Applying Poncelet’s Theorem to the Pentagon and the

Pentagonal Star

Arthur Holshouser
3600 Bullard St.
Charlotte, NC,

USA

Stanislav Molchanov
Department of Mathematics,
University of North Carolina Charlotte,
Charlotte, NC 28223, USA

smolchan@uncc.edu

Harold Reiter
Department of Mathematics,
University of North Carolina Charlotte,
Charlotte, NC 28223, USA

hbreiter@email .uncc.edu

1 Abstract

A special case of Poncelet’s Theorem states that if all points on circle C} lie inside of circle
C7 and if a convex m-polygon, n > 3, or an n-star, n > 5, is inscribed in circle C; and

circumscribed about circle Cy, then there exists a family of such n-polygons and n-stars.



Suppose all points on Cy lie inside of C7, R,r, are the radii of C7, Cs respectively and
p is the distance between the centers of C,C5. For n > 3, in a companion paper we
give an algorithm that computes the necessary and sufficient conditions on R, 7, p, where
R > r+ p,r > 0, so that if we start at any arbitrary point ) on C; and draw successive
tangents to Cy (counterclockwise about the center of Cs) then we will return to @) in exactly
n steps and not return to @) in fewer than n steps. This will create the above family of
n-polygons and n-stars.

However, when n > 5, this companion paper relies on computers to find these conditions.
In some ways, this is a sign of defeat. In this paper, we illustrate for n = 5 a technique that
can compute these exact same necessary and sufficient conditions on R, r, p without using a

computer.

2 Introduction

A special case of Poncelet’s Theorem states that if all points on circle Cy lie inside of circle
C7 and if a convex m-polygon, n > 3, or an n-star, n > 5, is inscribed in circle C; and
circumscribed about circle Cy then there exists a family of such n-polygons and n-stars.
Suppose all points on (5, lie inside of C, R, r are the radii of C, C5 respectively and p is the
distance between the centers of C, Cs.

For n = 5, we illustrate a technique that can be carried out by hand that computes the
necessary and sufficient conditions on R, r, p, where R > r 4+ p,r > 0, so that if we start at
any point Q@ on C, and draw successive tangents to Cy (counterclockwise about the center

of Cy) then we will return to @ in exactly 5 steps and not return to @ in fewer than 5 steps.



If we consider R > p > 0 to be arbitrary but fixed and consider » > 0 to be a variable,
then we end up with two polynomial equations P (R, p,7) =0, P (R, p,r) = 0 that are each
of third degree in the variable . Each of the equations P (R, p,r) = 0, P (R, p,7) = 0 has
exactly one r-root that satisfies R > r + p,r > 0. This r-root of P (R, p,r) = 0 is the value
of r so that we get a family of pentagonal stars and this r-root of P (R, p,7) = 0 is the value
of r so that we get a family of pentagons when we start at any arbitrary point ¢ on Cf.

In this paper, we only deal with the 5-star. The geometric reasoning for the convex
pentagon is very similar. Also, we know from the companion paper that the two polynomials
P(R,p,r),P(R,p,r) are related by P (R, p,r) = P(—R, p,7) = P (R, p, —r). Thus, we can
immediately write the polynomial P (R, p,) directly from the polynomial P (R, p, r) without

doing any additional work.

3 A Preliminary Unfactored Form of the Polynomial
P (R, p,7)

In this section, for the pentagonal star, we compute a preliminary first version called P* (R, p, 1)
of the polynomial P (R, p,r). Then in Section 4, we refine P* (R, p,r) by factoring it into
the following four irreducible factors where R? — p? = 6.
P* (R, p,r) = [8p*Rr® — 4R*0r® — 2R0%*r + 6°)-[2Rr + 6)-[r — R + p]* and we call P (R, p,r) =
8p*Rr® — 4R*0r* — 2R0%r + 63.
Of course, for the pentagon we have P (R, p,7) = P (=R, p,r) = P (R, p,—r) = —8p*Rr3—

AR%0r? 4+ 2R0*r + 63,



The linear factor r— R+p = 0 in P* (R, p,0) is extraneous since we require R > r+p, r >
0. Also, the factor 2Rr + 6 = 0 in P* (R, p,r) is an Euler type of equation which has only
an extraneous negative r-root since 6 > 0.

