Étiquetage des régions dans les arrangements d'hyperplans

Gábor Hetyei

Department of Mathematics and Statistics University of North Carolina at Charlotte http://webpages.uncc.edu/ghetyei/

12 février, 2024
GT "Combinatoire et interactions"
LaBRI, Université de Bordeaux I
(1) Preliminaries

- Hyperplane arrangements
- Zaslavsky's formulas
- Inequality based approaches
(2) Inequalities for deformed graphical arrangements
- The general setup
- Sparse deformations
- Separated deformations

Outline

Hyperplane arrangements
Zaslavsky's formulas
Inequality based approaches

Hyperplane arrangements

Hyperplane arrangements

A hyperplane arrangement \mathcal{A} is a finite collection of hyperplanes in a d-dimensional real vector space, which partition the space into regions.

Example: Linial arrangement $\left(x_{1}+x_{2}+x_{3}=0\right)$

Example: Linial arrangement $\left(x_{1}+x_{2}+x_{3}=0\right)$

Example: Linial arrangement $\left(x_{1}+x_{2}+x_{3}=0\right)$

1 bounded and 6 unbounded regions

Example: Linial arrangement $\left(x_{1}+x_{2}+x_{3}=0\right)$

1 bounded and 6 unbounded regions

Outline

Hyperplane arrangements
Zaslavsky's formulas
Inequality based approaches

Deformations of the braid arrangement

Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}$ in V_{n-1}, the subspace of \mathbb{R}^{n}, given by $x_{1}+x_{2}+\cdots+x_{n}=0$.

Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}$ in V_{n-1}, the subspace of \mathbb{R}^{n}, given by $x_{1}+x_{2}+\cdots+x_{n}=0$. A deformation of the braid arrangement consists of replacing each hyperplane $x_{i}-x_{j}=0$ with a set of hyperplanes

$$
x_{i}-x_{j}=a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{\left(n_{i j}\right)}
$$

Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}$ in V_{n-1}, the subspace of \mathbb{R}^{n}, given by $x_{1}+x_{2}+\cdots+x_{n}=0$. A deformation of the braid arrangement consists of replacing each hyperplane $x_{i}-x_{j}=0$ with a set of hyperplanes

$$
x_{i}-x_{j}=a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{\left(n_{i j}\right)}
$$

The truncated affine arrangements $\mathcal{A}_{n-1}^{a, b}$ (where $a+b \geq 2$) contain the hyperplanes are $x_{i}-x_{j}=1-a, 2-a, \ldots, b-1$ for $1 \leq i<j \leq n$.

Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}$ in V_{n-1}, the subspace of \mathbb{R}^{n}, given by $x_{1}+x_{2}+\cdots+x_{n}=0$. A deformation of the braid arrangement consists of replacing each hyperplane $x_{i}-x_{j}=0$ with a set of hyperplanes

$$
x_{i}-x_{j}=a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{\left(n_{i j}\right)}
$$

The truncated affine arrangements $\mathcal{A}_{n-1}^{a, b}$ (where $a+b \geq 2$) contain the hyperplanes are $x_{i}-x_{j}=1-a, 2-a, \ldots, b-1$ for $1 \leq i<j \leq n . \mathcal{A}_{n-1}^{0,2}$ is the Linial arrangement, $\mathcal{A}_{n-1}^{1,2}$ is the Shi arrangement $\mathcal{A}_{n-1}^{a, a+1}$ with $a \geq 1$ is the extended Shi arrangement, $\mathcal{A}_{n-1}^{2,2}$ is the Catalan arrangement, and $\mathcal{A}_{n-1}^{a, a}$ with $a \geq 2$ is the a-Catalan arrangement.

Outline

The characteristic polynomial

The characteristic polynomial

To count the regions, we may use Zaslavsky's formulas ("inclusion-exclusion") or solve systems of linear inequalities directly.

The characteristic polynomial

To count the regions, we may use Zaslavsky's formulas ("inclusion-exclusion") or solve systems of linear inequalities directly. Using Zaslavsky's formula appears to be more suitable in general to avoid considering many cases.

The characteristic polynomial

To use it, we need to know $L_{\mathcal{A}}$, the poset of nonempty intersections (ordered by reverse inclusion)

The characteristic polynomial

To use it, we need to know $L_{\mathcal{A}}$, the poset of nonempty intersections (ordered by reverse inclusion)

The characteristic polynomial

Next we compute the Möbius function (for the intervals containing the minimum element):

The characteristic polynomial

Next we compute the Möbius function (for the intervals containing the minimum element):

The characteristic polynomial

Next we compute the Möbius function (for the intervals containing the minimum element):

and compute the characteristic polynomial
$\chi(\mathcal{A}, q)=\sum_{x \in L_{\mathcal{A}}} \mu(\widehat{0}, x) q^{\operatorname{dim}(x)}=1-3 q+3 q^{2}$.

