The dual of the type *B* permutohedron as a Tchebyshev triangulation

Gábor Hetyei

Department of Mathematics and Statistics University of North Carolina at Charlotte http://webpages.uncc.edu/ghetyei/

July 17, 2020, FPSAC online arXiv:2007.07362 [math.CO]

Tchebyshev triangulations

The graded poset of intervals

The dual of the type B permutohedron

Flag number formulas

Pull the midpoints of all edges in some order.

∃ → < ∃ →</p>

_ □ ▶ _ <

$$f_{-1} = 1$$
, $f_0 = 4$, $f_1 = 5$, $f_2 = 2$.

$$f_{-1} = 1$$
, $f_0 = 9$, $f_1 = 16$, $f_2 = 8$.

$$f_{-1} = 1$$
, $f_0 = 9$, $f_1 = 16$, $f_2 = 8$.

Theorem (H.–Nevo)

All Tchebyshev triangulations of the same simplicial complex have the same face numbers.

(4回) 4 回) 4 回

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$.

同 ト イ ヨ ト イ ヨ ト

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$. For our original complex

$$F(\triangle, x) = 1 + 4 \cdot \left(\frac{x-1}{2}\right) + 5 \cdot \left(\frac{x-1}{2}\right)^2 + 2 \cdot \left(\frac{x-1}{2}\right)^3$$
$$= \frac{x+2x^2+x^3}{4}$$

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$.

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

同 ト イ ヨ ト イ ヨ ト

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$.

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

For a Tchebyshev triangulation

$$F(T(\triangle), x) = 1 + 9\left(\frac{x-1}{2}\right) + 16 \cdot \left(\frac{x-1}{2}\right)^2 + 8 \cdot \left(\frac{x-1}{2}\right)^3$$
$$= \frac{-1 - x + 2x^2 + x^3}{2}$$

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$.

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

$$F(T(\triangle), x) = \frac{-1 - x + 2x^2 + x^3}{2}$$

同 ト イ ヨ ト イ ヨ ト

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$.

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

$$F(T(\triangle), x) = \frac{-1 - x + 2x^2 + x^3}{2}$$

$$\frac{-1-x+2x^2+x^3}{2} = \frac{x+2(2x^2-1)+(4x^3-3x)}{4}$$

同 ト イ ヨ ト イ ヨ ト

Define the *F*-polynomial of a simplicial complex by $F(\triangle) = \sum_{j=0}^{d} f_{j-1} \cdot \left(\frac{x-1}{2}\right)^{j}$.

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

$$F(T(\triangle), x) = \frac{-1 - x + 2x^2 + x^3}{2}$$

$$\frac{-1 - x + 2x^2 + x^3}{2} = \frac{x + 2(2x^2 - 1) + (4x^3 - 3x)}{4}$$

 $F(T(\triangle), x) = T(F(\triangle, x)), \text{ where } T(x^n) = T_n(x) = \cos(n \cdot \arccos x).$

∃ ▶ ∢

$$f_{-1} = 4$$
, $f_0 = 12$, $f_1 = 8$.

$$f_{-1} = 4$$
, $f_0 = 12$, $f_1 = 8$.

Defined as the multiset of links of the original vertices in a Tchebyshev triangulation.

Theorem (H.–Nevo)

All Tchebyshev triangulations of the second kind the same simplicial complex have the same face numbers.

→ 3 → < 3</p>

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

→ 3 → < 3</p>

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

For a Tchebyshev triangulation of the second kind

$$F(U(\triangle), x) = 4 + 12\left(\frac{x-1}{2}\right) + 8 \cdot \left(\frac{x-1}{2}\right)^2$$
$$= 2x^2 + 2x.$$

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

$$F(U(\triangle),x)=2x^2+2x$$

同 ト イ ヨ ト イ ヨ ト

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

$$F(U(\triangle),x)=2x^2+2x$$

$$2x^{2} + 2x = 2 \cdot \frac{1 + 2 \cdot (2x) + (4x^{2} - 1)}{4}$$

同 ト イ ヨ ト イ ヨ ト

$$F(\triangle, x) = \frac{x + 2x^2 + x^3}{4}$$

$$F(U(\triangle),x)=2x^2+2x$$

$$2x^{2} + 2x = 2 \cdot \frac{1 + 2 \cdot (2x) + (4x^{2} - 1)}{4}$$

$$\frac{1}{2} \cdot F(U(\triangle), x) = U(F(\triangle, x)), \quad \text{where } U(x^n) = U_{n-1}(x).$$
$$U_{n-1}(x) = \frac{\sin(n \cdot \arccos x)}{\sin(\arccos x))}.$$

