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1 Abstract

After first defining weighted centroids that use complex arithmetic, we then make a simple

observation which proves Theorem 1. We next define complex homothecy.

We then show how to apply this theory to triangles (or polygons) to create endless

numbers of homothetic triangles (or polygon).

The first part of the paper is fairly standard. However, in the final part of the paper,

we give two examples which illustrate that examples can easily be given in which the simple

basic underpinning is so disguised that it is not at all obvious. Also, the entire paper is

greatly enhanced by the use of complex arithmetic.

2 Introduction to the Basic Theory

Suppose A,B,C, x, y are complex numbers that satisfy xA + yB = C, x + y = 1. It easily

follows that A + y (B − A) = C and x (A−B) + B = C. This simple observation with its

geometric interpretation is the basis of this paper.

Definition 1 Suppose M1,M2, · · · ,Mm are points in the complex plane and k1, k2, · · · , km
are complex numbers that satisfy

m∑
i=1

ki = 1. Of course, each complex point Mi is also a
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complex number. The weighted centroid of these complex points {M1,M2, · · · ,Mm} with

respect to {k1, k2, · · · , km} is a complex point GM defined by GM =
m∑
i=1

kiMi.

The complex numbers k1, k2, · · · , km are called weights and in the notation GM it is always

assumed that the reader knows what these weights are.

If k1, k2, · · · , km, k1, k2, · · · , kn are complex numbers, we denote the sums Sk =
m∑
i=1

ki, Sk =

n∑
i=1

ki.

Suppose M1,M2, · · · ,Mm,M1,M2, · · · ,Mn are points in the complex plane.

Also, k1, k2, · · · , km, k1, k2, · · · , kn are complex numbers that satisfy
m∑
i=1

ki+
n∑
i=1

ki = 1. Thus,

Sk + Sk = 1.

Denote GM∪M =
m∑
i=1

kiMi +
n∑
i=1

kiM i.

Thus, GM∪M is the weighted centroid of
{
M1, · · · ,Mm,M1, · · · ,Mn

}
with respect to the

weights
{
k1, · · · , km, k1, · · · , kn

}
.

It is obvious that
m∑
i=1

ki

Sk
= 1 and

n∑
i=1

ki

Sk
= 1.

Denote GM =
m∑
i=1

ki

Sk
Mi and GM =

n∑
i=1

ki

Sk
Mi.

Thus, GM is the weighted centroid of {M1,M2, · · · ,Mm} with respect to the weights{
k1
Sk
, k2
Sk
, · · · , km

Sk

}
and GM is the weighted centroid of

{
M1,M2, · · · ,Mn

}
with respect to

the weights
{
k1

Sk
, k2

Sk
, · · · , kn

Sk

}
.

As always, these weights are understood in the notation GM , GM .

Since GM∪M =
m∑
i=1

kiMi +
n∑
i=1

kiM i = Sk ·
m∑
i=1

ki

Sk
Mi + Sk ·

n∑
i=1

ki

Sk
M i it is obvious that (∗) is

true.

(∗) Sk ·GM + Sk ·GM = GM∪M where Sk + Sk = 1.

From equation (∗) and Sk + Sk = 1 it is easy to see that (1) and (2) are true.

(1) GM + Sk (GM −GM) ≡ GM∪M .

(2) GM + Sk (GM −GM) ≡ GM∪M .

3 Basic Theorem

The identity (∗)Sk · GM + Sk · GM = GM∪M , where Sk + Sk = 1, and the formula (1)

GM + Sk (GM −GM) = GM∪M of Section 2 proves the following Theorem 1.
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Theorem 1 Suppose M1,M2, · · · ,Mm,M1,M2, · · · ,Mn are points in the complex plane.

Also, suppose P =
m∑
i=1

kiMi +
n∑
i=1

kiM i where k1, · · · km, k1, · · · , kn are complex numbers

that satisfy
m∑
i=1

ki +
n∑
i=1

ki = 1.

Then there exists complex numbers x1, x2, · · · , xm where
m∑
i=1

xi = 1 and there exists

complex numbers y1, y2, · · · , yn where
n∑
i=1

yi = 1 and there exists a complex number z such

that the following is true.

1. x1, · · · , xm, y1, · · · , yn, z are rational function of k1, · · · , km, k1, · · · , kn.

2. P = Q+ z (R−Q) where Q,R are defined by Q =
m∑
i=1

xiMi, R =
n∑
i=1

yiM i.