Outline

Hyperplane arrangements Zaslavsky's formulas
Inequality based approaches

Zaslavsky's formulas

Zaslavsky's formulas

The numbers $r(\mathcal{A})$ and $b(\mathcal{A})$ of all, respectively bounded regions are given by

$$
r(\mathcal{A})=(-1)^{d} \chi(\mathcal{A},-1) \quad \text { and } \quad b(\mathcal{A})=(-1)^{\text {rk }\left(L_{\mathcal{A}}\right)} \chi(\mathcal{A}, 1) .
$$

Zaslavsky's formulas

The numbers $r(\mathcal{A})$ and $b(\mathcal{A})$ of all, respectively bounded regions are given by

$$
r(\mathcal{A})=(-1)^{d} \chi(\mathcal{A},-1) \quad \text { and } \quad b(\mathcal{A})=(-1)^{\operatorname{rk}\left(L_{\mathcal{A}}\right)} \chi(\mathcal{A}, 1) .
$$

In our example

$$
r(\mathcal{A})=(-1)^{2}\left(1-3 \cdot(-1)+3 \cdot(-1)^{2}\right)=7
$$

and

$$
b(\mathcal{A})=(-1)^{2}(1-3+3)=1
$$

Zaslavsky's formulas

The numbers $r(\mathcal{A})$ and $b(\mathcal{A})$ of all, respectively bounded regions are given by

$$
r(\mathcal{A})=(-1)^{d} \chi(\mathcal{A},-1) \quad \text { and } \quad b(\mathcal{A})=(-1)^{\operatorname{rk}\left(L_{\mathcal{A}}\right)} \chi(\mathcal{A}, 1) .
$$

In our example

$$
r(\mathcal{A})=(-1)^{2}\left(1-3 \cdot(-1)+3 \cdot(-1)^{2}\right)=7
$$

and

$$
b(\mathcal{A})=(-1)^{2}(1-3+3)=1
$$

Related approaches: finite field method (case of integer coefficients), Whitney's formula and the gain graph method (deformations of graphical arrangements).

Regions defined by sets of inequalities

Regions defined by sets of inequalities

$$
\begin{aligned}
& x_{2}-x_{3}=1 \quad x_{1}-x_{3}=1
\end{aligned}
$$

Regions defined by sets of inequalities

$$
\begin{aligned}
& x_{2}-x_{3}=1 \\
& x_{1}-x_{3}=1 \\
& \begin{array}{l}
x_{1}-x_{2}>1 \\
x_{2}-x_{3}>1 \\
x_{1}-x_{3}>1
\end{array} \quad\left(\begin{array}{l}
x_{1}-x_{2}>1 \\
x_{2}-x_{3}<1 \\
x_{1}-x_{3}>1 \\
(1,0,-1)
\end{array} \quad / \begin{array}{l}
x_{1}-x_{2}>1 \\
x_{2}-x_{3}<1 \\
x_{1}-x_{3}<1 \\
(2 / 3,-1 / 3,-1 / 3)
\end{array}\right. \\
& x_{1}-x_{2}<1 \\
& \begin{array}{l}
x_{1}-x_{2}<1 \\
x_{2}-x_{3}>1
\end{array} \quad \begin{array}{l}
x_{2}-x_{3}<1 \\
x_{1}-x_{3}>1
\end{array} \\
& x_{1}-x_{3}>1 \\
& x_{2}-x_{3}<1 \\
& x_{1}-x_{3}<1
\end{aligned}
$$

One possibility is missing:

Regions defined by sets of inequalities

$$
x_{1}-x_{2}>1 \text { and } x_{2}-x_{3}>1 \text { imply } x_{1}-x_{3}>1
$$

$$
\begin{aligned}
& x_{2}-x_{3}=1 \quad x_{1}-x_{3}=1 \\
& \begin{array}{l}
x_{1}-x_{2}>1 \\
x_{2}-x_{3}>1 \\
x_{1}-x_{3}>1
\end{array} \quad\left(\begin{array}{l}
x_{1}-x_{2}>1 \\
x_{2}-x_{3}<1 \\
x_{1}-x_{3}>1 \\
(1,0,-1)
\end{array} \quad / \begin{array}{l}
x_{1}-x_{2}>1 \\
x_{2}-x_{3}<1 \\
x_{1}-x_{3}<1 \\
(2 / 3,-1 / 3,-1 / 3)
\end{array}\right. \\
& x_{1}-x_{2}<1 \\
& x_{1}-x_{3}>1 \\
& x_{1}-x_{3}<1
\end{aligned}
$$

Examples of the inequality based approach

Examples of the inequality based approach

The hyperplanes $x_{i}-x_{j}=1-a, 2-a, \ldots, a($ where $1 \leq i<j \leq n)$ define the extended Shi arrangement in V_{n-1}, These have a Stanley-Pak labeling and an Athanasiadis-Linusson labeling.