同 ト イ ヨ ト イ ヨ ト

→ 3 → 4 3

The elements of T(P) are the poset whose elements are the intervals $[x, y) \subset P$ satisfying $x \neq y$. We set $[x_1, y_1) \leq [x_2, y_2)$ if either $y_1 \leq x_2$ or both $x_1 = x_2$ and $y_1 \leq y_2$ hold.

The elements of T(P) are the poset whose elements are the intervals $[x, y) \subset P$ satisfying $x \neq y$. We set $[x_1, y_1) \leq [x_2, y_2)$ if either $y_1 \leq x_2$ or both $x_1 = x_2$ and $y_1 \leq y_2$ hold. Graded version (Ehrenborg-Readdy): given a graded poset P with minimum element $\hat{0}$ and maximum element $\hat{1}$, we introduce a new minimum element $\widehat{-1} < \hat{0}$ and a new maximum element $\hat{2}$. The graded Tchebyshev transform of the first kind of a graded poset P is then the interval $[[-\hat{1},\hat{0}),[\hat{1},\hat{2})]$ in $T(P \cup \{-\hat{1},\hat{2}\})$.

The elements of T(P) are the poset whose elements are the intervals $[x, y) \subset P$ satisfying $x \neq y$. We set $[x_1, y_1) \leq [x_2, y_2)$ if either $y_1 \leq x_2$ or both $x_1 = x_2$ and $y_1 \leq y_2$ hold. Graded version (Ehrenborg-Readdy): given a graded poset P with minimum element $\hat{0}$ and maximum element $\hat{1}$, we introduce a new minimum element $\widehat{-1} < \hat{0}$ and a new maximum element $\hat{2}$. The graded Tchebyshev transform of the first kind of a graded poset P is then the interval $[[-\hat{1},\hat{0}),[\hat{1},\hat{2})]$ in $T(P \cup \{-\hat{1},\hat{2}\})$.

Theorem

Then the order complex $\triangle(T(P) \setminus \{[\widehat{-1}, \widehat{0}), [\widehat{1}, \widehat{2})\})$ is a Tchebyshev triangulation of the suspension of $\triangle(P \setminus \{\widehat{0}, \widehat{1}\})$.

The elements of T(P) are the poset whose elements are the intervals $[x, y) \subset P$ satisfying $x \neq y$. We set $[x_1, y_1) \leq [x_2, y_2)$ if either $y_1 \leq x_2$ or both $x_1 = x_2$ and $y_1 \leq y_2$ hold. Graded version (Ehrenborg-Readdy): given a graded poset P with minimum element $\widehat{0}$ and maximum element $\widehat{1}$, we introduce a new minimum element $\widehat{-1} < \widehat{0}$ and a new maximum element $\widehat{2}$. The graded Tchebyshev transform of the first kind of a graded poset P is then the interval $[[-\widehat{1},\widehat{0}),[\widehat{1},\widehat{2})]$ in $T(P \cup \{-\widehat{1},\widehat{2}\})$.

Theorem

Then the order complex $\triangle(T(P) \setminus \{[\widehat{-1}, \widehat{0}), [\widehat{1}, \widehat{2})\})$ is a Tchebyshev triangulation of the suspension of $\triangle(P \setminus \{\widehat{0}, \widehat{1}\})$. For more information see the work of Ehrenborg and Readdy.

The poset of intervals I(P) of a poset P is the poset of the intervals of P ordered by inclusion.

The poset of intervals I(P) of a poset P is the poset of the intervals of P ordered by inclusion.

Theorem (Walker)

The order complex of I(P) is identifiable with a triangulation of the order complex of P.

The poset of intervals I(P) of a poset P is the poset of the intervals of P ordered by inclusion.

Theorem (Walker)

The order complex of I(P) is identifiable with a triangulation of the order complex of P.

New proof: It is actually a Tchebyshev triangulation.

We just add \emptyset as the unique minimum element.

We just add \emptyset as the unique minimum element.

Compare it with the Tchebyshev transform of a chain.

