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The purpose of this paper is to solve a special class of combinational games consisting of two-pile counter pickup games for which
the maximum number of counters that can be removed on each successive move changes during the play of the games. Two players
alternate moving. Each player in his turn first chooses one of the piles, and his choice of piles can change from move to move. He
then removes counters from this chosen pile. A funcfiarz™ — Z* is given which determines the maximum size of the next

move in terms of the current move size. The game ends as soon as one of the two piles is empty, and the winner is the last player
to move in the game. The games for whittk) = k, f (k) = 2k, and f (k) = 3k use the same formula for computing the smallest
winning move size. Here we find all the functiohgor which this formula works, and we also give the winning strategy for each
function. See [7] for a discussion of the single pile game.

1 Introduction

Two players alternate removing counters from two piles. Each player in his turn first chooses one of the piles, which
can change from move to move. He then removes counters from this pile. An orderedaripbe = (b,a,x) of

positive integers is called a position, wherandb represent the sizes of the two piles of counters,»arepresents

the greatest number of counters that can be removed from the chosen pile on the next move. A furittion Z+

is given which determines the maximum size of the next move in terms of the current move size. Thus a move in a
game is an ordered pair of positiofes b, x) — (a—k;b, f(k)), where 1< k < min(a,x), or (a,b,x) — (a,b—Kk, f (k)),

where 1< k < min(b,x). The game ends as soona@sof the two piles is empty, and the winner is the last player to
move in the game. At the start of the game, the positii, x) is specified. We started this project by studying the
strategy for the simple move functiorfigk) = k, f (k) = 2k, and f (k) = 3k. We then noticed that the smallest winning
move size for each of these three functions is computed by the same formula, which we will soon state in the main
theorem. We then took upon ourselves the problem of finding (with proof) all funcfio@s™ — Z* for which this

formula works. This paper gives the complete solution to this problem. This also explains why many of the functions
that we must include may seem quite artificial.

As an example, consider the functidiik) = k and the initial positiona, b,x) = (3,4,2). This means the first
moving player can take 1 or 2 counters from either pile. Suppose he removes 2 counters from the pile with 4 counters.
The move can be depicted €&4,2) — (3,4—2, f(2)) = (3,2,2). Then the second moving player can remove 1 or 2
from either pile. Suppose he takes 2 from the pile with 2 counters. He wins the game because he has created an empty
pile.

Notation. The set of positive integers is denoteddy andB = {1,2,4,8,16,32,... }, the binary base.

Definition 1. For each positive integer Ng(N) is the greatest power of 2 that divides N. AIg00) = . Thus
0(1) =1, g(24) = 8since8| 24 and 16 does not dividR4. Observe that N> g(N), andg(N) € B when Ne Z+.
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2 Admissible Functions

Definition 2. A function f: Z+ — Z*, f(») = », is calledadmissibléf it satisfies the following four conditions:
1. ForallNez*, f(g(N)) < f(N).
2. ForallNe B, f(N) < 4N.
3. ForallNe B, N < f(N).
4. ForallNe B, f(N) <2N or N+ f(N) < f(2N).

The admissible functions are precisely the ones that satisfy our main theorem. Itis easy tols@¢)thall, f (N) =
2N, f(N) = 3N satisfy these 4 conditions, btifN) = 4N does not. Also, if > 0is areal numberif,(N) = |rn| satisfies
these 4 conditions if and only if &£ r < 4. Also, f(N) = [rn] satisfies these 4 conditions if and only iKlr < 3. Of
course, the functions included in Definition 2 can be far more complex than any of these ‘primitive’ functions.

We now make the problem more precise.

3 The Problem

Two players play the game using an admissible funcfionif a,b are the two pile sizes, thgile position can be
denoted either ag,b) or as(b,a). For every pile positiorfa, b), we wish to computé.(a,b), which we define as

the least winning move size. This means that a winning move is a relr{ayb) counters from one of the piles. Of
course,L(a,b) by itself does not necessarily tell the player from which pi{e, b) is to be removed. However, this

fact will be revealed in the proof that we soon give. We also state this strategy immediately after the main theorem.
Also, if x < L(a,b), the removal ok counters must be a losing move no matter from which of the two pitesinters

is removed.

4 The Solution

We definel(a,b) = » if a=0 orb = 0 because the game is over once one pile is empty. We can easily skt
is the leask € {1,2,3,...,min{a, b}} such thatf (x) < L(a—x,b) or f(x) < L(a,b—x). Of coursel-(a,b) = L(b,a).