Examples of the inequality based approach

The hyperplanes $x_{i}-x_{j}=1-a, 2-a, \ldots, a($ where $1 \leq i<j \leq n)$ define the extended Shi arrangement in V_{n-1}, These have a Stanley-Pak labeling and an Athanasiadis-Linusson labeling. For a graph G on $\{1,2, \ldots, n\}$ and a set of parameters $\left\{a_{i, j}:\{i, j\} \in E(G)\right\}$, the set of hyperplanes $\left\{x_{i}-x_{j}=a_{i, j}:\{i, j\} \in E(G)\right\}$ define a bigraphical arrangement. They have a Hopkins-Perkinson labeling.

The general setup Sparse deformations
Separated deformations

Two key lemmas

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities $A x<b$ has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \geq 0, y A=0$ and $y b \leq 0$.

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities $A x<b$ has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \geq 0, y A=0$ and $y b \leq 0$.

We will apply the flow decomposition theorem to circulations:

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities $A x<b$ has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \geq 0, y A=0$ and $y b \leq 0$.

We will apply the flow decomposition theorem to circulations:

Theorem (Gallai)

Every not identically zero circulation f can be written as a positive linear combination of directed cycles. Moreover, a directed edge e appears in at least one of these cycles if and only if $f(e)>0$.

Weighted digraphical polytopes

Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of inequalities

$$
m_{i j}<x_{i}-x_{j}<M_{i j}, \quad 1 \leq i<j \leq n
$$

in V_{n-1}. (We allow $m_{i j}=-\infty$ and $M_{i j}=\infty$.)

Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of inequalities

$$
m_{i j}<x_{i}-x_{j}<M_{i j}, \quad 1 \leq i<j \leq n
$$

in V_{n-1}. (We allow $m_{i j}=-\infty$ and $M_{i j}=\infty$.)
We create an associated weighted digraph: For each $i<j$, if $m_{i j}>-\infty$, we create directed edge $i \rightarrow j$ with weight $m_{i j}$ and if $M_{i j}<\infty$ we also create a directed edge $i \leftarrow j$ with weight $-M_{i j}$.

Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of inequalities

$$
m_{i j}<x_{i}-x_{j}<M_{i j}, \quad 1 \leq i<j \leq n
$$

in V_{n-1}. (We allow $m_{i j}=-\infty$ and $M_{i j}=\infty$.)
We create an associated weighted digraph: For each $i<j$, if $m_{i j}>-\infty$, we create directed edge $i \rightarrow j$ with weight $m_{i j}$ and if $M_{i j}<\infty$ we also create a directed edge $i \leftarrow j$ with weight $-M_{i j}$. An m-ascending cycle in the associated weighted digraph is a directed cycle, along which the sum of the labels is nonnegative. We call the associated weighted digraph m-acyclic, if it contains no m-ascending cycle.

The key observation

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Proof.

(Sketch) By Carver's variant of the Farkas Lemma the polytope is empty if and only if there is an " m-ascending circulation". By the Flow Decomposition Theorem every m-ascending circulation contains an m-ascending cycle.

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Corollary

If we think of the weight $w(e)$ as money we gain when we walk along e then the system of inequalities has a nonempty solution set if and only if we lose money along any closed walk.

Outline

Semiacyclic tournaments

Semiacyclic tournaments

Semiacyclic tournaments

$1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ is an ascending cycle.

Semiacyclic tournaments

$1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ is an ascending cycle.

Bounded regions

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

If all arrows go from V_{2} to V_{1} then $\left(x_{1}, \ldots, x_{n}\right)$ may be replaced with $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ where

$$
x_{v}^{\prime}= \begin{cases}x_{v}+\frac{t}{\left|V_{1}\right|} & \text { if } v \in V_{1} \\ x_{v}-\frac{t}{\left|V_{2}\right|} & \text { if } v \in V_{2}\end{cases}
$$

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

Example

Each region of the Linial arrangement is described by a set of inequalities $\left\{m_{i j}<x_{i}-x_{j}<M_{i j}: 1 \leq i<j \leq n\right\}$, each inequality is either $-\infty<x_{i}-x_{j}<1$ or $1<x_{i}-x_{j}<\infty$. The associated weighted digraph is a tournament, it contains no m-ascending cycle if and only if it is semiacyclic. Bounded regions correspond to strongly connected semiacyclic tournaments.

Exponential arrangements

Exponential arrangements

Let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots\right)$ be a sequence of deformations of the braid arrangement, such that each \mathcal{A}_{n} is a hyperplane arrangement in \mathbb{R}^{n}. For each $S \subseteq\{1,2, \ldots\}$ we define \mathcal{A}_{n}^{S} as the subcollection of hyperplanes $x_{i}-x_{j}=c$ of \mathcal{A}_{n} satisfying $\{i, j\} \subseteq S$. \mathcal{A} is exponential if $r\left(\mathcal{A}_{n}^{S}\right)$ depends only on $k=|S|$ and it is the number $r\left(\mathcal{A}_{k}\right)$ of regions of \mathcal{A}_{k}.

