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Visual definition

Pull the midpoints of all edges in some order.

Theorem (H.–Nevo)

All Tchebyshev triangulations of the same simplicial complex have
the same face numbers.

The dual type B permutohedron UNCC
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Visual definition

Pull the midpoints of all edges in some order.
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f−1 = 1, f0 = 4, f1 = 5, f2 = 2.

Theorem (H.–Nevo)

All Tchebyshev triangulations of the same simplicial complex have
the same face numbers.
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Visual definition

Pull the midpoints of all edges in some order.
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f−1 = 1, f0 = 9, f1 = 16, f2 = 8.

Theorem (H.–Nevo)

All Tchebyshev triangulations of the same simplicial complex have
the same face numbers.

The dual type B permutohedron UNCC
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Why the name Tchebyshev?

Define the F -polynomial of a simplicial complex by

F (4) =
∑d

j=0 fj−1 ·
(
x−1
2

)j
.

F (4, x) =
x + 2x2 + x3

4

F (T (4), x) =
−1− x + 2x2 + x3

2

−1− x + 2x2 + x3

2
=

x + 2(2x2 − 1) + (4x3 − 3x)

4

F (T (4), x) = T (F (4, x)), where T (xn) = Tn(x) = cos(n · arccos x).

The dual type B permutohedron UNCC
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Tchebyshev triangulations of the second kind

Defined as the multiset of links of the original vertices in a
Tchebyshev triangulation.

Theorem (H.–Nevo)

All Tchebyshev triangulations of the second kind the same
simplicial complex have the same face numbers.

The dual type B permutohedron UNCC
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Why Tchebyshev triangulations of the second kind?

F (4, x) =
x + 2x2 + x3

4

F (U(4), x) = 2x2 + 2x

2x2 + 2x = 2 · 1 + 2 · (2x) + (4x2 − 1)

4

1

2
· F (U(4), x) = U(F (4, x)), where U(xn) = Un−1(x).

Un−1(x) =
sin(n · arccos x)

sin(arccos x))
.

The dual type B permutohedron UNCC
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The Tchebyshev transform T (P) of a poset P

The elements of T (P) are the poset whose elements are the
intervals [x , y) ⊂ P satisfying x 6= y . We set [x1, y1) ≤ [x2, y2) if
either y1 ≤ x2 or both x1 = x2 and y1 ≤ y2 hold. Graded version
(Ehrenborg-Readdy): given a graded poset P with minimum
element 0̂ and maximum element 1̂, we introduce a new minimum
element −̂1 < 0̂ and a new maximum element 2̂. The graded
Tchebyshev transform of the first kind of a graded poset P is then
the interval [[−̂1, 0̂), [1̂, 2̂)] in T (P ∪ {−̂1, 2̂}).

Theorem
Then the order complex 4(T (P) \ {[−̂1, 0̂), [1̂, 2̂)}) is a
Tchebyshev triangulation of the suspension of 4(P \ {0̂, 1̂}).

For more information see the work of Ehrenborg and Readdy.

The dual type B permutohedron UNCC
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The poset of intervals inducing a Tchebyshev triangulation

u3

u2

u1 u1

u4 u2

u3

u4

[u2, u2]
[u1, u2]

[u2, u3]

[u1, u4]

[u1, u3]
[u4, u4]

[u3, u3]

[u1, u1]

[u1, u4]

[u1, u3]

[u3, u3][u4, u4][u2, u2][u1, u1]

[u2, u3][u1, u2]

The dual type B permutohedron UNCC
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The poset of intervals inducing a Tchebyshev triangulation

The poset of intervals I (P) of a poset P is the poset of the
intervals of P ordered by inclusion.
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The poset of intervals inducing a Tchebyshev triangulation

The poset of intervals I (P) of a poset P is the poset of the
intervals of P ordered by inclusion.

Theorem (Walker)

The order complex of I (P) is identifiable with a triangulation of
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The poset of intervals inducing a Tchebyshev triangulation

The poset of intervals I (P) of a poset P is the poset of the
intervals of P ordered by inclusion.

Theorem (Walker)
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The graded poset Î (P) of intervals of a graded poset P

Proposition

The order complex 4(̂I (P)− {∅, [0̂, 1̂]}) is a Tchebyshev
triangulation of the suspension of 4(P − {0̂, 1̂}).