As we illustrate in Section 6, the values of x1, · · ·xm, y1, · · · , yn, z as rational functions

of k1, k2, · · · , km, k1, k2, · · · , kn can be computed adhoc from any specific situation that

we face in practice. We observe that Q is the weighted centroid of the complex points

M1,M2, · · · ,Mm using the weights x1, x2, · · · , xm and R is the weighted centroid of the

complex points M1,M2, · · · ,Mn using the weights y1, y2, · · · , yn. Of course, Theorem 1 is

completely standard.

4 Complex Homothecy

If A,B are points in the complex plane, we denote AB = B − A. This also means that

AB is the complex vector from A to B. Also, we define |AB| to be the length of this

vector AB. If k is any complex number, then k = r (cos θ + i sin θ) , r ≥ 0, is the polar

form of k. It is assumed that the reader knows that [r (cos θ + i sin θ)] · [r (cosφ+ i sinφ)] =

r · r (cos (θ + φ) + i sin (θ + φ)) .

Suppose S, P, P where S 6= P, S 6= P are points in the complex plane and k = r (cos θ + i sin θ),

r > 0, is a non-zero complex number. Also, suppose SP = k (SP ) whereas always SP =

P − S and SP = P − S. Since SP = k (SP ) = [r (cos θ + i sin θ)] · (SP ) = (cos θ + i sin θ) ·

[r · (SP )], we see that the complex vector SP can be constructed from the complex vector

SP in the following two steps.

First, we multiply the vector SP by the positive real number (or scale factor) r to define

a new vector, SP ′ = r · (SP ). Since SP ′ = P ′ − S, the new point P ′ is colinear with S and

3



P with P, P ′ lying on the same side of S and |SP ′| = r · |SP | .

Next, we rotate the vector SP ′ by θ radians counterclockwise about the origin O as the

axis to define the final vector SP . Of course, the final point P itself is computed by rotating

the point P ′ by θ radians counterclockwise about the axis S. If A,B,C, x, y are complex

and xA + yB = C, x + y = 1, then A + y (B − A) = C. Therefore, AC = y · AB and if

y = r (cos θ + i sin θ) , r ≥ 0, we see how to construct the point C.

From this construction, the following is obvious. Suppose S 6= P are arbitrary variable

points in the complex plane and SP = k · (SP ) where k 6= 0 is a fixed complex number.

Then the triangles 4SPP will always have the same geometric shape (up to similarity)

since ∠PSP = θ and
∣∣SP ∣∣ : |SP | = r : 1 when k = r (cos θ + i sin θ) , r > 0. Next, let us

suppose that the complex triangles 4ABC and 4ABC and the complex point S are related

as follows. SA = k · (SA) , SB = k · (SB) , SC = k · (SC) where k 6= 0 is some fixed complex

number.

We call this relation complex homothecy (or complex similitude). Also, S is the center

of homothecy (or similitude) and k is the homothetic ratio (or ratio of similitude). When

k is real we have the usual homothecy of two triangle. Of course, for both real or complex

k, it is fairly obvious that 4ABC, and 4ABC are always geometrically similar and
|AB|
|AB| =

|AC|
|AC| =

|BC|
|BC| = |k| .

Of course, this same definition of complex homothecy also holds for two polygonsABCDE, · · ·

and A B C D E, . . . .

5 Using Theorem 1 to Create Endless Homothetic Tri-

angles

LetM1,M2, · · · ,Mm,Ma1,Ma2, · · · ,Man,M b1,M b2, · · · ,M bn,M c1,M c2, · · · ,M cn be any points

in the plane.

As a specific example of this, we could start with a triangle4ABC and letM1,M2, · · · ,Mm

be any fixed points in the plane of 4ABC such as the centroid, orthocenter, Lemoine point,

incenter, Nagel point, etc.
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Also, Ma1, · · · ,Man are fixed points that have some relation to side BC. M b1, · · · ,M bn

are fixed points that have some relation to side AC and M c1, · · · ,M cn are fixed points that

have some relation to side AB.

Let k1, k2, · · · , km, k1, k2, · · · , kn be arbitrary but fixed complex numbers that satisfy
m∑
i=1

ki +
n∑
i=1

ki = 1.

Define points Pa, Pb, Pc as follows.

1. Pa =
m∑
i=1

kiMi +
n∑
i=1

kiMai.

2. Pb =
m∑
i=1

kiMi +
n∑
i=1

kiM bi.

3. Pc =
m∑
i=1

kiMi +
n∑
i=1

kiM ci.