Proposition

The order complex $\triangle(\widehat{I}(P) - \{\emptyset, [\widehat{0}, \widehat{1}]\})$ is a Tchebyshev triangulation of the suspension of $\triangle(P - \{\widehat{0}, \widehat{1}\})$.

Known facts

・ロト・日本・日本・日本・日本

The dual type B permutohedron

Known facts

The dual of the type A permutohedron is the order complex of a Boolean algebra.

∃ ► < ∃ ►</p>

Known facts

Each facet of the *n*-dimensional type *B* permutohedron is uniquely labeled with a pair of sets (K^+, K^-) where K^+ and K^- is are subsets of [1, n], satisfying $K^+ \subseteq [1, n] - K^-$ and K^+ and K^- cannot be both empty. For a set of valid labels

$$\{(K_1^+, K_1^-), (K_2^+, K_2^-), \dots, (K_m^+, K_m^-)\}$$

the intersection of the corresponding set of facets is a nonempty face of $Perm(B_n)$ if and only if

$$\mathcal{K}_1^+ \subseteq \mathcal{K}_2^+ \subseteq \cdots \subseteq \mathcal{K}_m^+ \subseteq [1, n] - \mathcal{K}_m^- \subseteq [1, n] - \mathcal{K}_{m-1}^- \subseteq \cdots \subseteq [1, n] - \mathcal{K}_1^-$$

▲日▼▲□▼▲田▼▲田▼ 田 ものぐら

Set
$$X := K^+$$
 and $Y := [1, n] - K^-$.

The dual type B permutohedron

æ

<ロト <問 > < 注 > < 注 >

Set $X := K^+$ and $Y := [1, n] - K^-$. The label of each facet becomes a nonempty interval [X, Y] of the Boolean algebra of rank *n* that is different from $[\emptyset, [1, n]]$. The set $\{[X_1, Y_1], [X_2, Y_2], \dots, [X_m, Y_m]\}$ labels a collection of facets with a nonempty intersection if and only if the intervals form an increasing chain in $\widehat{I}(P([1, n])) - \{\emptyset, [\emptyset, [1, n]]\}$.

Set $X := K^+$ and $Y := [1, n] - K^-$. The label of each facet becomes a nonempty interval [X, Y] of the Boolean algebra of rank *n* that is different from $[\emptyset, [1, n]]$. The set $\{[X_1, Y_1], [X_2, Y_2], \dots, [X_m, Y_m]\}$ labels a collection of facets with a nonempty intersection if and only if the intervals form an increasing chain in $\widehat{I}(P([1, n])) - \{\emptyset, [\emptyset, [1, n]]\}$.

Set $X := K^+$ and $Y := [1, n] - K^-$. The label of each facet becomes a nonempty interval [X, Y] of the Boolean algebra of rank *n* that is different from $[\emptyset, [1, n]]$. The set $\{[X_1, Y_1], [X_2, Y_2], \dots, [X_m, Y_m]\}$ labels a collection of facets with a nonempty intersection if and only if the intervals form an increasing chain in $\widehat{I}(P([1, n])) - \{\emptyset, [\emptyset, [1, n]]\}$.

Set $X := K^+$ and $Y := [1, n] - K^-$. The label of each facet becomes a nonempty interval [X, Y] of the Boolean algebra of rank *n* that is different from $[\emptyset, [1, n]]$. The set $\{[X_1, Y_1], [X_2, Y_2], \dots, [X_m, Y_m]\}$ labels a collection of facets with a nonempty intersection if and only if the intervals form an increasing chain in $\widehat{I}(P([1, n])) - \{\emptyset, [\emptyset, [1, n]]\}$.

Proposition

The dual of $Perm(B_n)$ is a simplicial polytope whose boundary complex is combinatorially equivalent to a Tchebyshev triangulation of the suspension of $\triangle(\widehat{I}(P([1, n])) - \{\emptyset, [\emptyset, [1, n]]\})$.