In this paper, it is more convenient to denote a pile positiofaal), wherea < b andN =b—a. Thus(a,N)
means thatd’ is the smaller pile size anl is the difference between the larger pile size and the smaller pile size.
Hence we wish to computg(a,N), 0 <a, 0 < N. Of courseL(0,N) = . The following theorem findk(a, N) for
all admissible functions.

Main Theorem. Let f: Z* — Z* be an admissible function. For all positiofa, N), where a> 1, the least winning
move l(a,N) is computed by the following rule:

Case 1. If a< f(g(N)), then L(a,N) = a.

Case 2. If a> f(g(N)), then L(a,N) =g(N).

Sinceg(0) = o, f () = 0 anda < o, this meand.(a,0) = a.

Strategy. The strategy also provides a partial outline of the proof of the main theorem.

Case 1 If a< f(g(N)), thenL(a,N) = a. The moving player removes counters from the smaller pile and wins
immediately.

Case 2 If a> f(g(N)), thenL(a,N) = g(N) and, from Note 1, which we state and prove in sectiog(Bl) < a.
The strategy has two subcases.

A. Supposa(N —g(N)) > 4g(N). This includes the subcase wheMe-g(N) = 0. The moving player removes
g(N) counters from the larger pile.
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B. Suppos@(N —g(N)) = 2g(N). Observe that (1) and (2) below are not mutually exclusive.

(1) Supposd (G(N) < 2g(N)). Then the moving player removgéN) from the larger pile.

(2) Supposg(N)+ f(g(N)) < f(2g(N)). If f(G(N)) <a—7g(N), then the moving player removgsN) from
the smaller pile. But iff (G(N)) > a—g(N), then the moving player removgsN) from the larger pile.

Remark. At the end of the paper, we show that the main theorem is true for an arbftragy — Z*, f () = oo, if
and only if f is admissible.

5 Preliminary Work

Notel. In Case 1L (a,N) =a < f(g(N)). In Case 2).(a,N) =g(N) < f(g(N)) < a, where we note thag(N) <
f(9(N)) is true by Condition 3 orf sinceg(N) € B = {1,2,4,8,...}. Therefore, if the main theorem is true for a
position(a,N),a > 1, thenL(a,N) <aandL(a,N) < f(g(N)). Of courseL (a,N) < ais also clear since the removal

of acounters from the smaller pile is an immediate win. We will prove the main theorem by first proving three lemmas.

Lemma 1. For all x,N € Z*, if g(x) < g(N) and x< N, theng(x) =g(N —x) = g(N +x). If g(x) < g(N) and x> N
theng(x) = g(N+Xx).

Proof. Use the binary representation. O

N =) = N +x).

Corollary. If x,N € Z*™ and x< g(N), theng(x) < x < g(N) < N which implieg(x) =
Lemma 2. Let f:Z+ — Z* be admissible. Suppogey € B andx <y. Then {X) < f(y).

Proof. Supposef (X) > f(y). Then it is easy to see that there exists B such thatf (x) > f(2x), sincef cannot be
non-decreasing of&, 2%, 4%, 8%, ...,y}. Now since X € B, we know by Condition 3 orf that f (2x) > 2x. Therefore,
f(x) > f(2x) > 2x. This meand (x) > 2x. Therefore, sincg € B, we know by Condition 4 orf thatx+ f (x) < f(2x).
Therefore,f(x) < f(2x), which contradicts the fact thd(x) > f(2x). O

Given the positior{a,N), suppose we removecounters from the larger pile. The new position becofieell — x)
as long as &< N —x. However, ifN — x < 0, the new position becomds + N — x,x— N). This is because when
N —x < 0, the smaller pile size becomas- N — x, the larger pile size becomes ', and the difference between the
larger and smaller pile size becomes N. We now state Lemma 3.

Lemma 3. Suppose f is admissible and the conclusion of the main theorem is true for all pogaidhsa > 1.

For the position(a,N), suppose & f(g(N)). That is,(a,N) comes under Case 1 of the main theorem. Suppose x
counters are removed from the larger pile, wheredd < a+ N. The new position becomgs+ N — x,x— N), where
1<a+N-x<aandl<x—N. Then it cannot be the case thaixf < L(a+N —x,x—N).