Note that these points Pa, Pb, Pc are being defined in an analogous way. From Theorem

1, there exists complex numbers x1, x2, · · · , xm where
m∑
i=1

xi = 1 and there exists complex

numbers y1, y2, · · · , yn where
n∑
i=1

yi = 1 and there exists a complex number z such that the

following is true.

1. x1, · · · , xm, y1, y2, · · · , yn, z are rational functions of k1, · · · , kmk1, · · · , kn.

2. Pa = Q+ z (Ra −Q) ,

Pb = Q+ z (Rb −Q) ,

Rc = P + z (Rc −Q) where

Q =
m∑
i=1

xiMi,

Ra =
n∑
i=1

yiMai,

Rb =
n∑
i=1

yiM bi,

Rc =
n∑
i=1

yiM ci, .

Equation 2 implies that Equation 3 is true since for example Pa −Q = QPa.
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3. QPa = z · (QRa) ,

QPb = z · (QRb) ,

QPc = z · (QRc) .

From Section 4, Equation 3 implies that 4PaPbPc is homothetic to 4RaRbRc with a

center of homothecy Q and a ratio of homothecy QPa

QRa
= QPb

QRb
= QPc

QRc
= z. Also, of course,

4PaPbPc ∼ 4RaRbRc with a ratio of similarity |PaPb|
|RaRb|

= |PaPc|
|RaRc| = |PbPc|

|RbRc| = |z|.

In the above construction, we could lump some (but not all) of the points {M1,M2, · · · ,Mm}

with each of the three sets of points
{
Ma1, · · · ,Man

}
,
{
M b1, · · · ,M bn

}
,
{
M c1, · · · ,M cn

}
.

For example, we could deal with the four sets {M2, · · · ,Mm} ,
{
M1,Ma1, · · · ,Man

}
,{

M1,M b1, · · · ,M bn

}
,
{
M1,M c1, · · · ,M cn

}
. We then use the same formulas as above and

we have QPa = z · (QRa) , QPb = z · (QRb) , QPc = z · (QRc) where now Q =
m∑
i=2

xiMi, Ra =(
n∑
i=1

yiMai

)
+ yn+1M1, Rb =

(
n∑
i=1

yiM bi

)
+ yn+1M1, Rc =

(
n∑
i=1

yiM ci

)
+ yn+1M1 where

m∑
i=2

xi = 1,
n+1∑
i=1

yi = 1.

As we illustrate in Section 7, by redefining our four sets {Mi} ,
{
Mai

}
,
{
M bi

}
,
{
M ci

}
in

different ways, we can vastly expand our collections of homothetic triangles.

6 Two Specific Examples

Problem 1

Suppose 4ABC lies in the complex plane. In 4ABC let AD,BE,CF be the altitudes

to sides BC,AC,AB respectively, where the points D,E, F lie on sides BC,AC,AB. The

4DEF is called the orthic triangle of 4ABC. The three altitudes AD,BE,CF always

intersect at a common point H which is called the orthocenter of 4ABC. Also, let O be

the circumcenter of 4ABC and let A′, B′, C ′ denote the midpoints of sides BC,AC,AB

respectively. The line HO is called the Euler line of 4ABC. Define the points Pa, Pb, Pc as

follows where k, e,m, n, r are fixed real numbers.

1. APa = k · AH + e ·HD +m · AO + n · AA′ + r ·OA′.

2. BPb = k ·BH + e ·HE +m ·BO + n ·BB′ + r ·OB′.
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3. CPc = k · CH + e ·HF +m · CO + n · CC ′ + r ·OC ′.

Show that there exists a point Q on the Euler line HO of 4ABC and there exists

a point Ra on side BC, a point Rb on side AC, a point Rc on side AB and there

exists a real number z such that 4PaPbPc and 4RaRbRc are homothetic with center

of homothecy Q and real ratio of homothecy QPa

QRa
= QPb

QRb
= QPc

QRc
= z.

We can also show that there exists a point S on the Euler line OH such that this

4RaRbRc is the pedal triangle of S for 4ABC where the pedal triangle is formed by

the feet of the three perpendiculars from S to sides BC,AC,BC.

Solution We first deal with equation (1) given in Problem 1. Equations (2), (3) give

analogous results.

Since APa = Pa − A,AH = H − A,HD = D − A, etc, we see that equation (1) is

equivalent to Pa−A = k (H − A) + e (D −H) +m (O − A) + n (A′ − A) + r (A′ −O). This

is equivalent to (∗∗) .