- 4 聞 と 4 直 と 4 直 と

An illustration

An illustration

An illustration

P

- (E

An illustration

æ

<ロ> (日) (日) (日) (日) (日)

・ロト ・母 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへで

The poset of intervals of the Boolean algebra have been studied by:

同 ト イ ヨ ト イ ヨ ト

The poset of intervals of the Boolean algebra have been studied by:

Athanasiadis an Savvidou (type B derangement polynomials)

The poset of intervals of the Boolean algebra have been studied by:

- Athanasiadis an Savvidou (type B derangement polynomials)
- Anwar and Nazir (interval subdivisions)

The poset of intervals of the Boolean algebra have been studied by:

- ► Athanasiadis an Savvidou (type *B* derangement polynomials)
- Anwar and Nazir (interval subdivisions)

It is a consequence of the results of Anwar and Nazir that the h-polynomial of the type B Coxeter complex has real roots.

The poset of intervals of the Boolean algebra have been studied by:

- ► Athanasiadis an Savvidou (type *B* derangement polynomials)
- Anwar and Nazir (interval subdivisions)

It is a consequence of the results of Anwar and Nazir that the h-polynomial of the type B Coxeter complex has real roots. It is also a consequence of the real-rootedness of the derivative polynomials for the hyperbolic secant.

- 4 回 🕨 🔺 臣 🕨 🔺 臣 🕨

The *F*-polynomials of the type *B* Coxeter complexes have the same coefficients (up to sign) as the *derivative polynomials* $Q_n(x)$ for secant, defined by $\frac{d^n}{dx^n} \sec(x) = Q_n(\tan x) \cdot \sec(x)$.

The *F*-polynomials of the type *B* Coxeter complexes have the same coefficients (up to sign) as the *derivative polynomials* $Q_n(x)$ for secant, defined by $\frac{d^n}{dx^n} \sec(x) = Q_n(\tan x) \cdot \sec(x)$.

$$\sum_{j=0}^n f_{j-1}\left(\bigtriangleup\left(\widehat{I}(B_n) - \{\emptyset, \{1, \ldots, n\}\}\right)\right) \cdot \left(\frac{x-1}{2}\right)^j = \mathbf{i}^{-n} Q_n(x \cdot \mathbf{i}).$$

The *F*-polynomials of the type *B* Coxeter complexes have the same coefficients (up to sign) as the *derivative polynomials* $Q_n(x)$ for secant, defined by $\frac{d^n}{dx^n} \sec(x) = Q_n(\tan x) \cdot \sec(x)$.

Theorem

All roots of the derivative polynomials for hyperbolic tangent and secant are interlaced, real, and belong to the interval [-1, 1].

The *F*-polynomials of the type *B* Coxeter complexes have the same coefficients (up to sign) as the *derivative polynomials* $Q_n(x)$ for secant, defined by $\frac{d^n}{dx^n} \sec(x) = Q_n(\tan x) \cdot \sec(x)$.

Theorem

All roots of the derivative polynomials for hyperbolic tangent and secant are interlaced, real, and belong to the interval [-1,1].

Since
$$(1-t)^d \cdot F_{\triangle}\left(\frac{1+t}{1-t}\right) = h_{\triangle}(t)$$
,

The *F*-polynomials of the type *B* Coxeter complexes have the same coefficients (up to sign) as the *derivative polynomials* $Q_n(x)$ for secant, defined by $\frac{d^n}{dx^n} \sec(x) = Q_n(\tan x) \cdot \sec(x)$.

Theorem

All roots of the derivative polynomials for hyperbolic tangent and secant are interlaced, real, and belong to the interval [-1,1]. Since $(1-t)^d \cdot F_{\triangle}\left(\frac{1+t}{1-t}\right) = h_{\triangle}(t)$, the *h*-polynomials of type *B*.

Coxeter complexes have only real roots.

The *F*-polynomials of the type *B* Coxeter complexes have the same coefficients (up to sign) as the *derivative polynomials* $Q_n(x)$ for secant, defined by $\frac{d^n}{dx^n} \sec(x) = Q_n(\tan x) \cdot \sec(x)$.

Theorem

All roots of the derivative polynomials for hyperbolic tangent and secant are interlaced, real, and belong to the interval [-1, 1]. Since $(1 - t)^d \cdot F_{\triangle}\left(\frac{1+t}{1-t}\right) = h_{\triangle}(t)$, the *h*-polynomials of type *B* Coxeter complexes have only real roots. Realized only now, as derivative polynomials for tangent and secant were discussed in connection with another Tchebyshev triangulation.

