MEGR-2156 Assignment Two: VP-44 Cummins ISB 24-valve fuel pump wrench ideas

By: Gregory Markowski MEGR 2156

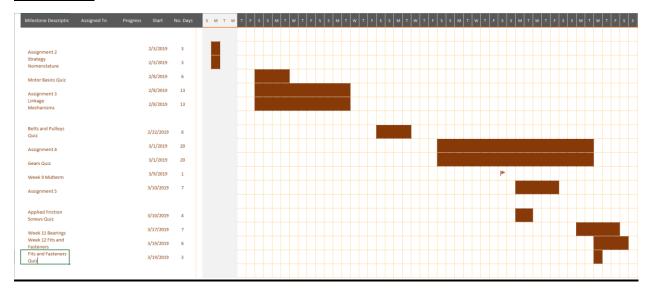
02/07/2019

Table of Contents:

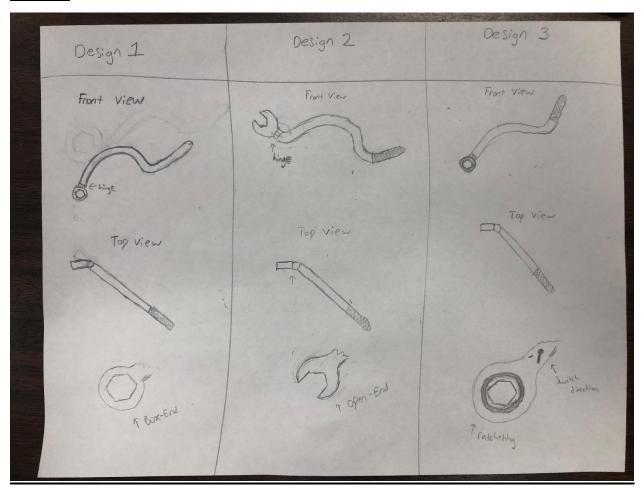
- 1. Front Page
- 2. Table of Contents
- 3.
- a. Purpose
- b. Assumptionsc. Specifications
- d. Gantt Chart
- 4. Sketches
- 5. Design 1
- 6. Design 2
- 7. Design 3
- 8.
- a. Power
- b. Lessons learned
- c. Time
- d. Advisee

Purpose

The purpose of this wrench is to make it easier to assemble and remove the fuel pump from a VP-44 Cummins ISB 24-valve diesel engine. This would improve the efficiency and frustration of working on these engines.


Assumptions

It can be assumed the device will be used at a constant rate of 1 rad/s.


Specifications and Requirements

- It must accept 15mm bolts
- It must be no longer than 10 inches
- It must be able to overcome a torque of 35 ft-lbs
- It must be able to fit around a 4 inch diameter fuel pump and a 2 inch diameter header
- It must have a grip
- It should be easy to get on the head of the bolt

Gantt chart

Sketches

(all designs are designed for mechanics assuming they are 18+ and work for cummins)

FRDPARCC of Design 1

Functional	Design	Analysis	References	Risk	Countermeasur
Requiremen	Parameter	-			es
ts	S				
Strength	Made of	High	Metals	It is brittle if	Using a lower
	tool steel	hardness	depot.com	dropped on a	carbon steel that
		high-strength		hard surface.	maintains a
		but high cost			decent strength.
		compared to			
		other steels			
Ease of use	Box-end	The box-end	http://navyav	The hinge is	Use a pre-bent
	and hinge	holds onto	iation.tpub.c	the weakest	angle instead of
		the head of	om/14310/cs	part of the	a hinge.
		the bolt,	s/Box-	wrench	However this
		while the	Wrenches-	possibly	may make the
		hinge allows	31.htm	compromisin	tool less versatile
		for precision		g strength	and adaptable to
		in a tight			other bolt
		space			locations.
Ease of	Three	Manufacturin	Materials in	Minimal risk	Measures should
Manufacture	parts: box	g should be	Manufacturin		be taken to
	end, hinge	simple and	g Book		produce the tool
	pin, handle	low cost			as efficiently as
					possible.

FRDPARCC of Design 2

Functional	Design	Analysis	References	Risk	Countermeasures
Requirements	Parameters				
Strength	Made of	Lower cost	Metalsdepot.com	May	Using a higher
	mild steel	but less		bend	carbon steel
		strength		under	
		and		high	
		hardness		stress	
		compared			
		to tool			
		steel			
Ease of Use	Open-end	The open-		The	Using a box end
	and hinge	end		open	style
		wrench		end may	
		style can		slip off	
		grip onto		the bolt	
		the bolt			
		faster than			
		the box			
		end style.			
Ease of	Three parts	Similar to	Materials in	Minimal	A production
Manufacture		box end,	Manufacturing	risk	manager can
		cost	Book		oversee
		effective			production to
					ensure efficiency.

FRDPARCC of Design 3

Functional	Design	Analysis	References	Risk	Countermeasures
Requirements	Parameters				
Strength	Made of stainless steel	Highest cost and medium strength between the two other metals. Does not rust	Metals depot.com	Highest	Use a mild steel with a coating rather than stainless
Ease of use	Box end style and ratchet	The box end keeps the wrench on the bolt while the ratchet allows the wrench to stay on for more than one rotation	https://www.ga ragejournal.com/ forum/showthread .php?t=134337	The ratchet costs much more	Use a box end style with no ratchet mechanism
Ease of Manufacture	Many parts	The ratchet mechanism has many parts and would take much more time compared to other methods	Materials in Manufacturing Book	More time is more cost	Use a simpler design

Power

At a minimum the bolts are torque speced to 35 ft-lbs= 47.453 n-m.

P=Tomega

At an average rotational speed of 1 radian per second would mean all three wrenches use at a minimum of 47.453 W power

Lessons Learned

Overall I learned to start projects earlier as I am currently typing this at 2 in the morning.

Activities Date and Time

Time Spent (min)	Activity
120	Brainstorming
45	Gantt Chart
30	Sketching
60	Research
20	Reflection
25	Advisee response

Advisee

Everything looks good however I would make sure your pictures scan in clearly they are little hard to understand.