By Poncelet’s Theorem, we can use any drawing to compute P* (R, p,r) = 0 that simpli-
fies the problem. Therefore, by Poncelet’s Theorem, the simple drawing of Fig. 1 is all that
we need to compute P*(R, p,r) = 0 for the pentagonal star. An analogous drawing is used

for the convex pentagon. The 6 in figure 1 is different from the 6 is § = R? — p?.
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Fig. 1 A Drawing to Compute P* (R, p,r) =0
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Fig. 1 A Drawing to Compute P* (R, p,7) =0

O is the center of the big circle C'y and O, is the center of the inside circle Cy. R, r are
the radii of C, Cs respectively and p = 0,05 is the distance between the centers O; and Os.

We immediately have (a) and (b).

(a) O2y = (Ogv) -sin = (R—p)sin =r.

(b) O1t = (Oqw) - cosp = Rcos ¢ = p + .

The parametric equation of the line US is x = Rcos¢ — t(Rcos¢+ Rcosl),y =
—Rsing 4+t (Rsin ¢ + Rsinf) where t € R.

Therefore, = (sin ¢ + sin @)+y (cos ¢ + cosf) = R cos ¢ (sin ¢ + sinf)— R sin ¢ (cos ¢ + cosf) =

Rsinfcos ¢ — Rcosfsing = Rsin (0 — ¢) = 2Rsin (%) cos (%) :



Therefore, 2z sin (9;¢) Ccos (9_T¢) + 2y cos (@) oS (9_T¢) = 2Rsin (O_T‘b) oS (%) .

Therefore, x sin =% 9+¢ + y cos 9+¢ = Rsin 2 is the equation of the line US.

Rsin %

Letting y = 0 in this equation of the line US, we have Oz = T

Therefore, 1Oy = 0102 — Oz = p— Oz = p— m—9+¢ Also, Oyz = 205 - sin == 9+¢ =r=

[ - Rising] sin M Therefore, (x).psin M — Rsin %‘b =T
Now sin? % = %M. Also sin? % = 1_%(9_@. Also sin#sm 2¢ = %cosgb —
% cos 0.
Squaring (*) and making these substitutions we have p? [1 — cos (0 + ¢)]+R? [1 — cos (6 — ¢)]—
2pR [cos ¢ — cos ] = 2r%.
Therefore, —R? cos (6 — ¢) — p®cos (0 + ¢) + 2pR [cos 6 — cos ¢] = 2r* — R* — p?.
Therefore, — R? [cos 6 cos ¢ + sin 0 sin ¢]—p? [cos 0 cos ¢ — sin @ sin p|+2pR [cos ) — cos @] =
212 — R? — p2.
Therefore, (—R? + p?) sinfsin ¢ = 2r°—R?—p?—2pR (cos § — cos ¢)+(R? + p?) (cosf cos ¢) .

Squaring we have

(—R2 + p2)2 (1 — cos? 9) (1 — cos? qb)
= (xx) (—R*+ p2)2 (1 —cosf) (1+cosf)(1—coso)(1+cosep)

= [2r — R* — p* — 2pR(cos 0 — cos ¢) + (R* + p°) (cosf cos ¢)}2 .

Since we have a homogeneous geometric equation in the variables R, r, p, it is convenient

tolet R=1.

From (a), (b) we know that sing = = 12/}

= =ptr

P
2
Therefore, cos =1 — 2sin?% =1 —2 (ﬁp) and cos ¢ = p + r. Therefore, 1 — cosf =

[\

2
> :2(1(1p)p)—22r2’1_cos¢:1_p_,r.’1+cos¢:1—|—p—|—

2
2( ) ,1+cos9:2—2(lj

1—p p
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r,cos —cosp=1—p—1r—2 <1ip>2 and cosfcos¢ = (p+ ) (1 -2 <lip>2> .

If we make these substitutions and also substitute R = 1 in (%) and multiply the
equation by (1 — p)* and partially simplify the equation by straightforward calculations and
also transpose everything to one side of the equation, then we have the following equation
which we call the preliminary polynomial equation.

P (R,r,p) = [[2r> + 20r + p* = 2p — 1] (1 = p)* + 4pr> + (1+ ) [(1 = p)* = 2] (p+1)] -

4(1—p2)2 [7“2(1—,0—7")2(1—p+7")(1+p+7")] = 0.