Flag numbers of graded posets

□ ▶ ▲ 臣 ▶ ▲ 臣

Flag numbers of graded posets

The *upsilon invariant* of a graded poset P of rank n + 1 is

$$\Upsilon_P(a,b) = \sum_{S \subseteq \{1,\dots,n\}} f_S u_S$$

Here f_S is the number of chains $x_1 < x_2 < \cdots < x_{|S|}$ such that their set of ranks $\{\rho(x_i) : i \in \{1, \dots, |S|\}\}$ is S. The monomial $u_S = u_1 \cdots u_n$ is a monomial in noncommuting variables a and b such that $u_i = b$ for all $i \in S$ and $u_i = a$ for all $i \notin S$.

Flag numbers of graded posets

The *upsilon invariant* of a graded poset P of rank n + 1 is

$$\Upsilon_P(a,b) = \sum_{S \subseteq \{1,\dots,n\}} f_S u_S$$

Here f_S is the number of chains $x_1 < x_2 < \cdots < x_{|S|}$ such that their set of ranks $\{\rho(x_i) : i \in \{1, \dots, |S|\}\}$ is S. The monomial $u_S = u_1 \cdots u_n$ is a monomial in noncommuting variables a and b such that $u_i = b$ for all $i \in S$ and $u_i = a$ for all $i \notin S$. The $ab-index \Psi_P(a, b) = \sum_S h_S u_S$ defined as $\Upsilon_P(a - b, b)$.

The map $\Psi_P(a, b) \mapsto \Psi_{\widehat{I}(P)}(a, \overline{b})$

・ロト・日本・日本・日本・日本・日本

The dual type B permutohedron

The map $\Psi_P(\overline{a,b}) \mapsto \overline{\Psi_{\widehat{I}(P)}(a,b)}$

It is a linear map.

The map $\Psi_P(a,b)\mapsto \Psi_{\widehat{l}(P)}(a,b)$

It is a linear map. To express it, we need the *Ehrenborg-Readdy* coproduct $\Delta(u) = \sum_{i=1}^{n} u_1 \cdots u_{i-1} \otimes u_{i+1} \cdots u_n$.

(本部) (本語) (本語)

The map $\Psi_P(a, b) \mapsto \Psi_{\widehat{I}(P)}(a, b)$

It is a linear map. To express it, we need the *Ehrenborg-Readdy* coproduct $\Delta(u) = \sum_{i=1}^{n} u_1 \cdots u_{i-1} \otimes u_{i+1} \cdots u_n$. Theorem (Jojić) $\Psi_{\widehat{I}(P)}(a,b) = \mathcal{I}(\Psi_P(a,b))$, where the linear operator $\mathcal{I}: \mathbb{Q}\langle a, b \rangle \to \mathbb{Q}\langle a, b \rangle$ is defined recursively: $\mathcal{I}(u \cdot a) = \mathcal{I}(u) \cdot a + (ab + ba) \cdot u^* + \sum \mathcal{I}(u_{(2)}) \cdot ab \cdot u_{(1)}^*$ (1) $\mathcal{I}(u \cdot b) = \mathcal{I}(u) \cdot b + (ab + ba) \cdot u^* + \sum \mathcal{I}(u_{(2)}) \cdot ba \cdot u_{(1)}^*.$ (2)

The interval transform of the second kind $I_2(P)$

The interval transform of the second kind $I_2(P)$

 $I_2(P)$ is the multiset of subposets of I(P) defined as follows: for each $x \in P$ we take the subposets of I(P) formed by all elements $[y, z] \in I(P)$ containing [x, x].

The interval transform of the second kind $l_2(P)$

 $I_2(P)$ is the multiset of subposets of I(P) defined as follows: for each $x \in P$ we take the subposets of I(P) formed by all elements $[y, z] \in I(P)$ containing [x, x].

Theorem $\Psi_{\widehat{I}_{2}(P)}(a, b) = \mathcal{I}_{2}(\Psi_{P}(a, b)), \text{ where}$ $\mathcal{I}_{2}(u) = u + u^{*} + \sum M(u^{*}_{(1)}, u_{(2)}).$

и

The interval transform of the second kind $I_2(P)$

 $I_2(P)$ is the multiset of subposets of I(P) defined as follows: for each $x \in P$ we take the subposets of I(P) formed by all elements $[y, z] \in I(P)$ containing [x, x].