Proof. Since the main theorem is true for the positi@ N —x,x—N) and also I< a+ N—x< a,1<x—N, we
know by Note 1 that.(a+N —x,x—N) < min(a+N —x, f(g(x—N))). We now consider two cases:

Case AQ(x) #g(N), and

Case Bg(x) =g(N).

Case A Sinceg(x) #g(N) andx—N > 1, it is easy to see th@(x) g(x—N). Note tha@(x) € B,g(x—N) € B.
Now from Lemma 2 and Condition 1 ofy we know thatf (x) > f(g(x)) > f(g(x—N)). Therefore, iff (x) < L(a+
N —x,x— N), we would have (by combining the above mformatlcﬁr@) <L(a+N-—xx—N) < f(@x—N)) < f(x),
a contradiction sincé(x) < f(x) is impossible.

Case B Since we are assuming in Lemma 3 that f(g(N)), we havea < f(g(N)) = f(g(x)) < f(x), where
f(@(x)) < f(x) from Condition 1 onf. Thereforea < f(x). Now f(x) < L(a+N—x,x—N) implies f(x) < L(a+
N—x,x—N) <a+N-—x< a< f(x), a contradiction sincé(x) < f(x) is impossible. O
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It is important to note that although Lemma 3 assumes the main theorem is true for all pdsifdhs > 1, it can
also be used later in the induction argument sineed-+ N — x < a, the induction will be ora, and we will only be
interested in the positiofa+ N —x,x— N).

6 Proof of the Main Theorem

Starting the Induction

We now prove that the main theorem is true for all posititm#),a > 1, by mathematical induction ca Of course,
L(0,N) =c. NowL(1,N)=1is obvious for alN since the removal of 1 counter from the smaller pile is an immediate
win. Also,a=1< f(g(N)) is true for allN, which means that the theorem requitgg, N) = 1.

Since the induction is started, we can assume the theorem is true for all po&itibhsa=1,2,...,a—1,a> 2.
We will now prove that the theorem is true for all positiofgsN). We do this by induction oN in the order
(a,0),(a,1),(1,2),(a3),....

First, note that for all positiong, N),a> 1, itis true that (a,N) < a. This is because the removalafounters from
the smaller pile is an immediate win sinaés the smaller pile size. We now show that, 0) = a, as is required by the
theorem. By symmetry, sin@e= b, we see thalt(a,0) is the leask € {1,2,...,a} such thatf (x) < L(a—x,x). First,
we show thak ¢ {1,2,3,...,a—1}. Now f(g(x)) < f(x) by Condition 1 onf. From Note 1 (sinca—x> 1) and from
the induction, we know thdt(a— x,x) < f(g(x)) < f(x). Therefore, ifxe {1,2,...,a—1} and f(x) < L(a—X,X),
we would havef (x) < L(a—x,x) < f(x), a contradiction. Of course, when= a, we have the obvious fact that
f(x) = f(a) < L(a—a,a) =L(0,a) = ». Therefore| (a,0) = ais true, as it should be.

Main Induction

Next, we deal successively witl{a,N),N > 1 andN starting afN = 1 and increasing. We assume that main theorem
is true forN € {1,2,...,N — 1}, and we show it is true fofa,N).
To evaluatd_(a,N), we must find the leaste {1,2,3,...,a} such that

(@) f(x) <L(a,N—x),andN—x>0, or
(b) f(x) <L(a—x,N+x),

where we note in (a) that we only need to consikigrhereN — x > 0. This is because of two reasons. First, when
a> f(g(N)), we need to prove(a,N) =g(N). Nowg(N) < N whenN € Z*. Therefore, we only need to consider

in the range 12,3,...g(N), and obviously &< N —x in this range. Second, when< f(g(N)), Lemma 3 along with
the mathematical induction of thogéa N)’s that we have already dealt with shows us that) < L(a+N —x,x—N)

is impossible when ¥ a+N—-x <aandN—-x< 0.

Note that 1< a+ N —x <awhenx e {1,2,3,...,a},1 <N, andN — x < 0 which means that the induction an
can be used. This means that Lemma 3 can be used with the inductesincea+ N — X < a, a technicality that
we mentioned above. We will now consider two caseg#®N), which correspond to the two cases given in the main
theorem.

7 The Two Cases
Case la< f(g(N)). We must show.(a,N)
Case 2a> f(g(N)). We must show.(a,N) =g(N).

a.