(∗∗)Pa = (1− k −m− n)A+ (k − e)H + eD + (m− r)O + (n+ r)A′.

From geometry, we know that AH = 2 · OA′, BH = 2 · OB′, CH = 2 · OC ′. Thus,

H − A = 2 (A′ −O) and A = H + 2 (O − A′).

Substituting this value for A in n (∗∗) we have Pa = (1− k −m− n) (H + 2O − 2A′) +

(k − e)H + eD + (m− r)O + (n+ r)A′.

This is equivalent to the following.

Pa = (1−m− n− e)H + (2− 2k −m− 2n− r)O+ eD+ (−2 + 2k + 2m+ 3n+ r)A′.

Calling 1−m− n− e = θ, 2− 2k −m− 2n− r = φ, e = λ,−2 + 2k + 2m+ 3n+ r = ψ,

we have Pa = θH + φO + λD + ψA′ where θ + φ+ λ+ ψ = 1.

As in Theorem 1, we now lump H,O together and lump D,A′ together.

Therefore, Pa = [θH + φO] + [λD + ψA′] = (θ + φ)
[
θH
θ+φ

+ φO
θ+φ

]
+ (λ+ ψ)

[
λD
λ+ψ

+ ψA′

λ+ψ

]
.

Calling θH
θ+φ

+ φO
θ+φ

= Q, λD
λ+ψ

+ ψA′

λ+ψ
= Ra, we have Pa = (θ + φ)Q + (λ+ ψ)Ra =

Q+ (λ+ ψ) (Ra −Q) = Q+ z (Ra −Q) where z = λ+ ψ = −2 + 2k + 2m+ 3n+ r + e.

Of course, Q lies on the Euler line HO and Ra lies on the side BC since θ, φ, λ, ψ are

real.

By symmetry, equations (2), (3) yield the following analogous results.

7



Pb = Q+ z (Rb −Q) and Pc = Q+ z (Pc −Q) where Rb = λE
λ+ψ

+ ψB′

λ+ψ
, Rc = λF

λ+ψ
+ ψC′

λ+ψ
.

Of course, Q lies on the Euler line HO,Ra lies on side BC, Rb lies on side AC and Rc

lies on side AB.

Since QPa = (λ+ ψ) (QRa) = z ·QRa,

QPb = (λ+ ψ) (QRb) = z ·QRb,

QPc = (λ+ ψ) (QRc) = z ·QRc,

we see that 4RaRbRc ∼ 4PaPbPc are homothetic with ratio of homothecy QPa

QRa
= QPb

QRb
=

QPc

QRc
= z.

Also, 4RaRbRc ∼ 4PaPbPc with ratio of similarity |PaPb|
|RaRb|

= |PaPc|
|RaRc| = |PbPc|

|RbRc| = |z| .

Since D,E, F lie at the feet of the perpendiculars HD,HE,HF and since A′, B′, C ′ lie

at the feet of the perpendiculars OA′, OB′, OC ′, it is easy to see that there exists a point S

on the Euler line HO such that 4RaRbRc is the pedal triangle of S with respect to 4ABC.

We now deal with a special case of Problem 1. In Problem 1, let k = e,m = n = r = 0.

Then θ = 1−e = 1−k, φ = 2−2k, λ = k, ψ = −2+2k. Also, θ+φ = 3−3k, λ+ψ = −2+3k.

Therefore, Q = θH
θ+φ

+ φO
θ+φ

= 1
3
H + 2

3
O.

From geometry, we see that the center of homothecy is Q = G where G is the centroid

of 4ABC. Also, G is still the center of homothecy of 4PaPbPc and 4RaRbRc even for the

case where k is complex.

Also, we see that Ra = kD
−2+3k

+ (−2+2k)A′

−2+3k
.

Also, the ratio of homothecy is z = −2 + 3k.

If we let k = e = 2,m = n = r = 0, we see that Ra = 1
2
D + 1

2
A′, Rb = 1

2
E + 1

2
B′, Rc =

1
2
F + 1

2
C ′.

From geometry we know that the nine point center N of 4ABC lies at the mid point of

the line segment HO.

Therefore, if k = e = 2,m = n = r = 0, we see that 4RaRbRc is the pedal triangle of

the nine point center N . Also, when k = e = 2,m = n = r = 0, we see that 4PaPbPc is geo-

metrically just the (mirror) reflections of vertices A,B,C about the three sides BC,AC,AB

respectively. Also, the ratio of homothecy z is z = −2 + 3k = 4. Thus, 4PaPbPc is four

times bigger than 4RaRbRc.