4 Factoring the Preliminary Equation P*(R,r, p) =0 of

Section 3 into Irreducible Factors

The above preliminary polynomial equation P*(R,r,p) = P*(1,r,p) = 0 in the variable r
at first glance appears to be intractable. However, if we substitute specific values of p e.g.
p=0,p=1,p =2 we quickly conjecture that this polynomial equation can probably be
factored into simple factors.

If we substitute p = 0, the preliminary equation becomes P* (R, p,r) = P*(1,0,r) =
2r2 =1+ (1 —22)r]* — 4r2(1 —¢2)® = 0 which is equivalent to [2r3 —2r2 —r +1]* —
203 — 27 = [—2r2 4+ 1) [4r3 =22 = 3r 4+ 1) = —(r — 1) (2r +1) (r — 1) (42 + 2r — 1) =
—(r—=17@2r+1)4r?+2r—1)=0.

By making other substitutions for p, we soon conjecture that P* (R,r,p) = P*(1,r,p) =
P(1,7,p)(2r+1—p®) (r—1+p)> =0 where P (1,7, p) is a 3rd degree polynomial in r.

We now rigorously prove this conjecture. By direct substitution of r = 1 — p into



P*(1,7,p) we can easily prove that r = 1 — p is a double r-root of P*(1,7,p) = 0. To
see this, we see that P* (1,7, p) is of the form P* = [zzz]® — [yyy] (1 — p — r)* and we only
need to show that [xxzz] = 0 when r = 1 — p to show that » = 1 — p is a double root of
P (1,r,p)=0

Now in [zzz] when r = 1 — p we see that 2r? +2pr +p?> —2p—1=2r(p+71) + p*> —
20 —1=2(1-p)+p*—2p—1= p?>—4p+ 1. Therefore, in [rzz] when r = 1 — p
we have [2r2 4+ 2pr +p> —2p — 1] [L — p]* + 4pr® = (02 —4p+1) (1 — p)* + 4p(1 — p)* =
(p*+1) (1= p)*.

Also, in [zzz] when r =1 — p, we have

L+ [(A=p) =2 (ptr)=(1+0°) [1=p) =201 —p)"] == (1+0°) (1 - p)".

Therefore, when r = 1 — p, [zzz] = (p*+1) (1 —p)* — (1 + p?) (1 — p)* = 0. Therefore,
r =1 — pis a double r-root of P*(1,r,p) = 0.

The proof that 2r 4+ 1 — p* = 0 gives an r-root of P*(1,r, p) = 0 takes a little longer but
it is completely straightforward.

Therefore, we know that P* (1,7, p) = (ar® + br? + cr +d) (2r + 1 — p?) (r — 1 + p)? where
a, b, c,d need to be determined.

Now, P* (1,7, p) = agr® + a1r® + aor* + azr® + a4r? + asr + as.

For P*(1,r,p) it is fairly easy by straightforward calculations to compute the following
coefficients.

ap = 16p°%.

ar=-8(1—p)(—p*+3p°+p+1).

as =—2(1—p)’ (1+p)*.



as = (1—p)° (1+p)".
As an example, to compute ag we have ag =4 (1 + ,02)2 —4(1— p2)2 = 16p°.

Also, to compute as we have the following relevant terms,
- 2 2

20(1=p)’r+(p*—2p—1)(1—p)°+ 20(1=p)"r+ (14 p%) (1= p)°r+

I+p)(A=p)r+(1+p)(1=p)p (P* =20 =1) (1= p)* + (14 p*) (1= p)*p
(L+p)* (1= p)*r+ )
v = [+ p (1= = (140 (1= )]

(P +p*—p—1)(1—p)
From this, we see that a5 = —2 (1 — p)® (14 p)*. To compute ag we let r = 0 in P* (1,7, p)

and wehave ag = [(p? —2p — 1) (1 — p)” + (1 + p?) (1 — p)2p]2 == P+ —p-1=
=) [+ 1> (0—- 1] = (1-p)° (1+p)".