Theorem $\Psi_{\widehat{I}_{2}(P)}(a, b) = \mathcal{I}_{2}(\Psi_{P}(a, b)), \text{ where}$ $\mathcal{I}_{2}(u) = u + u^{*} + \sum_{u} M(u_{(1)}^{*}, u_{(2)}).$

Here u^* is the reverse of u and M is the Ehrenborg-Readdy mixing operator satisfying $\Psi_{P \times Q}(a, b) = M(\Psi_P(a, b), \Psi_Q(a, b)).$

The only proof

▲日▼▲□▼▲田▼▲田▼ 田 ものぐら

The dual type B permutohedron

The only proof

For each $x \in P$, the set of intervals [y, z] contained in $[[x, x], [\widehat{0}, \widehat{1}]] \subset \widehat{I}(P)$ and ordered by inclusion is isomorphic to the direct product $[\widehat{0}, x]^* \times [x, \widehat{1}]$.

æ

イロト イ団ト イヨト イヨト

Via Hall's theorem: a graded poset is *Eulerian* if for every interval [x, y] the reduced Euler characteristic of $\triangle((x, y))$ is $(-1)^{\operatorname{rank}([x, y])}$.

Via Hall's theorem: a graded poset is *Eulerian* if for every interval [x, y] the reduced Euler characteristic of $\triangle((x, y))$ is $(-1)^{\operatorname{rank}([x,y])}$. Corollary (Athanasiadis, based on Walker's result) If P is Eulerian then so is $\widehat{I}(P)$.

Via Hall's theorem: a graded poset is *Eulerian* if for every interval [x, y] the reduced Euler characteristic of $\triangle((x, y))$ is $(-1)^{\operatorname{rank}([x, y])}$.

Corollary (Athanasiadis, based on Walker's result) If P is Eulerian then so is $\widehat{I}(P)$.

Theorem (Bayer-Klapper)

For an Eulerian poset P, $\Psi_P(a, b)$ is a polynomial of c = a + b and d = ab + ba.

æ

э

<ロト <回ト < 回

$$\Psi_{L_n}(c,d)=c^n.$$

<ロト <回ト < 回

æ

э

Theorem (Jojić) The coefficient of $c^{k_0} dc^{k_1} d \cdots c^{k_r} dc^{k_r}$ in $\Psi_{\widehat{I}(L_n)}(c, d)$ is $2^r (k_1 + 1)(k_2 + 1) \cdots (k_r + 1).$

伺 ト イヨト イヨト

The ladder poset L_n

Theorem (Jojić) The coefficient of $c^{k_0} dc^{k_1} d \cdots c^{k_r} dc^{k_r}$ in $\Psi_{\hat{l}(L_n)}(c, d)$ is $2^r (k_1 + 1)(k_2 + 1) \cdots (k_r + 1).$

Ehrenborg and Readdy have the dual of this formula for $T(L_n)$.

The ladder poset L_n

Theorem (Jojić)

The coefficient of $c^{k_0}dc^{k_1}d\cdots c^{k_r}dc^{k_r}$ in $\Psi_{\widehat{I}(L_n)}(c,d)$ is $2^r(k_1+1)(k_2+1)\cdots(k_r+1).$

Ehrenborg and Readdy have the dual of this formula for $T(L_n)$.

Theorem

The coefficient of $c^{k_0} dc^{k_1} d \cdots c^{k_{r-1}} dc^{k_r}$ in $\Psi_{l_2(L_n)}(c, d)$ is $2^{r+1}(k_0+1)(k_1+1)\cdots(k_r+1).$

The ladder poset L_n

Theorem (Jojić)

The coefficient of $c^{k_0}dc^{k_1}d\cdots c^{k_r}dc^{k_r}$ in $\Psi_{\widehat{I}(L_n)}(c,d)$ is $2^r(k_1+1)(k_2+1)\cdots(k_r+1).$

Ehrenborg and Readdy have the dual of this formula for $T(L_n)$.

Theorem

The coefficient of $c^{k_0} dc^{k_1} d \cdots c^{k_{r-1}} dc^{k_r}$ in $\Psi_{l_2(L_n)}(c, d)$ is $2^{r+1}(k_0+1)(k_1+1)\cdots(k_r+1).$

The proof involves expressing $M(c^i, c^j)$ as a total weight of lattice paths.