Case 1 a< f(g(N)). We must shovk(a,N) = a. Therefore, we must show that the least {1,2,3,...,a} such
that (a) or (b) is true ix = a. Of course, (b) is true fox=asincef(a) <L(a—a,N+a) =L(0,N+a) = . So let
us show thak € {1,2,3,...,a— 1} will not work in (a) or (b).
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We take care of (a) first, and we consider two subcases for (a). Of course, we can dssume0 in (a) as we
have already shown.

Subcase Af (x) > a. If (a) is true, we havé (x) < L(a,N —x) <a< f(x), a contradiction. Note that(a,N—x) <a
is true since for any positiofa,N),a > 1, it is always true that(a,N) < a sincea is the smaller pile size.

Subcase Bf (x) < a. We havef (x) < a < f(g(N)) from the definitions of Subcase B and Case 1. First, suppose
g(N) <g(x). Sinceg(N) € B,g(x) € B, from Lemma 2 and Condition 1 ochwe havef (g(N)) < f(g(x)) < f(x), a
contradiction sincd (x) < f(g(N)) is true. Thereforeg(x) < g(N) is true.x < N is true sincex < N. So by Lemma 1,
g(x) =g(N —x). Thereforef (G(N—x)) = f(g(x)) < f(x) by Condition 1 onf. Of course, &K N—Xxis true sincex< N.
Now if (a) is true, we havd (x) < L(a,N —x) andN —x > 0. ActuallyN —x > 1. Therefore,f(x) < L(a,N—x) <
f(@(N—x)) < f(x), a contradiction. Note 1 and the induction hypothesis impliesltt@aiN —x) < f(g(N —x)) since
N—x<Nand1l<a

We next show that € {1,2,3,...,a— 1} will not work in (b). We consider two subcases.

Subcase Af(x) > a—x. If (b) is satisfied,f(x) < L(a—x,N+x) < a—x < f(x), a contradiction. Note that
L(a—x,N+x) <a—xsinceL(a,N) <awhena>1,and I<a—x=a.

Subcase Bf(x) < a— x. This means that+ f(x) < a. First suppos@(x) > g(N). Therefore,f(x) > f(g(x)) >
f(g(N)), by Condition 1 onf and Lemma 2 sincg(x) € B,g(N) € B. Thereforex+ f(x) > x+ f(g(N)) > x+a,
definition of Case 1> a > x+ f(x), a contradiction since+ f(x) > x+ f(x) is impossible. Thereforg(x) < g(N)
is true. This implieg(x) = g(N+x), Lemma 1. Thus(x) > f(g(x)) = f(G(N+Xx)) , by Condition 1 onf. But if
x satisfies (b), we havé(x) < L(a—x,N+x) < f(@(N+x)) < f(x), a contradiction. By Note 1 and the induction
La—=xN+x) < f(g(N+Xx)) since I<a—x< a.

We now deal with Case 2.

Case 2 a> f(g(N)). We must show.(a,N) =g(N). Therefore, we must show that the least {1,2,3,...,a}
such that (a) or (b) is satisfied¥s=g(N) . Of courseN > 1. Note thag(N) < f(g(N)) < a, by Condition 3 onf
(sinceg(N) € B) and the definition of Case 2. Also, rememigélN) < N.

Dealing with xe {1,2,...,g(N) — 1}.

Let us first show thax € {1,2,3, ...,0(N) — 1} will not work in (&) or (b). Note thaN —x > 1 whenx <
Now x < g(N) impliesg(x) = g(N — x) (N +x) by Lemma 1. Therefore, by Condition 1 dnf(x) >
F(@N —x) = F(GN +x)).

If (a) is satisfied by < g(N), we havef (x) < L(a,N—x),1 <N—x. Therefore, by Note 1, the fact thatdN —x,
and the induction (sincBl —x < N), we havef(x) < L(a,N—x) < f(g(N —x)) < f(x), a contradiction. If (b) is
satisfied, we havé (x) < L(a—x,N+x) < f(g(N+x)) < f(x), a contradiction. Note that £ a— x is true since
x < g(N) < f(@(N)) < a, (as stated above). Thliga—x,N+x) < f(g(N +x)) follows by Note 1, the induction
(sincea—x < a)and 1< a—x.

g(N) <N.
fg() =

Dealing with x=g(N). Let us now show thatx = g(N) will satisfy at least one of (a) or (b). We consider two
possibilities. Remembeg(N) <aandg(N) <N.