The dual type B permutohedron UNCC
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The graded poset Î (P) of intervals of a graded poset P

We just add ∅ as the unique minimum element.

Proposition

The order complex 4(̂I (P)− {∅, [0̂, 1̂]}) is a Tchebyshev
triangulation of the suspension of 4(P − {0̂, 1̂}).
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The graded poset Î (P) of intervals of a graded poset P

We just add ∅ as the unique minimum element.
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The graded poset Î (P) of intervals of a graded poset P

Compare it with the Tchebyshev transform of a chain.

[̂1, 2̂)

[−̂1, 0)

[−̂1, u1)

[−̂1, u2)

[−̂1, 1̂) [̂0, 1̂) [u2, 1̂)[u1, 1̂)

[̂0, u1)

[̂0, u2) [u1, u2)
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Known facts

The dual of the type A permutohedron is the order complex of a
Boolean algebra.

The dual type B permutohedron UNCC
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Known facts

Each facet of the n-dimensional type B permutohedron is uniquely
labeled with a pair of sets (K+,K−) where K+ and K− is are
subsets of [1, n], satisfying K+ ⊆ [1, n]− K− and K+ and K−

cannot be both empty. For a set of valid labels

{(K+
1 ,K

−
1 ), (K+

2 ,K
−
2 ), . . . , (K+

m ,K
−
m )}

the intersection of the corresponding set of facets is a nonempty
face of Perm(Bn) if and only if

K+
1 ⊆ K+

2 ⊆ · · · ⊆ K+
m ⊆ [1, n]−K−m ⊆ [1, n]−K−m−1 ⊆ · · · ⊆ [1, n]−K−1 holds.

The dual type B permutohedron UNCC
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Simple recoding

Set X := K+ and Y := [1, n]− K−. The label of each facet
becomes a nonempty interval [X ,Y ] of the Boolean algebra of
rank n that is different from [∅, [1, n]]. The set
{[X1,Y1], [X2,Y2], . . . , [Xm,Ym]} labels a collection of facets with
a nonempty intersection if and only if the intervals form an
increasing chain in Î (P([1, n]))− {∅, [∅, [1, n]]}.

Proposition

The dual of Perm(Bn) is a simplicial polytope whose boundary
complex is combinatorially equivalent to a Tchebyshev
triangulation of the suspension of 4(̂I (P([1, n]))− {∅, [∅, [1, n]]}).

The dual type B permutohedron UNCC
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An illustration

"Back"

[{2, 3}, {2, 3}][{1, 3}, {1, 3}]

[{1}, {1}] [{2}, {2}][{1, 2}, {1, 2}][{1}, {1, 2}] [{2}, {1, 2}]

{1, 2, 3}

[{3}, {3}]

[{1, 2}, {1, 2, 3}]

The dual type B permutohedron UNCC
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An illustration

"Front"

[{2, 3}, {2, 3}][{1, 3}, {1, 3}]

[{1}, {1}] [{2}, {2}]

[∅, {1, 2}]

[{1, 2}, {1, 2}][{1}, {1, 2}] [{2}, {1, 2}]

∅

[{3}, {3}]
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Looks familiar?

The poset of intervals of the Boolean algebra have been studied
by:

I Athanasiadis an Savvidou (type B derangement polynomials)

I Anwar and Nazir (interval subdivisions)

It is a consequence of the results of Anwar and Nazir that the
h-polynomial of the type B Coxeter complex has real roots. It is
also a consequence of the real-rootedness of the derivative
polynomials for the hyperbolic secant.

The dual type B permutohedron UNCC
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A new-old real-rootedness result

The F -polynomials of the type B Coxeter complexes have the
same coefficients (up to sign) as the derivative polynomials Qn(x)
for secant, defined by dn

dxn sec(x) = Qn(tan x) · sec(x).

Theorem
All roots of the derivative polynomials for hyperbolic tangent and
secant are interlaced, real, and belong to the interval [−1, 1].

Since (1− t)d · F4
(
1+t
1−t

)
= h4(t), the h-polynomials of type B

Coxeter complexes have only real roots. Realized only now, as
derivative polynomials for tangent and secant were discussed in
connection with another Tchebyshev triangulation.