(中) (部) (音) (音) (音) (音) のの

Lemma

The poset of intervals $\hat{I}(P([1, n]))$ of the Boolean algebra P([1, n]) is isomorphic to the face lattice C_n of the n-dimensional cube.

Lemma

The poset of intervals $\widehat{I}(P([1, n]))$ of the Boolean algebra P([1, n])is isomorphic to the face lattice C_n of the n-dimensional cube. $\Psi_{C_n}(c, d)$ has been expressed by Ehrenborg and Readdy and by Hetyei in terms of (different) signed generalizations of André-permutations. Purtill used André permutations, introduced

by Foata, Strehl and Schützenberger, to express $\Psi_{P([1,n])}(c,d)$.

Lemma

The poset of intervals $\widehat{I}(P([1, n]))$ of the Boolean algebra P([1, n])is isomorphic to the face lattice C_n of the n-dimensional cube. $\Psi_{C_n}(c, d)$ has been expressed by Ehrenborg and Readdy and by Hetyei in terms of (different) signed generalizations of André-permutations. Purtill used André permutations, introduced by Foata, Strehl and Schützenberger, to express $\Psi_{P([1,n])}(c, d)$. $\Psi_{I_2(P([1,n]))}(c, d)$ is an eigenvector of I_2 :

$$\Psi_{I_2(P([1,n]))}(c,d) = 2^n \cdot \Psi_{P([1,n])}(c,d).$$

Lemma

The poset of intervals $\widehat{I}(P([1, n]))$ of the Boolean algebra P([1, n])is isomorphic to the face lattice C_n of the n-dimensional cube. $\Psi_{C_n}(c, d)$ has been expressed by Ehrenborg and Readdy and by Hetyei in terms of (different) signed generalizations of André-permutations. Purtill used André permutations, introduced by Foata, Strehl and Schützenberger, to express $\Psi_{P([1,n])}(c, d)$. $\Psi_{I_2(P([1,n]))}(c, d)$ is an eigenvector of I_2 :

$$\Psi_{I_2(P([1,n]))}(c,d) = 2^n \cdot \Psi_{P([1,n])}(c,d).$$

An analogous result for the Tchebyshev operator of the second kind was obtained by Ehrenborg and Readdy.

Following the blueprint of Ehrenborg and Readdy.

→ ∢ ≣

白 ト く ヨ

Following the blueprint of Ehrenborg and Readdy. **Lifting:** If $u \in \mathbb{Q}\langle a, b \rangle_n$ is an eigenvector of l_2 then so is $\mathcal{L}(u) := (a - b)u + u(a - b) \in \mathbb{Q}\langle a, b \rangle_{n+1}$. Both eigenvectors have the same eigenvalue. (Was $L : u \mapsto (a - b)u$.)

Following the blueprint of Ehrenborg and Readdy. **Lifting:** If $u \in \mathbb{Q}\langle a, b \rangle_n$ is an eigenvector of I_2 then so is $\mathcal{L}(u) := (a - b)u + u(a - b) \in \mathbb{Q}\langle a, b \rangle_{n+1}$. Both eigenvectors have the same eigenvalue. (Was $L : u \mapsto (a - b)u$.) **Products:** $I_2(P \times Q) = I_2(P)(\times)I_2(Q) \Rightarrow$ if u_1 and u_2 are eigenvectors with eigenvalues λ_1 and λ_2 then so is $M(u_1, u_2)$, with eigenvalue $\lambda_1 \cdot \lambda_2$.

Following the blueprint of Ehrenborg and Readdy.

Lifting: If $u \in \mathbb{Q}\langle a, b \rangle_n$ is an eigenvector of I_2 then so is $\mathcal{L}(u) := (a - b)u + u(a - b) \in \mathbb{Q}\langle a, b \rangle_{n+1}$. Both eigenvectors have the same eigenvalue. (Was $L : u \mapsto (a - b)u$.) **Products:** $I_2(P \times Q) = I_2(P)(\times)I_2(Q) \Rightarrow$ if u_1 and u_2 are eigenvectors with eigenvalues λ_1 and λ_2 then so is $M(u_1, u_2)$, with eigenvalue $\lambda_1 \cdot \lambda_2$.

In the case of the Tchebyshev operators of the second kind, all compositions of L and of $u \mapsto M(1, u)$ of length n, applied to 1, yield a basis of eigenvectors for $\mathbb{Q}\langle a, b \rangle_n$.