Exponential arrangements

Let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots\right)$ be a sequence of deformations of the braid arrangement, such that each \mathcal{A}_{n} is a hyperplane arrangement in \mathbb{R}^{n}. For each $S \subseteq\{1,2, \ldots\}$ we define \mathcal{A}_{n}^{S} as the subcollection of hyperplanes $x_{i}-x_{j}=c$ of \mathcal{A}_{n} satisfying $\{i, j\} \subseteq S$. \mathcal{A} is exponential if $r\left(\mathcal{A}_{n}^{S}\right)$ depends only on $k=|S|$ and it is the number $r\left(\mathcal{A}_{k}\right)$ of regions of \mathcal{A}_{k}. Stanley showed that the exponential generating functions of all resp. bounded regions are connnected by

$$
B_{\mathcal{A}}(t)=1-\frac{1}{R_{\mathcal{A}}(t)}
$$

Exponential arrangements (cont'd)

Exponential arrangements (cont'd)

Since m-acyclicity can be independently verified on strong components, we can directly show

Exponential arrangements (cont'd)

Since m-acyclicity can be independently verified on strong components, we can directly show

$$
r\left(\mathcal{A}_{n}\right)=\sum_{k=1}^{n} \sum_{\substack{n_{1}+\cdots+n_{k}=n \\ n_{1}, \ldots, n_{k}>0}}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} \prod_{i=1}^{k} b\left(\mathcal{A}_{n_{i}}\right) \quad \text { for all } n \geq 1 .
$$

Posets of gains

Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on $\{1,2, \ldots, n\}$, we define $i<_{D} j$ if there is a directed path $i=i_{0} \rightarrow i_{1} \rightarrow \cdots \rightarrow i_{k}=j$ such that the weight of each directed edge $i_{s} \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1,2, \ldots, n\}$, ordered by ${<_{D}}_{D}$ the poset of gains induced by D.

Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on $\{1,2, \ldots, n\}$, we define $i<_{D} j$ if there is a directed path $i=i_{0} \rightarrow i_{1} \rightarrow \cdots \rightarrow i_{k}=j$ such that the weight of each directed edge $i_{s} \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1,2, \ldots, n\}$, ordered by ${<_{D}}_{D}$ the poset of gains induced by D.

The relation $i<_{D} j$ is a partial order because of the m-acyclic property.

Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on $\{1,2, \ldots, n\}$, we define $i<_{D} j$ if there is a directed path $i=i_{0} \rightarrow i_{1} \rightarrow \cdots \rightarrow i_{k}=j$ such that the weight of each directed edge $i_{s} \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1,2, \ldots, n\}$, ordered by $<_{D}$ the poset of gains induced by D.

The relation $i<_{D} j$ is a partial order because of the m-acyclic property.

Example

The posets of gains of the Linial arrangement are the sleek posets.

Sparse deformations

Sparse deformations

Definition

a deformation of the braid arrangement, is sparse if $1 \leq n_{i, j} \leq 2$ holds for all $i<j$, and the signs of the numbers $a_{i, j}^{(k)}$ satisfy the following for all $i<j$:
(1) $a_{i, j}^{(1)}>0$ holds, whenever $n_{i, j}=1$,
(2) $a_{i, j}^{(1)}<0<a_{i, j}^{(2)}$ holds, whenever $n_{i, j}=2$.

We call \mathcal{A} an interval order arrangement if $n_{i, j}=2$ holds for all $i<j$.

Sparse deformations

Proposition

Consider a sparse deformation of the braid arrangement and any valid m-acyclic weighted digraph D associated to it. In the induced poset of gains, $i<_{D} j$ holds exactly when there is a single directed edge $i \rightarrow j$ of positive weight. For any pair $\{i, j\}$ of incomparable vertices satisfying $i<j$, the edge $j \rightarrow i$ is always present, and any edge between i and j has negative weight.

Sparse deformations

Theorem

Let D be a valid m-acyclic weighted digraph associated to a sparse deformation of the braid arrangement in V_{n-1}. If D is strongly connected then the incomparability graph of the induced poset of gains is connected. The converse is also true when $n_{i, j}=2$ holds for all $1 \leq i<j \leq n$.

Sparse deformations

Example

Consider the Linial arrangement and the semiacyclic tournament D containing a directed edge $i \leftarrow j$ of weight -1 for each $i<j$. This is a valid m-acyclic weighted digraph, it is in fact acyclic. The induced poset of gains is an antichain, the incomparability graph is the complete graph, it is connected. However, D is not strongly connected.

a-generalized Linial arrangements

a-generalized Linial arrangements

Definition

Let $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}_{\geq 0}{ }^{n}$. The \underline{a}-generalized Linial arrangement is

$$
x_{i}-x_{j}=a_{i} \quad \text { for } 1 \leq i<j \leq n \text { in } V_{n-1} .
$$

a-generalized Linial arrangements

Definition

Let $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}_{\geq 0}{ }^{n}$. The \underline{a}-generalized Linial arrangement is

$$
x_{i}-x_{j}=a_{i} \quad \text { for } 1 \leq i<j \leq n \text { in } V_{n-1}
$$

Proposition

If D is a valid m-acyclic weighted digraph associated to an a-generalized Linial arrangement, then D contains no alternating cycle.

a-generalized Linial arrangements

Definition

Let $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}_{\geq 0}{ }^{n}$. The \underline{a}-generalized Linial arrangement is

$$
x_{i}-x_{j}=a_{i} \quad \text { for } 1 \leq i<j \leq n \text { in } V_{n-1} .
$$

Proposition

If D is a valid m-acyclic weighted digraph associated to an a-generalized Linial arrangement, then D contains no alternating cycle.