First, supposw > 4. This also includes the case whéte-g(N) = 0, so thag(N —g(N)) = co.

We show thaik = g( ) satisfies (a). That i$(x) < L(a,N—x),0 < N —x. Of course, 06< N — x is obvious since
g(N) < N. Lettingx=g(N), we haveg(N — x) > 4x. But f(x) < 4x s true by Condition 2 orf sincex =g(N) € B.
Therefore,f(x) < 4x <g(N —x). Therefore,f(x) < g(N —x). Also, f(x) = f(g(N)) < a, by the definition of Case 2.
Therefore,f(x) = f(g(N)) < L(a,N —x), sincef(x) < aandf(x) < g(N —x) andL(a,N —x) € {a,g(N — x)} where
we note that. (a,N — x) € {a,g(N —x)} is true by induction since & N —x < N. This means that (a) is satisfied by
x=0(N).

Next, suppos@N# # 4. This meanw =2

Now by Condltlon 4 onf,x = g(N) satisfies eitherf (x) < 2x or x+ f(x) < f(2x) sincex = g(N) € B, where
B=1{1,24.8,...}.
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First, supposd (x) < 2x. We show thak = g(N) satisfies (a). That is, we shof¥x) < L(a,N —x) andN —x > 0.
Of course N —x=N—g(N) > 0 is true. Lettingc=g(N) in g(N—g(N)) = 2g(N), we haveg(N — x) = 2x. This
meansf (x) = f(g(N)) < 2x=g(N —x). Therefore,f(x) < g(N —x). Also, f(x) = f(g(N)) < a, by the definition of
Case 2. Thereford,(x) = f(G(N)) < L(a,N —x) sincef(x) < a, f(x) <g(N —x) andL(a,N—x) € {a,g(N—x)} by
the mathematical induction sindé— x < N. This means (a) is satisfied By=g(N).

We next assume=g(N) satisfiesx+ f(x) < f(2x) along with the above assumption tixat g(N) satisfieg(N —
X) = 2X.

Nowg(N —g(N)) = 2g(N) implies 4(N) <g(N+g(N)) sinceN must be of the binary form

N = XXXX---X1100--00.

That is X <g(N+Xx).

We now consider two subcases, where g(N). Recall thatf (g(N)) < ain Case 2.

Subcase Af(x) < a—x. We show that (b) is satisfied by=g(N). That is, we showf(x) < L(a— x,N +X).
Rememberx=g(N) < a.

Now f (x) < 4x, by Condition 2 onf sincex=g(N) € B. Therefore, we know (x) < a—xandf (x) < 4x <g(N+Xx),
whenx=g(N). Therefore,f(x) < L(a—x,N+x) sincef(x) <a—x, f(X) <g(N+x),1<a—xandL(a—x,N+x) €
{a—x,9(N+x)}, by the induction sinca—x < a. This means (b) is satisfied by=g(N).

Subcase Bf (x) > a—x. We now show that (a) is satisfied ky=g(N). This means that we shof(x) < L(a,N—Xx).

Of course, K N—g(N) =N —x.

Now a < x+ f(x) < f(2x), by the definition of Subcase B and the above assumption abdtiereforea < f(2x).
Also, g(N — x) = 2x from the above assumption. Therefofég(N —x)) = f(2x). Thusa < f(2x) = f(g(N —x)).
That is,a < f(g(N —x)). Therefore, the induction on the main theorem impliés, N — x) = a sinceN —x < N and
a< f(g(N—x)). Also by the definition of Case Z,(x) = f(g(N)) < a. Therefore f(x) < L(a,N —x), which means
that (a) is satisfied by =g(N). O

We now state the converse of the main theorem.

Converse Theorem.Suppose fZ* — Z*, f(») = o, is given, and we play our game with this function f. Suppose
also that the conclusion of the main theorem is true for f. Then it is also true that f satisfies all of the 4 conditions
listed in Definition 2.

Proof. (1) We show thaf satisfies Condition 1. Therefore, suppose there existZ ™ such thatf (g(x)) > f(x). We
show that this leads to a contradiction. Consider the posiioN) = (f(g(x)) +x,0). Now since the main theorem
is true,L(f(3(x)) +x,0) = f(g(x)) +x. Let us now remove counters from one of the equal piles. This gives the new
position(a,N) = (f(g(x)),x). Nowa = f(g(x)) and f(g(N)) = f(g(x)). Thusa< f(g(N)). Therefore(f(g(x)),x)
comes under Case 1 of the main theorem, which meah&j(x)),x) = f(g(x)).