・ロト ・同ト ・ヨト ・ヨト

Following the blueprint of Ehrenborg and Readdy. **Lifting:** If $u \in \mathbb{Q}\langle a, b \rangle_n$ is an eigenvector of l_2 then so is $\mathcal{L}(u) := (a - b)u + u(a - b) \in \mathbb{Q}\langle a, b \rangle_{n+1}$. Both eigenvectors have the same eigenvalue. (Was $L : u \mapsto (a - b)u$.) **Products:** $l_2(P \times Q) = l_2(P)(\times)l_2(Q) \Rightarrow$ if u_1 and u_2 are eigenvectors with eigenvalues λ_1 and λ_2 then so is $M(u_1, u_2)$, with eigenvalue $\lambda_1 \cdot \lambda_2$.

Now we have a kernel: if $u^* = -u$ then $I_2(u) = 0$.

- 4 同 6 4 日 6 4 日 6

Following the blueprint of Ehrenborg and Readdy. Lifting: If $u \in \mathbb{Q}\langle a, b \rangle_n$ is an eigenvector of l_2 then so is $\mathcal{L}(u) := (a - b)u + u(a - b) \in \mathbb{Q}\langle a, b \rangle_{n+1}$. Both eigenvectors have the same eigenvalue. (Was $L : u \mapsto (a - b)u$.) Products: $l_2(P \times Q) = l_2(P)(\times)l_2(Q) \Rightarrow$ if u_1 and u_2 are eigenvectors with eigenvalues λ_1 and λ_2 then so is $M(u_1, u_2)$, with eigenvalue $\lambda_1 \cdot \lambda_2$. $\mathbb{Q}\langle a, b \rangle_n = A_{\mathbb{Q}}\langle a, b \rangle_n \oplus S_{\mathbb{Q}}\langle a, b \rangle_n$, where $A_{\mathbb{Q}}\langle a, b \rangle_n = \{u \in \mathbb{Q}\langle a, b \rangle_n : u^* = -u\}$ and

 $S_{\mathbb{Q}}\langle a,b\rangle_n = \{u \in \mathbb{Q}\langle a,b\rangle_n : u^* = u\}.$

- 4 副 🕨 4 国 🕨 - 4 国 🕨

Following the blueprint of Ehrenborg and Readdy.

Lifting: If $u \in \mathbb{Q}\langle a, b \rangle_n$ is an eigenvector of I_2 then so is $\mathcal{L}(u) := (a - b)u + u(a - b) \in \mathbb{Q}\langle a, b \rangle_{n+1}$. Both eigenvectors have the same eigenvalue. (Was $L : u \mapsto (a - b)u$.) **Products:** $I_2(P \times Q) = I_2(P)(\times)I_2(Q) \Rightarrow$ if u_1 and u_2 are eigenvectors with eigenvalues λ_1 and λ_2 then so is $M(u_1, u_2)$, with eigenvalue $\lambda_1 \cdot \lambda_2$.

$$\begin{array}{l} \mathbb{Q}\langle a, b \rangle_n = A_{\mathbb{Q}}\langle a, b \rangle_n \oplus S_{\mathbb{Q}}\langle a, b \rangle_n, \text{ where} \\ A_{\mathbb{Q}}\langle a, b \rangle_n = \{ u \in \mathbb{Q}\langle a, b \rangle_n : u^* = -u \} \text{ and} \\ S_{\mathbb{Q}}\langle a, b \rangle_n = \{ u \in \mathbb{Q}\langle a, b \rangle_n : u^* = u \}. \end{array}$$

Conjecture: $A_{\mathbb{Q}}\langle a, b \rangle_n$ is the kernel, and a generating set of eigenvectors for $S_{\mathbb{Q}}\langle a, b \rangle_n$ may be obtained by applying all compositions of length *n* of \mathcal{L} and of $u \mapsto M(1, u)$ to 1.

・ロト ・得ト ・ヨト ・ヨト

・ロト ・母 ト ・目 ト ・目 ・ うへの

The dual type B permutohedron

Thank you very much!

æ

<ロト <問 > < 注 > < 注 >

Thank you very much! arXiv:2007.07362 [math.CO]

- (E

< 1 →

Thank you very much! arXiv:2007.07362 [math.CO]

- (E

< 1 →