The calculation of a; is a little longer but it is completely straightforward. However, we
must be careful not to overlook anything in computing a;. Once we know ag, a1, as, ag, it is
completely straight forward to compute P (1,7, p) = ar®+br’+cr+d = 8p*r3—460r?—20*r+6°
where § = 1 — p2. So P*(1,7,p) = P(1,7,p) - (2r +1—p?) (r — 1+ p)*>. We now pro-
ceed to rigorously prove this. We first note that (8p°r® —46r? — 20%r + 63) (2r +0) =
16p%rt — 860213 — 80%r? + 0. Therefore, we prove that P* (1,7, p)
= (16p*r" — 802 — 80212 + 01) (r — 1+ p)” = (16p*r" — 80%r® — 80212 +0%) (12 —2(1 — p) 7 + (1 — p)*) .

This equality will be true if and only if the equality correctly computes the above values
for ag, a1, as, ag, since we have already proved that 2r + 6 and (r — 1+ p)2 are factors of
P*(1,7,p). Now ag = 16p? is obviously computed correctly.

Also, a; = —32p% (1 — p) — 8 (1 — p?)* =
—8(1—=p) [4° + (14 )" (1= p)] = =8(1 = p) [-p* +3p* + p+1].

Also, a5 =-2(1—p)(1—p) ' ==2(1—p)° (1+p)*.



Also, ag = (1= p*)" (1= p)* = (1=p)° (1+p)".

Therefore, we have now rigorously proved that P* (1,7, p) = P (1,7, p)-(2r + ) (r — 1 + p)?
(8% — 401> — 26%r + 6%) (2r + 0) (r — 1 + p)” where § = 1 — p.

Of course, this equation can be written for P* (R, r, p) in the three variables R, r, p since
the equation is a homogeneous geometric equation. This equation P (R,r,p) = P (1,7,p) is
exactly the same equation that we derived in a companion paper by using a computer. This
computer derivation was carried out independently by Prof. Benjamin Klein of Davidson
College and by Parker Garrison. So we now have three independent verifications of this one

equation.

5 Studying P (R,r,p)= P (1,7,p)

fR=1>p>0, werequire R=1>r+p,r > 0.

It is easy to show that P (1,7, p) = 8p*r® — 40r?* — 20%r + 63 is irreducible in the rational
field.

Letting R = 1,0 < p < 1, we know by Descarte’s law of signs that P (1,7, p) = 0 has two
or zero positive r-roots for each fixed 0 < p < 1. For each fixed 0 < p < 1 we show that
P (1,r,p) = 0 has one r-root that satisfies 0 < r <1 —p. (p =0 is easy to deal with.)

Now P (1,7,p) = P (1,400, p) > 0.

Also, P (1,r,p) = P (1,0,p) > 0. If we show that P (1,r,p) = P (1,1 —p,p) < 0, then
it will follow that for each fixed 0 < p < 1, P (1,7, p) = 0 will have one r-root that satisfies

0<r<1—p.
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Now P (1,7r,p) = P (1,1 — p,p) <0 if and only if
(1—p)° [8p* —4(1+p) —2(1+p)* + (1+p)*] <.
This is true if and only if

(L=p) [-4(1+p=20") = (14+p)* 2= (1+p)] =(1=p)° [-4(1+2p) (1= p) = (1 +p)* (1 — p)] <O.

which is true.

Therefore, for each R =1 > p > 0, we see that P (1,7, p) = 0 has one r-root that satisfies
R=1>r+p,r>0.

If R=1> p > 0 are fixed, this r-root is the radius of the inside circle C5 so that we have
a family of 5-stars that are inscribed in '} and circumscribed about C5 when the distance

between the centers of C,Cs is p, R = 1 is the radius of C and r is the radius of (5.

6 Extending the Equation to Include Convex Pentagons

By using analogous reasoning we can show that the companion equation P (R,r,p) =
P(=R,r,p) = P(R,—1,p) = —8p*Rr3 — 4R*0r? + 2R0*r + 6> = 0, where § = R? — p?,
is the relation between R,r,p where R > r + p,r > 0, so that we have a family of convex
pentagons that are inscribed in C} and circumscribed about C5. From the companion paper,
we know that the equation P (R,r,p) = 0 for the convex pentagon can be written directly
from P (R,r,p) = P(—R,r,p) = P(R,—r,p). It is easy to show that for R =1 > p > 0,

there exists exactly one real r-root of P (1,7, p) = 0 that satisfies R=1>r + p,r > 0.
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7 Concluding Remarks

Everything in this paper was done completely by hand and this adds completeness to a
computer only derived solution. The advantage of the computer derived solution is that it

is less mentally demanding and requires less thought to carry out.
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