Problem 2
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Suppose 4ABC lies in the complex plane. As in Problem 1, let AD,BE,CF be the

altitudes for sides BC,AC,AB respectively where D,E, F lie on sides AB,AC,BC. Let I

be the incenter of 4ABC and let the incircle (I, r) be tangent to the sides BC,AC,AB at

the points X, Y, Z respectively.

Define the points Pa, Pb, Pc as follows.

1. Pa = D + i (IX) ,

2. Pb = E + i (IY ) ,

3. Pc = F + i (IZ) where i is the unit imaginary.

We wish to find 4RaRbRc and a complex number z such that 4PaPbPc and 4RaRbRc

are homothetic with a center of homothecy I and a complex ratio of homothecy z = IPa

IRa
=

IPb

IRb
= IPb

IRb
.

Solution

We first study what 4PaPbPc is geometrically. First, we note that i·IX, i·IY, i·IZ simply

rotates the vectors IX, IY, IZ by 90◦ in the counterclockwise direction about the origin O as

the axis. Also, we note that |IX| = |X − I| = |IY | = |Y − I| = |IZ| = |Z − I| = r where r

is the radius of the inscribed circle (I, r) .

Therefore, the points Pa, Pb, Pc lie on sides BC,AC,AB respectively and the distance

from D to Pa is r (going in the counterclockwise direction), the distance from E to Pb is r

(going counterclockwise) and the distance from F to Pc is r (going counterclockwise).

We next analyze equation (1) in the problem. The analysis of equations (2), (3) is

analogous.

Now equation (1) is equivalent to Pa = D + i (X − I) = −i · I + [iX +D] = −i · I +

(1 + i)
[
iX
1+i

+ D
1+i

]
.

Obverse that −i+ (1 + i) = 1 and i
1+i

+ 1
1+i

= 1.

Define Ra = iX
1+i

+ D
1+i

= D + i
1+i

(X −D) = D + i
1+i

(DX) since X −D = DX.

Therefore, DRa = i
1+i

(DX) =
(

1+i
2

)
(DX) since Ra −D = DRa.

Also, Pa = −iI + (1 + i)Ra = I + (1 + i) (Ra − I). Therefore, IPa = (1 + i) (IRa) since

Pa − I = IPa and Ra − I = IRa.

9



Therefore, by symmetry, we have the following equations.

1. DRa =
(

1+i
2

)
(DX) , ERb =

(
1+i
2

)
(EY ) , FRc =

(
1+i
2

)
(FZ) .

2. IPa = (1 + i) (IRa) , IPb = (1 + i) (IRb) , IPc = (1 + i) (IRc) .

Equation (1) tells us how to construct4RaRbRc from the points {D,X} , {E, Y } , {F,Z} .

Also, 4PaPbPc and 4RaRbRc are homothetic with center of homothecy I and complex

ratio of homothecy z = 1 + i = IPa

IRa
= IPb

IRb
= IPc

IRc
.

Also, 4PaPbPc ∼ 4RaRbRc and |IPa|
|IRa| = |IPb|

|IRb|
= |IPc|

|IRc| = |1 + i| =
√

2. Also, |PaPb|
|RaRb|

=

|PaPc|
|RaRc| = |PbPc|

|RbRc| .

7 Discussion

For a deeper understanding of the many applications of Theorem 1, we invite the reader to

consider the following alternative form of Problem 1.

Problem 1 (alternate form) The statement of the definitions Pa, Pb, Pc is the same as

in Problem 1.

However, we now define A′′, B′′, C ′′ to be the (mirror) reflections of O about the sides

BC,AC,AB respectively. Therefore, OA′′ = 2 ·OA′, OB′′ = 2 ·OB′, OC ′′ = 2 ·OC ′. We now

substitute A′′, B′′, C ′′ for A′, B′C ′ in the problem by using A′′−O = 2(A′−O), etc. and ask

the reader to solve the same problem when we deal with A,B,C,H,D,E, F,O,A′′, B′′, C ′′

instead of A,B,C,H,D,E, F,O,A′, B′, C ′. Also, we show that Ra, Rb, Rc will lie on lines

DA′′, EB′′, FC ′′ instead of lying on sides BC,AC,BC. The pedal triangle part of the prob-

lem is ignored. The center of homothecy Q will still lie on the Euler line HO. This illustrates

the endless way that Theorem 1 can be used to create homothetic triangles (and polygons).
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