The dual type B permutohedron UNCC
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The F -polynomials of the type B Coxeter complexes have the
same coefficients (up to sign) as the derivative polynomials Qn(x)
for secant, defined by dn

dxn sec(x) = Qn(tan x) · sec(x).

n∑
j=0

fj−1

(
4
(

Î (Bn)− {∅, {1, . . . , n}}
))
·
(

x − 1

2

)j

= i−nQn(x · i).
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same coefficients (up to sign) as the derivative polynomials Qn(x)
for secant, defined by dn

dxn sec(x) = Qn(tan x) · sec(x).

Theorem
All roots of the derivative polynomials for hyperbolic tangent and
secant are interlaced, real, and belong to the interval [−1, 1].

Since (1− t)d · F4
(
1+t
1−t

)
= h4(t),

the h-polynomials of type B

Coxeter complexes have only real roots. Realized only now, as
derivative polynomials for tangent and secant were discussed in
connection with another Tchebyshev triangulation.

The dual type B permutohedron UNCC
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Flag numbers of graded posets

The upsilon invariant of a graded poset P of rank n + 1 is

ΥP(a, b) =
∑

S⊆{1,...,n}

fSuS

Here fS is the number of chains x1 < x2 < · · · < x|S | such that
their set of ranks {ρ(xi ) : i ∈ {1, . . . , |S |}} is S . The monomial
uS = u1 · · · un is a monomial in noncommuting variables a and b
such that ui = b for all i ∈ S and ui = a for all i 6∈ S . The
ab-index ΨP(a, b) =

∑
S hSuS defined as ΥP(a− b, b).

The dual type B permutohedron UNCC
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The map ΨP(a, b) 7→ ΨÎ (P)(a, b)

It is a linear map. To express it, we need the Ehrenborg-Readdy
coproduct ∆(u) =

∑n
i=1 u1 · · · ui−1 ⊗ ui+1 · · · un.

Theorem (Jojić)

Ψ
Î (P)

(a, b) = I(ΨP(a, b)), where the linear operator

I : Q〈a, b〉 → Q〈a, b〉 is defined recursively:

I(u · a) = I(u) · a + (ab + ba) · u∗ +
∑
u

I(u(2)) · ab · u∗(1) (1)

I(u · b) = I(u) · b + (ab + ba) · u∗ +
∑
u

I(u(2)) · ba · u∗(1). (2)

The dual type B permutohedron UNCC
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Ψ
Î (P)

(a, b) = I(ΨP(a, b)), where the linear operator

I : Q〈a, b〉 → Q〈a, b〉 is defined recursively:

I(u · a) = I(u) · a + (ab + ba) · u∗ +
∑
u

I(u(2)) · ab · u∗(1) (1)

I(u · b) = I(u) · b + (ab + ba) · u∗ +
∑
u

I(u(2)) · ba · u∗(1). (2)

The dual type B permutohedron UNCC



Outline Tchebyshev triangulations The graded poset of intervals The dual of the type B permutohedron Flag number formulas

The map ΨP(a, b) 7→ ΨÎ (P)(a, b)
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The interval transform of the second kind I2(P)

I2(P) is the multiset of subposets of I (P) defined as follows: for
each x ∈ P we take the subposets of I (P) formed by all elements
[y , z ] ∈ I (P) containing [x , x ].

Theorem
Ψ

Î2(P)
(a, b) = I2(ΨP(a, b)), where

I2(u) = u + u∗ +
∑
u

M(u∗(1), u(2)).

Here u∗ is the reverse of u and M is the Ehrenborg-Readdy mixing
operator satisfying ΨP×Q(a, b) = M(ΨP(a, b),ΨQ(a, b)).

The dual type B permutohedron UNCC
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The only proof

For each x ∈ P, the set of intervals [y , z ] contained in
[[x , x ], [0̂, 1̂]] ⊂ Î (P) and ordered by inclusion is isomorphic to the
direct product [0̂, x ]∗ × [x , 1̂].

The dual type B permutohedron UNCC
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Eulerian posets

Via Hall’s theorem: a graded poset is Eulerian if for every interval
[x , y ] the reduced Euler characteristic of 4((x , y)) is (−1)rank([x ,y ]).

Corollary (Athanasiadis, based on Walker’s result)

If P is Eulerian then so is Î (P).