Alternation acyclic tournaments label the regions of the homogenized Linial arrangement $\left\{x_{i}-x_{j}=y_{j}: 1 \leq i<j \leq n\right\}$.

Outline

Separated deformations

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\left\{a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{\left(n_{i j}\right)}\right\}$ for each $1 \leq i<j \leq n$.

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\left\{a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{\left(n_{i j}\right)}\right\}$ for each $1 \leq i<j \leq n$.

Corollary

For a separated deformation of the braid arrangement, the induced poset of gains associated to any valid m-acyclic weighted digraph is a totally ordered set.

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\left\{a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{\left(n_{i j}\right)}\right\}$ for each $1 \leq i<j \leq n$.

Corollary

For a separated deformation of the braid arrangement, the induced poset of gains associated to any valid m-acyclic weighted digraph is a totally ordered set.

Equivalently, each region is included in a region $x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)}$ of the braid arrangement.

Outline

A structure theorem

A structure theorem

Theorem

Let \mathcal{R} be a region of a separated deformation of the braid arrangement and let $\sigma(1) \sigma(2) \cdots \sigma(n)$ be its total order of gains.
Then there is a unique decomposition
$\sigma=\left(\sigma\left(i_{0}\right) \cdots \sigma\left(i_{1}\right)\right) \cdot\left(\sigma\left(i_{1}+1\right) \cdots \sigma\left(i_{2}\right)\right) \cdots\left(\sigma\left(i_{k-1}+1\right) \cdots \sigma\left(i_{k}\right)\right)$
satisfying
(1) For each $j=-1,0, \ldots, k-1$,
$\mathcal{R} \cap \operatorname{span}\left(e_{\sigma\left(i_{j}+1\right)}, e_{\sigma\left(i_{j}+2\right)}, \ldots, e_{\sigma\left(i_{j+1}\right)}\right)$ is bounded.
(2) If $S \subseteq\{1,2, \ldots, n\}$ contains indices j_{1} and j_{2} such that $\sigma\left(j_{1}\right)$ and $\sigma\left(j_{2}\right)$ belong to different subwords in the above decomposition then $\mathcal{R} \cap \operatorname{span}\left(\left(e_{\sigma(j)}: j \in S\right)\right.$ is unbounded.

Gain functions

Gain functions

Definition

For each $i \in\{1,2, \ldots, n\}$ we define the gain function $g(\sigma(i))$ as the maximum weight of a directed path beginning at $\sigma(1)$ and ending at $\sigma(i)$. In particular, we set $g(\sigma(1))=0$. Here σ is the total order of gains.

Gain functions

Definition

For each $i \in\{1,2, \ldots, n\}$ we define the gain function $g(\sigma(i))$ as the maximum weight of a directed path beginning at $\sigma(1)$ and ending at $\sigma(i)$. In particular, we set $g(\sigma(1))=0$. Here σ is the total order of gains.

Lemma

Every gain function has the weakly increasing property

$$
g(\sigma(1)) \leq g(\sigma(2)) \leq \cdots \leq g(\sigma(n))
$$

Gain functions

Definition

We call a deformation \mathcal{A} of the braid arrangement integral if all the numbers $a_{i, j}^{k}$ appearing in in its definition are integers. We say that \mathcal{A} satisfies the weak triangle inequality if for all triplets (i, j, k), the inequalities $w(i, j) \geq 0$ and $w(j, k) \geq 0$ imply

$$
w(i, k) \leq w(i, j)+w(j, k)+1
$$

in any valid m-acyclic associated weighted digraph.

Gain functions

Theorem

Let \mathcal{A} be a separated integral deformation of the braid arrangement satisfying the weak triangle inequality, and let D be an associated m-acyclic weighted digraph. Let σ be the total order of gains associated to D and let g be the gain function. Then, for each $i>1$ there is a directed path from $\sigma(1)$ to $\sigma(i)$ such that all weights in the path are nonnegative and the total weight of the edges in the path is $g(\sigma(i))-g(\sigma(1))$.

Outline

Contiguous integral deformations

Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V_{n-1} contiguous if, for every $i<j$, the set $\left\{a_{i, j}^{(1)}, a_{i, j}^{(2)}, \ldots, a_{i, j}^{\left(n_{i, j}\right)}\right\}$ is a contiguous set $[\alpha(i, j), \beta(i, j)]=\{\alpha(i, j), \alpha(i, j)+1, \ldots, \beta(i, j)\}$ of integers.

Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V_{n-1} contiguous if, for every $i<j$, the set $\left\{a_{i, j}^{(1)}, a_{i, j}^{(2)}, \ldots, a_{i, j}^{\left(n_{i, j}\right)}\right\}$ is a contiguous set $[\alpha(i, j), \beta(i, j)]=\{\alpha(i, j), \alpha(i, j)+1, \ldots, \beta(i, j)\}$ of integers.

Since $x_{i}-x_{j}=c \Leftrightarrow x_{j}-x_{i}=-c$, we may set

$$
\alpha(j, i)=-\beta(i, j) \quad \text { and } \quad \beta(j, i)=-\alpha(i, j) \quad \text { for } 1 \leq i<j \leq n
$$

Minimal obstructions

Minimal obstructions

Theorem

If $\beta(i, k) \leq \beta(i, j)+\beta(j, k)+1$ holds for all $\{i, j, k\}$. then any valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

Minimal obstructions

Theorem

If $\beta(i, k) \leq \beta(i, j)+\beta(j, k)+1$ holds for all $\{i, j, k\}$. then any valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

Theorem

If the truncated affine arrangement $\mathcal{A}_{n-1}^{a, b}$ satisfies $a, b \geq 0$, then a valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

Minimal obstructions

There is a minimal m-ascending cycle of length 5 in $\mathcal{A}_{n-1}^{-1,3}$ for $n \geq 5$.

Outline

The Pak-Stanley labeling

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality.

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

$$
w(i, k) \geq \min (\beta(i, j), w(i, j)+w(j, k)) \text { for } i<_{\sigma^{-1}} j<_{\sigma^{-1}} k, \text { and }
$$

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

$$
\begin{gathered}
w(i, k) \geq \min (\beta(i, j), w(i, j)+w(j, k)) \quad \text { for } i<_{\sigma^{-1}} j<_{\sigma^{-1}} k, \text { and } \\
w(i, k) \leq w(i, j)+w(j, k)+1 \quad \text { for } i<_{\sigma^{-1}} j<_{\sigma^{-1}} k .
\end{gathered}
$$

The Pak-Stanley labeling

Definition

We define the Pak-Stanley label $(f(1), \ldots, f(n))$ of a region as

$$
f(i)=\sum_{i<_{\sigma-1} j} w(i, j)+\mid\left\{(i, j): i<_{\sigma^{-1}} j \text { and } i>j\right\} \mid .
$$

The Pak-Stanley labeling

Definition

We define the Pak-Stanley label $(f(1), \ldots, f(n))$ of a region as

$$
f(i)=\sum_{i<_{\sigma}-1 j} w(i, j)+\mid\left\{(i, j): i<_{\sigma^{-1}} j \text { and } i>j\right\} \mid .
$$

The sum $\sum_{i<_{\sigma^{-1}} j} w(i, j)$ is the number of separations, and $\mid\left\{(i, j): i<_{\sigma^{-1}} j\right.$ and $\left.i>j\right\} \mid$ is the number of inversions.

The Pak-Stanley labeling

Lemma (Stanley)

Given $i<_{\sigma^{-1}} j$, if $i>j$ or $w(i, j)>0$ holds then we have $f(i)>f(j)$.

The Pak-Stanley labeling

Lemma (Stanley)

Given $i<_{\sigma^{-1}} j$, if $i>j$ or $w(i, j)>0$ holds then we have $f(i)>f(j)$.

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the a-parking functions of length n, each occurring exactly once.

The Pak-Stanley labeling

Lemma (Stanley)

Given $i<_{\sigma^{-1}} j$, if $i>j$ or $w(i, j)>0$ holds then we have $f(i)>f(j)$.

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the a-parking functions of length n, each occurring exactly once.

Given an a-parking function $(f(1), \ldots, f(n))$, we insert the labels i into σ one by one and show the uniqueness of the place and of the function values $w(i, j)$ one step at a time. (Still "tedious", but fits on a single page.)

The Pak-Stanley labeling

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of the extended Shi arrangement is surjective. Together with Stanley's above result we have a self-contained proof of the fact that the Pak-Stanley labeling is a bijection between the regions of the regions of the extended Shi arrangement and the a-parking functions.

Athanasiadis-Linusson diagrams

Athanasiadis-Linusson diagrams

Definition

The regions of a contiguous, separated and integral deformation of the braid arrangement
$\left\{x_{i}-x_{j}=m: 1 \leq i<j<n, m \in[-\beta(j, i), \beta(i, j)]\right\}$ have Athanasiadis-Linusson diagrams if $\{\beta(i, j): i \neq j\}$ contains at most two consecutive nonnegative integers for each $j \in\{1,2, \ldots, n\}$. We set $\beta(j)=\min _{i \neq j} \beta(i, j)$ for all j.

