\} \subseteq \{1, 2, ..., n\}$ we also draw an arc between x_i and $x_j + \beta(j)$ if $\beta(i, j) = \beta(j) + 1$ $x_i x_j > \beta(i, j)$ holds.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

- Fix a representative <u>x</u> of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.
- For each j satisfying β(j) > 0 we also mark
 x_j + β(j), x_j + β(j) − 1, ..., x_j + 1 on the reversed number line and we draw an arc connecting x_j + k + 1 with x_j + k for k = 0, 1, ..., β(j) − 1. We label all of these points with j.
- For each $\{i, j\} \subseteq \{1, 2, ..., n\}$ we also draw an arc between x_i and $x_j + \beta(j)$ if $\beta(i, j) = \beta(j) + 1$ $x_i x_j > \beta(i, j)$ holds.
- We remove all nested arcs, that is, all arcs that contain another arc.

▲ 同 ▶ ▲ 国 ▶ ▲ 国
The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

(日)

э

э

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

▲ 同 ▶ → 目 ▶

э

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

Without 5 this is an example of Athanasiadis and Linusson in $\mathcal{A}_{3}^{1,2}$. For all $\{i,j\} \subset \{1,2,3,4\}$ we have $\beta(i,j) = 2$ if i < j and $\beta(i,j) = 1$ if i > j. We add $\beta(i,5) = \beta(5,i) = 0$ for i = 1, 2, 4, and we add $\beta(3,5) = 1$ and $\beta(3,5) = 0$.

・ 一 マ ト ・ 日 ト ・

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

For each $i \in \{1, 2, ..., n\}$ we define f(i) as the position of the leftmost element of the continuous component of i. We call the resulting (f(1), f(2), ..., f(n)) the β -parking function of the region.

< 🗇 🕨 < 🚍 🕨

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

For each $i \in \{1, 2, ..., n\}$ we define f(i) as the position of the leftmost element of the continuous component of i. We call the resulting (f(1), f(2), ..., f(n)) the β -parking function of the region. Here we have f(1) = 2, f(2) = f(4) = 1 and f(3) = f(5) = 6.

・ 一 マ ト ・ 日 ト ・

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson diagrams

For each $i \in \{1, 2, ..., n\}$ we define f(i) as the position of the leftmost element of the continuous component of i. We call the resulting (f(1), f(2), ..., f(n)) the β -parking function of the region. Here we have f(1) = 2, f(2) = f(4) = 1 and f(3) = f(5) = 6. As before, we may reconstruct the diagram from its β -parking function.

< /₽ > < E >

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

э

(日)

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

Replace the labels j with j₁, j₂,..., j_{β(j)+1}, numbered left to right, so that we can distinguish the copies.

▲ 伊 ▶ ▲ 王 ▶

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

- Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
- **②** The copies of the labels satisfying f(j) = 1 become the children of the root 0.

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

- Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
- 2 The copies of the labels satisfying f(j) = 1 become the children of the root 0.
- We number the nodes in the tree level-by-level and in increasing order of the labels (breadth-first-search order).

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

- Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
- **②** The copies of the labels satisfying f(j) = 1 become the children of the root 0.
- We number the nodes in the tree level-by-level and in increasing order of the labels (breadth-first-search order).
- Once we inserted the copies of all labels j satisfying f(j) < i, all copies of the labels j satisfying f(j) = i will be the children of the node whose number is i.</p>

・ 一 マ ト ・ 日 ト ・

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

э

(日)

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

イロト イヨト イヨト

æ

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

э

< 同 × I = >

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^n$ we define the $\underline{\beta}$ -extended Shi arrangement as the hyperplane arrangement

$$x_i - x_j = -\beta(j), -\beta(j) + 1, \dots, \beta(j) + 1$$
 $1 \le i < j \le n$ in V_{n-1} .

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^n$ we define the $\underline{\beta}$ -extended Shi arrangement as the hyperplane arrangement

$$x_i - x_j = -\beta(j), -\beta(j) + 1, \dots, \beta(j) + 1$$
 $1 \le i < j \le n$ in V_{n-1} .

Theorem

The number of regions in a β -extended Shi arrangement \mathcal{A} is

$$r(\mathcal{A}) = \left(\sum_{j=1}^{n} (\beta(j)+1) + 1\right)^{n-1}$$

The general setup Sparse deformations Separated deformations

Athanasiadis-Linusson trees

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^n$ we define the $\underline{\beta}$ -extended Shi arrangement as the hyperplane arrangement

$$x_i - x_j = -\beta(j), -\beta(j) + 1, \dots, \beta(j) + 1$$
 $1 \le i < j \le n$ in V_{n-1} .

Theorem

The number of regions in a β -extended Shi arrangement \mathcal{A} is

$$r(\mathcal{A}) = \left(\sum_{j=1}^{n} (\beta(j)+1) + 1\right)^{n-1}$$

The proof uses a colored variant of the Prüfer code algorithm.

