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Several years ago one of the authors (SM) posed in [IM E journal the following problem
(#1136, Vol. 12 & 6, Spring 2006): Four planar circles are pair-wise externally tangent.
Three of the circles are also tangent to a line L. If the radius of the fourth circle is one unit,
what is the distance of its center from L7

The problem belongs to the class of the problems on tangent circles, which we will call



Apollonius type problems, named after the great Greek geometer Apollonius. As an example
using a compass and straight-edge, construct the circle, tangent to each of three given circles.
Among other questions, we would like to know how many solutions are there.

The Apollonius constructions (including the inversion transform) is the basis for the study
of special class of the fractals sets, so called, Apollonius carpets. See [1] which contains rich

information about such carpets. The following from [1] is a good example:

Fig. 1
We use repeatedly here a class of mappings of R? U {oo} to R? U {oo} called circular

inversions R*U{oo} — R* U {oo} (with respect to the unit circle):
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Thus, I (I (Z)) = I*(7) = 7.

Alternate version: I : R?* U {oo} — R? U {oo} defined by

(2,y) = L) (when (z,1) # (0,0))
e = (e )

x2+y2’x2+y2
and

1(0,0) = 00, I(c0) = (0,0).

Theorem 1 Inversion transforms circles into circles (we consider the straight line as a circle

of the infinite radius).

Let’s prove this theorem using analytic geometry. Put C' (d,r) = {f € R*: |T —d| =r},d =
(a,b) is the center of the circle, r > 0 is its radius, + = ¢ is the curvature. Then (z — a)® +
(y — b)* = 72 is the equation of C (@,7) = 2 + 3> — (2az + 2by) = r2 — (a® + b%). Assume
that |@| = va® + b2 > r. The analysis when v/a2 + b2 < r and v/a2 + b2 = r is very similar.

The transformed equation has a form

1 2axy + 2y,
xi + i x3 +y

P> (z7+v7) — 2am; +2by;) +1 = 0
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This is a new circle.

U(?,F) ,a = (a’b)i: -
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In case |@| = Va2 +b% = r, the new circle is the line 2aa; + 2by; = 1. Of course,
'@’ | = Va2 + b? = r means that the circle C(@,r) passes through the origin (0,0).

Note that the center (%, p%) of the new circle is not the image of the center of the old
circle under inversion.

Before stating and proving Theorem 2, we restate Theorem 1. In Theorem 1, suppose
circle (Oy, Ry) inverts into circle (O, R;), where Oy, Ry, Oy, Ry are the centers and radii of
the two circles. Of course, circle (Oy, R;) inverts into circle (Oy, R;). Let D; and D; be

the distances from the origin to O; and to O; respectively. From Theorem 1, we know that

D1 > Ry if and only if D; > R;y. Also, if D1 > Ry, D1 > Ry, then

— D, D,
D=0 D=y
D%_R% D12—R12

— Ry R
YL N
D% - R% D12 — R12

Theorem 2 The five circles (O1, Ry), (02, Ry), (O3, R3), (Oy4, Ry4), (Os, Rs) are each tangent
to one another as shown in Fig. 2. Also, Cy = %1, Cy = %2, Cs =+

the curvatures of the five circles. Then

(a) Ci=C1+0Cy+C3+ 2\/0102 + C1C3 + C5,C5 and

(b) Cs =C1+ Cy+ C3 —2y/C1Cy + C1C5 + CoCf
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Fig.2
Note 1. From (a) and (b) it is easy to show that Cy, C5 are the roots of the equation

(z+ Cy + Cy + C3)* = 2(C? + C2 + C2 + 2?),

5



which is called Descartes equation. If C5 < 0, then the circles (Oq, Ry), (O2, Rs), (O3, R3), (Oy4, Ry)
lie inside the circle (O, R5). If C5 > 0, then the circles (O1, Ry1), (O2, R2), (O3, R3), (O4, Ry)

lie outside the circle (Os, R5). If C5 = 0, then the circle (Os, R5) is a straight line that is
tangent to the three circles (Oy, Ry), (O2, Rs), (O3, Rs).

Proof. We prove formula (a). The proof of formula (b) is nearly identical. The proof
uses nothing more that Theorem 1 and the Pythagorean Theorem. Inverting the circles
(01, Ry), (09, Ry), (O3, R3) and (Oy, Ry) of Figure 2 with respect to the unit circle z2+y* = 1,
we have Figure 3, where the circles (Oy, R;) and (Os, Ry) invert into straight lines y = %

and y = — respectively, circle (O3, R3) inverts into circle (O3, R3) and the circle (O4, Ry)

inverts into (Oy, R4). Tangency is preserved.