Theorem (Bayer-Klapper)

For an Eulerian poset P, ΨP(a, b) is a polynomial of c = a + b and
d = ab + ba.

The dual type B permutohedron UNCC
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The ladder poset Ln

Theorem (Jojić)

The coefficient of ck0dck1d · · · ckr dckr in Ψ
Î (Ln)

(c , d) is

2r (k1 + 1)(k2 + 1) · · · (kr + 1).

Ehrenborg and Readdy have the dual of this formula for T (Ln).

Theorem
The coefficient of ck0dck1d · · · ckr−1dckr in ΨI2(Ln)(c , d) is
2r+1(k0 + 1)(k1 + 1) · · · (kr + 1).

The proof involves expressing M(c i , c j) as a total weight of lattice
paths.

The dual type B permutohedron UNCC
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Î (Ln)

(c , d) is

2r (k1 + 1)(k2 + 1) · · · (kr + 1).

Ehrenborg and Readdy have the dual of this formula for T (Ln).

Theorem
The coefficient of ck0dck1d · · · ckr−1dckr in ΨI2(Ln)(c , d) is
2r+1(k0 + 1)(k1 + 1) · · · (kr + 1).

The proof involves expressing M(c i , c j) as a total weight of lattice
paths.

The dual type B permutohedron UNCC



Outline Tchebyshev triangulations The graded poset of intervals The dual of the type B permutohedron Flag number formulas

The ladder poset Ln

L2

−1

−2

1

2

0̂

1̂

ΨLn(c , d) = cn.

Theorem (Jojić)
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The Boolean algebra P([1, n])

Lemma
The poset of intervals Î (P([1, n])) of the Boolean algebra P([1, n])
is isomorphic to the face lattice Cn of the n-dimensional cube.

ΨCn(c , d) has been expressed by Ehrenborg and Readdy and by
Hetyei in terms of (different) signed generalizations of
André-permutations. Purtill used André permutations, introduced
by Foata, Strehl and Schützenberger, to express ΨP([1,n])(c , d).
ΨI2(P([1,n]))(c , d) is an eigenvector of I2:

ΨI2(P([1,n]))(c , d) = 2n ·ΨP([1,n])(c , d).

An analogous result for the Tchebyshev operator of the second
kind was obtained by Ehrenborg and Readdy.

The dual type B permutohedron UNCC
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The poset of intervals Î (P([1, n])) of the Boolean algebra P([1, n])
is isomorphic to the face lattice Cn of the n-dimensional cube.

ΨCn(c , d) has been expressed by Ehrenborg and Readdy and by
Hetyei in terms of (different) signed generalizations of
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by Foata, Strehl and Schützenberger, to express ΨP([1,n])(c , d).
ΨI2(P([1,n]))(c , d) is an eigenvector of I2:

ΨI2(P([1,n]))(c , d) = 2n ·ΨP([1,n])(c , d).

An analogous result for the Tchebyshev operator of the second
kind was obtained by Ehrenborg and Readdy.

The dual type B permutohedron UNCC



Outline Tchebyshev triangulations The graded poset of intervals The dual of the type B permutohedron Flag number formulas

Eigenvectors of I2

Following the blueprint of Ehrenborg and Readdy.
Lifting: If u ∈ Q〈a, b〉n is an eigenvector of I2 then so is
L(u) := (a− b)u + u(a− b) ∈ Q〈a, b〉n+1. Both eigenvectors have
the same eigenvalue. (Was L : u 7→ (a− b)u.)
Products: I2(P × Q) = I2(P)(×)I2(Q)⇒ if u1 and u2 are
eigenvectors with eigenvalues λ1 and λ2 then so is M(u1, u2), with
eigenvalue λ1 · λ2.
Q〈a, b〉n = AQ〈a, b〉n ⊕ SQ〈a, b〉n, where
AQ〈a, b〉n = {u ∈ Q〈a, b〉n : u∗ = −u} and
SQ〈a, b〉n = {u ∈ Q〈a, b〉n : u∗ = u}.
Conjecture: AQ〈a, b〉n is the kernel, and a generating set of
eigenvectors for SQ〈a, b〉n may be obtained by applying all
compositions of length n of L and of u 7→ M(1, u) to 1.

The dual type B permutohedron UNCC
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