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

(1) Fix a representative \underline{x} of the region. This satisfies

$$
x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)} .
$$

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

(1) Fix a representative \underline{x} of the region. This satisfies

$$
x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)} .
$$

(2) For each j satisfying $\beta(j)>0$ we also mark
$x_{j}+\beta(j), x_{j}+\beta(j)-1, \ldots, x_{j}+1$ on the reversed number line and we draw an arc connecting $x_{j}+k+1$ with $x_{j}+k$ for $k=0,1, \ldots, \beta(j)-1$. We label all of these points with j.

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:

(1) Fix a representative \underline{x} of the region. This satisfies

$$
x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)} .
$$

(2) For each j satisfying $\beta(j)>0$ we also mark
$x_{j}+\beta(j), x_{j}+\beta(j)-1, \ldots, x_{j}+1$ on the reversed number line and we draw an arc connecting $x_{j}+k+1$ with $x_{j}+k$ for $k=0,1, \ldots, \beta(j)-1$. We label all of these points with j.
(3) For each $\{i, j\} \subseteq\{1,2, \ldots, n\}$ we also draw an arc between x_{i} and $x_{j}+\beta(j)$ if $\beta(i, j)=\beta(j)+1 x_{i}-x_{j}>\beta(i, j)$ holds.

Athanasiadis-Linusson diagrams

The process to build an Athanasiadis-Linusson diagram is the following:
(1) Fix a representative \underline{x} of the region. This satisfies

$$
x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)} .
$$

(2) For each j satisfying $\beta(j)>0$ we also mark $x_{j}+\beta(j), x_{j}+\beta(j)-1, \ldots, x_{j}+1$ on the reversed number line and we draw an arc connecting $x_{j}+k+1$ with $x_{j}+k$ for $k=0,1, \ldots, \beta(j)-1$. We label all of these points with j.
(3) For each $\{i, j\} \subseteq\{1,2, \ldots, n\}$ we also draw an arc between x_{i} and $x_{j}+\beta(j)$ if $\beta(i, j)=\beta(j)+1 x_{i}-x_{j}>\beta(i, j)$ holds.
(9) We remove all nested arcs, that is, all arcs that contain another arc.

Athanasiadis-Linusson diagrams

Athanasiadis-Linusson diagrams

Athanasiadis-Linusson diagrams

Without 5 this is an example of Athanasiadis and Linusson in $\mathcal{A}_{3}^{1,2}$. For all $\{i, j\} \subset\{1,2,3,4\}$ we have $\beta(i, j)=2$ if $i<j$ and $\beta(i, j)=1$ if $i>j$. We add $\beta(i, 5)=\beta(5, i)=0$ for $i=1,2,4$, and we add $\beta(3,5)=1$ and $\beta(3,5)=0$.

Athanasiadis-Linusson diagrams

For each $i \in\{1,2, \ldots, n\}$ we define $f(i)$ as the position of the leftmost element of the continuous component of i. We call the resulting $(f(1), f(2), \ldots, f(n))$ the β-parking function of the region.

Athanasiadis-Linusson diagrams

For each $i \in\{1,2, \ldots, n\}$ we define $f(i)$ as the position of the leftmost element of the continuous component of i. We call the resulting $(f(1), f(2), \ldots, f(n))$ the β-parking function of the region. Here we have $f(1)=2, f(2)=f(4)=1$ and $f(3)=f(5)=6$.

Athanasiadis-Linusson diagrams

For each $i \in\{1,2, \ldots, n\}$ we define $f(i)$ as the position of the leftmost element of the continuous component of i. We call the resulting $(f(1), f(2), \ldots, f(n))$ the β-parking function of the region. Here we have $f(1)=2, f(2)=f(4)=1$ and $f(3)=f(5)=6$. As before, we may reconstruct the diagram from its β-parking function.

Athanasiadis-Linusson trees

Athanasiadis-Linusson trees

(1) Replace the labels j with $j_{1}, j_{2}, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.

Athanasiadis-Linusson trees

(1) Replace the labels j with $j_{1}, j_{2}, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
(2) The copies of the labels satisfying $f(j)=1$ become the children of the root 0 .

Athanasiadis-Linusson trees

(1) Replace the labels j with $j_{1}, j_{2}, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
(2) The copies of the labels satisfying $f(j)=1$ become the children of the root 0 .
(3) We number the nodes in the tree level-by-level and in increasing order of the labels (breadth-first-search order).

Athanasiadis-Linusson trees

(1) Replace the labels j with $j_{1}, j_{2}, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
(2) The copies of the labels satisfying $f(j)=1$ become the children of the root 0 .
(3) We number the nodes in the tree level-by-level and in increasing order of the labels (breadth-first-search order).
(9) Once we inserted the copies of all labels j satisfying $f(j)<i$, all copies of the labels j satisfying $f(j)=i$ will be the children of the node whose number is i.