&

Fig. 3



In Fig. 2 and Fig. 3, the points O, Os, O3 are colinear and O, Oy, O4 are colinear. In
F1g3, note that }_%3 = §4 = %,TS = Rg +}_%4 = %7 Tag = 554 = % In F1g2
we denote OO3; = D and in Fig. 3 we denote OO3; = D,004 = d. From the inversion

(O3, R3) > (O3, R3), we know from Theorem 1 that

ﬁ . 01 + 02 . Rg
T 4 T D2—RY
Therefore,
4R
D?*=R? S
(**) 3 + Cl + 02

Also from (Os, R3) ++ (O3, R3), using Theorem 1 and by (#x), we know that

D _ D(Cy + )

D= _
D? - R? AR,

Now from Fig. 3, D =01+ T5§ =O0T? + (%)2 . Therefore,

oT? = DQ—(

C, — Cy\?
4

DX(Cy+ () [(CL—Cy\? .
612 — 1 ,using (),
3

- e o] (Geer) - (659)
Cy+ Oy 16R2 4

Cit G (CitG)? <01 —02)2

4R 16 4
C1Cy + C1C5 + CyC4
4

since 1/R3 = C3. Therefore

_ VC1Cy + C1C5 + CyC5

T
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From Fig 3,

00; = d = (0T +TS)? + (SO,)>

~ (ors GG (GG

2 2
_ OT2+(01+02)0T+(01—502> +(01402) .

Using OT = */0102+02103+CQC3, we have

C1 + C2)/C1Cs + C1C5 + O C
2

—2

5 C
&= 2 (Cr+ o) + O+ o) + (

after simplifying. From the inversion (Oy, Ry) ¢ (O4, Ry), we have

D) 01 CQ
o B ()
47 =2 52 72 C1+C2 2
d - R, d _( 4 )
Therefore,
—2 C1+C 2
o, — L_d-(5%)
R, 011-02
—2
4d Ci+C =
= TN 11_ 2 using the formula for 4

Ci + Oy

5
=:j@+@ﬂ{&m¢@@+@@+@@—

= O+ Cy+ C3424/C1Cy + C1C5 + CCs,

which is what we needed to prove. To prove formula (b), we simply note that circle (Os, Rj)
in Fig 2 inverts into circle (Os, R5), where (Os, Rs) lies to the left of circle (O3, R3) in Fig 3.
Applying theorem 1 to the inversion Os, R3) <+ (O3, R3), we get
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Solution of 1136.

In Fig. 4, we note that circle (O3, R3) lies inside of the triangular shaped region created
by circles (Oq, Ry), (O2, Ry) and the line ST In the case where circle (O3, R3) lies outside of
this triangular shaped region, the answer to the problem is the same and the proof is nearly
the same.

An important observation is that the picture is not definite. We know only that = = 1

and have to find z. It is clear physically that one can vary R; and R, in such a way that
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x =1 (we will derive the corresponding equation later). If in fact z depends only on z (z = 1)

1o 1
Tl =1

then to guess the answer we can consider the special case Ry = Ry =1 = R3 =
(see Fig. 4)= z =4 + 14+ 1 =L = 2z =Tz, Le. the answer in 1136 is 2 = 7.
We will prove that this is true in general.
Let us find R3 in terms of R; and R,. Note that the curvature of a line ST in Fig. 4 is

zero. If we call C3 the curvature of the circle (O3, R3), then from formula (a), Theorem 2,

we see that

Cy = Cy + Cy + 0+ 2¢/C1C, + C10 + Co0 = Cy + Cy + 24/ C1Cs.

And in different terms

1 RiRy

R = —-— = .
° Cs Ry + Ry + 2V R Ry

Since X is the radius of the small circle, 1/X is the curvature of the small circle. From

formula (a), Theorem 2, we have

1
Y:q+@+%+w@g+qa+@@

Also, since 0 is the curvatures of the line ST, from formula (b), Theorem 2, we have

0=Cy + Cy+ C3 — 20/C1Co + C1C5 + CyCs.

Therefore, 1/X = 2(Cy + Cy + C3) = 4(C} + Cy) + 4/ C1 (s, and therefore

¥ Ri R,
" 4R, + 4Ry + 4R Ry

The equation

4(01+02+m>:1
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presents the relationship between R; = C%’ Ry = Ciz which will give z = 1.
If we know x we can find the equation for z

In Fig. 4, it is easy to show that ST = 2y/R; Ry using the Pythagorean Theorem. Using

Fig. 5, we see that

2EE, = \/(Ri+ 2 — (Ri— 2+ (Re +2)° — (Ry — 2)°

= 2Ry (x4 2) + 22— 22+ /2R, (x + 2) + 22 — 22

RiRs
4 <R1 + Ry + v/ RIRZ)

This equation can be transformed easily into a quadratic.

) ; — — Ry Ry
Let’s check directly that z = 7z, x = NOE T iasy

is the desirable solution by direct substitution into

V16R x — 4822 + \/16 Rox: — 4822 = 21/ R, R,.
Now

16R iz — 482> = 16 (Ryz — 32°)

Ry R2R, - 3R2R2
4(Ri+ Ry + VRiRy) 16 (R, + Ry + VR Ry)”

16 R? 2
= ARy | Ri + Re+ vV R1Ry ) — 3R
16 (R1+R2+\/R_1R2)2< 2< S ! 2) 2)
R 5
= A4R1Ry 4+ R5 +4Rs\/ R1 R
(R1+R2+\/R1R2)2< o ’ ’ : 2>

R2 (Ry + 2VRiRy)”
(Ri+ Ry + VR )

Taking square roots,

16Re — 50 — Lo+ 2V )
14 = - .

Ry + Ry + VR Ry
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Likewise,

16R — e = L2 (i VLT
V7 — 4822 — v

Ry + Ry ++VRi1Rs '

Therefore

2 YR\ T, + 2R /i Ry
I6Rw — 4822 + /T6Ryr — Asa? — 2tz T2V, + 2RVl )

Ri+ Ry + VR Ry

and we are done.
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