The general setup Sparse deformations Separated deformations

a-Catalan arrangements

æ

(日)

The general setup Sparse deformations Separated deformations

a-Catalan arrangements

(日)

э

The general setup Sparse deformations Separated deformations

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only.

The general setup Sparse deformations Separated deformations

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed

 $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete *a*-ary trees on (a - 1)n + 1 vertices.

The general setup Sparse deformations Separated deformations

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed

 $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete *a*-ary trees on (a - 1)n + 1 vertices. Their number is the *a*-Catalan number $\frac{1}{(a-1)n+1} \binom{an}{n}$.

The general setup Sparse deformations Separated deformations

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete *a*-ary trees on (a - 1)n + 1 vertices. Their number is the *a*-Catalan number $\frac{1}{(a-1)n+1} \binom{an}{n}$. Multiplying it with n! we get

$$r(\mathcal{A}_{n-1}^{a,a})=an(an-1)\cdots((a-1)n+2)$$

first found by Postnikov and Stanley.

The general setup Sparse deformations Separated deformations

A mysterious labeling

æ

3

(日)

The general setup Sparse deformations Separated deformations

A mysterious labeling

Fix a permutation π and an *a*-Catalan path Λ .

< A > <

The general setup Sparse deformations Separated deformations

A mysterious labeling

The general setup Sparse deformations Separated deformations

A mysterious labeling

$$w(\pi(i),\pi(j)) = \begin{cases} \ell(\pi(j)) - \ell(\pi(i)) & \text{if } \ell(\pi(j)) - \ell(\pi(i)) \in [1-a, a-1] \\ -\infty & \text{if } \ell(\pi(j)) - \ell(\pi(i)) < 1-a \\ a-1 & \text{if } \ell(\pi(j)) - \ell(\pi(i)) > a-1 \end{cases}$$

The general setup Sparse deformations Separated deformations

A mysterious labeling

Lemma

The total order of gains $\sigma = \gamma \circ \pi$ is the order of the labels $\pi(1), \ldots, \pi(n)$ in increasing order of their levels, where $\pi(i)$ is listed before $\pi(j)$ if $\ell(\pi(i)) = \ell(\pi(j))$ and i < j hold.

The general setup Sparse deformations Separated deformations

A mysterious labeling

Here we get $\sigma = 142635$.

The general setup Sparse deformations Separated deformations

A mysterious labeling

Here we get $\sigma = 142635$.

Proposition

For the weighted digraph encoded by (π, Λ) the gain function is the level function: we have $g(\sigma(i)) = \ell(\sigma(i))$.

The general setup Sparse deformations Separated deformations

A mysterious labeling

Here we get $\sigma = 142635$.

Theorem

The correspondence between the pairs (π, Λ) and the valid weighted m-acyclic digraphs encoded by them is a bijection.

The general setup Sparse deformations Separated deformations

A mysterious labeling

Fix a permutation π and an *a*-Catalan path Λ .

Here we get $\sigma = 142635$.

Theorem

The correspondence between the pairs (π, Λ) and the valid weighted m-acyclic digraphs encoded by them is a bijection.

We only prove injectivity and then we use the Postnikov-Stanley formula.

The general setup Sparse deformations Separated deformations

A mysterious labeling

Here we get $\sigma = 142635$.

Proposition

A region of $\mathcal{A}_{n-1}^{a,a}$ is bounded if and only if the total order of gains σ satisfies $w(\sigma(i), \sigma(i+1)) < a-1$ for $1 \le i \le n-1$.

The general setup Sparse deformations Separated deformations

A concluding conjecture

æ

Image: A image: A

The general setup Sparse deformations Separated deformations

A concluding conjecture

The number of possible types of the trees of the gain function is a Catalan number.

The general setup Sparse deformations Separated deformations

A concluding conjecture

The number of possible types of the trees of the gain function is a Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of regions of $\mathcal{A}_{n-1}^{a,a}$ associated to it is a polynomial of a.
The general setup Sparse deformations Separated deformations

A concluding conjecture

The number of possible types of the trees of the gain function is a Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of regions of $\mathcal{A}_{n-1}^{a,a}$ associated to it is a polynomial of a.

This conjecture implies that the *n*-th *a*-Catalan number, considered as a polynomial of *a*, could be written as a sum of C_n polynomials, where C_n is the *n*-th Catalan number.

The general setup Sparse deformations Separated deformations

Thank you!

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

The general setup Sparse deformations Separated deformations

Thank you!

Labeling regions in deformations of graphical arrangements

< □ > <

The general setup Sparse deformations Separated deformations

Thank you!

Labeling regions in deformations of graphical arrangements arXiv:2312.06513 [math.CO]

< A > <

The general setup Sparse deformations Separated deformations

Thank you!

Labeling regions in deformations of graphical arrangements arXiv:2312.06513 [math.CO]

< A > <