Athanasiadis-Linusson trees

Athanasiadis-Linusson trees

Athanasiadis-Linusson trees

Athanasiadis-Linusson trees

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^{n}$ we define the $\underline{\beta}$-extended Shi arrangement as the hyperplane arrangement

$$
x_{i}-x_{j}=-\beta(j),-\beta(j)+1, \ldots, \beta(j)+1 \quad 1 \leq i<j \leq n \quad \text { in } V_{n-1}
$$

Athanasiadis-Linusson trees

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^{n}$ we define the $\underline{\beta}$-extended Shi arrangement as the hyperplane arrangement
$x_{i}-x_{j}=-\beta(j),-\beta(j)+1, \ldots, \beta(j)+1 \quad 1 \leq i<j \leq n \quad$ in V_{n-1}.

Theorem

The number of regions in a $\underline{\beta}$-extended Shi arrangement \mathcal{A} is

$$
r(\mathcal{A})=\left(\sum_{j=1}^{n}(\beta(j)+1)+1\right)^{n-1}
$$

Athanasiadis-Linusson trees

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^{n}$ we define the $\underline{\beta}$-extended Shi arrangement as the hyperplane arrangement
$x_{i}-x_{j}=-\beta(j),-\beta(j)+1, \ldots, \beta(j)+1 \quad 1 \leq i<j \leq n \quad$ in V_{n-1}.

Theorem

The number of regions in a $\underline{\beta}$-extended Shi arrangement \mathcal{A} is

$$
r(\mathcal{A})=\left(\sum_{j=1}^{n}(\beta(j)+1)+1\right)^{n-1}
$$

The proof uses a colored variant of the Prüfer code algorithm.

Outline

a-Catalan arrangements

a-Catalan arrangements

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only.

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed
$x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete a-ary trees on $(a-1) n+1$ vertices.

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed
$x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete a-ary trees on $(a-1) n+1$ vertices. Their number is the a-Catalan number $\frac{1}{(a-1) n+1}\binom{a n}{n}$.

a-Catalan arrangements

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed
$x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete a-ary trees on $(a-1) n+1$ vertices. Their number is the a-Catalan number $\frac{1}{(a-1) n+1}\binom{a n}{n}$. Multiplying it with n ! we get

$$
r\left(\mathcal{A}_{n-1}^{a, a}\right)=a n(a n-1) \cdots((a-1) n+2)
$$

first found by Postnikov and Stanley.

Outline

A mysterious labeling

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

$$
w(\pi(i), \pi(j))= \begin{cases}\ell(\pi(j))-\ell(\pi(i)) & \text { if } \ell(\pi(j))-\ell(\pi(i)) \in[1-a, a-1] \\ -\infty & \text { if } \ell(\pi(j))-\ell(\pi(i))<1-a \\ a-1 & \text { if } \ell(\pi(j))-\ell(\pi(i))>a-1\end{cases}
$$

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

Lemma

The total order of gains $\sigma=\gamma \circ \pi$ is the order of the labels $\pi(1), \ldots, \pi(n)$ in increasing order of their levels, where $\pi(i)$ is listed before $\pi(j)$ if $\ell(\pi(i))=\ell(\pi(j))$ and $i<j$ hold.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

Here we get $\sigma=142635$.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

Here we get $\sigma=142635$.

Proposition

For the weighted digraph encoded by (π, Λ) the gain function is the level function: we have $g(\sigma(i))=\ell(\sigma(i))$.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

Here we get $\sigma=142635$.

Theorem

The correspondence between the pairs (π, Λ) and the valid weighted m-acyclic digraphs encoded by them is a bijection.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

Here we get $\sigma=142635$.

Theorem

The correspondence between the pairs (π, Λ) and the valid weighted m-acyclic digraphs encoded by them is a bijection.

We only prove injectivity and then we use the Postnikov-Stanley formula.

A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

Here we get $\sigma=142635$.

Proposition

A region of $\mathcal{A}_{n-1}^{a, a}$ is bounded if and only if the total order of gains σ satisfies $w(\sigma(i), \sigma(i+1))<a-1$ for $1 \leq i \leq n-1$.

A concluding conjecture

A concluding conjecture

The number of possible types of the trees of the gain function is a Catalan number.

A concluding conjecture

The number of possible types of the trees of the gain function is a Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of regions of $\mathcal{A}_{n-1}^{a, a}$ associated to it is a polynomial of a.

A concluding conjecture

The number of possible types of the trees of the gain function is a Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of regions of $\mathcal{A}_{n-1}^{a, a}$ associated to it is a polynomial of a.

This conjecture implies that the n-th a-Catalan number, considered as a polynomial of a, could be written as a sum of C_{n} polynomials, where C_{n} is the n-th Catalan number.

The general setup Sparse deformations Separated deformations

Thank you!

Thank you!

Labeling regions in deformations of graphical arrangements

Thank you!

Labeling regions in deformations of graphical arrangements arXiv:2312.06513 [math.CO]

Thank you!

Labeling regions in deformations of graphical arrangements arXiv:2312.06513 [math.CO]