This also meand (x) < L(f(g(x)),x) = f(g(x)) since we are assuming th&tx) < f(g(x)). Now sincex <
f(3(x)) +x, this means thdt(f (g(x)) +x,0) = f(g(x)) + x cannot be true, which contradicts the main theorem.

(2) We show thatf satisfies Condition 2. Suppose there existsB such thatf (x) > 4x. Consider the position
(a,N) = (a,3x), whereac Z*,a>g(N),a> f(g(N)),a> f(g(N—g(N))) anda—g(N) > f(G(N+g(N))).

In binary we can writex= 10000 N = 3x = 110000 where 0000epresents a string of 0's. Singe B, it is obvious

—~—~ ~—~—~ ~—~—

thatN = 3x satisfiesg(N) = 9(3x) = x.g(N —g(N)) = 2g(N) = 100000 andg(N +g(N)) = 4g(N) = 1000000 Of
course, by assumptiori{x) = f(g(N)) > 4g(N) = 4x. Since the main theorem is true fa, N) = (a, 3x), we know
the following. First, sincea > f(g(N)), we know thatL(a,N) = g(N). Of course, we are also assumiag- g(N).
This means that the removal gfN) from at least one of the two piles must be a winning move. Therefore, one
of the following must be true. Eithef(g(N)) < L(a,N—g(N)) or f(g(N)) < L(a—g(N),N+g(N). Now by the
assumption om, we know tha > f (g(N—g(N))) anda—g(N) > f (g(N+g(N))). Therefore, by the main theorem,

L(&N—-g(N)) =g(N-g(N)) = 2g(N).
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Also,L(a—g(N),N+g(N)) =g(N+7g(N)) =4g(N). Sowe need (g(N)) < 2g(N) or f(g(N)) < 4g(N). But since
g(N) =xandf(g(N)) > 4g(N), this is impossible. Therefore, the main theorem cannot hold for the po&itidl), a
contradiction.

(3) We show thaff satisfies Condition 3. Suppose there existsB such that 1< f(x) < x. Consider the position
(a,N) = (2x,2x). Sincex € B, we can write this ag = 10000 and X = 1000003x = 110000 Of coursep(2x) = 2x

~—~—~ —~— —~—
sincex € B.

Now no matter whether the positiga, N) = (2x,2x) satisfies Case 1 or Case 2 of the main theorefa,N) =
L(2x,2x) € {a,0(N)} = {2x,2x}, which meand.(2x,2x) = 2x. Let us now remove counters from the smaller pile,
which gives the new positiofx,3x). We show thatf (x) < L(x,3x). This meand.(2x,2x) cannot exceed, which
means thak (2x,2x) = 2x is false, contradicting the main theorem.

Now L(x,3x) € {x,9(3x)} = {x,x}. ThereforeL(x,3x) = x and f(x) < x= L(x, 3x) is true by the assumption that
we made about.

(4) We show thaf satisfies Condition 4. Suppose there existsB such thatf (x) > 2x andx+ f(x) > f(2x).

Consider the positiotia,N) = (x+ f(x),3x)). Sincex € B,g(N) =g(3x) = x. Now a > f(g(N)) is true since
a=x+ f(x) > f(x) = f(g(N)). Therefore,(a,N) comes under Case 2 of the main theorem, Bf@N) = L(x+
f(x),3x) = g(N) = x. This means that the removal »tounters from one of the two piles must be a winning move.
This means that either a. or b. must be true.

a. f(x) < L(x+ f(x),2x). Nowg(2x) = 2x. Therefore,f (g(2x)) = f(2x).

Now x+ f(x) > f(g(2x)) = f(2x) is true by the assumption on

Therefore, by Case 2 of the main theorem, we know tfat- f(x),2x) = §(2x) = 2x. Therefore,f(x) < L(X+
f(x),2x) = 2xis impossible sincé (x) > 2x is also assumed fot

b. f(x) < L(f(x),4x). Now L(a,N) < ais always true whem > 1 sincea is the smaller pile size. Therefore,
f(x) < L(f(x),4x) < f(x) must be true, which is impossible. O

The Misére Version

The strategy given in this papeannotbe used to play the miése version of this game. The rare version is a totally
different game.
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