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1 Abstract

We first define and develop the geometric properties of the Cevian group in a triangle. This

Abelian group distributes over the plane Euclidean projective space.

We also develop the properties of the basic, the isotomic and the isogonal conjugates of a

point in a triangle.

We later proceed to transfer four points on the Euler line to the harmonic axis of the centroid

of a triangle. Then using the properties of the Cevian group, we proceed to generate an infinite

collection of three or more colinear points in a triangle.

2 Introduction

We first define and develop the basic theory of the Cevian group in a triangle. We are especially

interested in the definitions of the harmonic pole and the harmonic axis with emphasis on the

harmonic axis of the centroid G.

Next, we define and develop some of the basic properties of the isotomic conjugate, the

isogonal conjugate and the basic conjugate of a point in a triangle.

We then apply the isotomic conjugate and the isogonal conjugate to the centroids and the

incenters of the medial and the anti- complementary triangles of a triangle △ABC to define an

infinite collection of points in △ABC. This infinite collection includes many standard points in
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a triangle such as the orthocenter, centroid, incenter, circumcenter, Lemoine point, Gergonne

point and Nagel point. We then focus our attention on four points on the Euler line three of

which are the well known centroid, orthocenter and circumcenter. We then transfer these four

points to the harmonic axis of the centroid, and there is a very special reason for doing this.

From this translation, we proceed to generate an infinite collection of three or more colinear

points in △ABC.

This is far more than what one would expect from four points on the Euler line, and this is

not even remotely close to being exhaustive.

3 The Cevian Group in a Triangle.
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Fig.1 Illustrating Ceva’s and Menelaus’ Theorems

In △ABC, suppose point K lies on the directed line segment BC, p.151, [1]. We say that K

has a Cevian coordinate of r (which we write K = K (r)) if BK
KC

= r is true in both magnitude

and sign. In directed line segments, we note that BC = −CB,BK = −KB,KC = −CK, etc.

Thus, r is positive if K lies strictly between B and C and r is negative if K lies strictly outside
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of the line segment BC. Also, r = 0 if K = B and r = ∞ if K = C. In Fig. 1 (a), (b), suppose

point K = K (r) lies on BC, point L = L (s) lies on CA and point M =M (t) lies on AB where

BK
KC

= r, CL
LA

= s, AM
MB

= t. That is, r, s, t are the Cevian coordinates of points K,L,M . Ceva’s

Theorem states that AK,BL,CM are concurrent if and only if BK
KC

· CL
LA

· AM
MB

= rst = 1 is true

in both magnitude and sign, p.159-163,[1]. Menelaus’ Theorem states that K,L,M are colinear

if and only if BK
KC

· CL
LA

· AM
MB

= rst = −1 is true in both magnitude and sign, p.159-163,[1]. Thus,

in Fig. 1, (a), if rst = 1 we write P = P (r, s, t), rst = 1, and say that (r, s, t) are the Cevian

coordinates of the point of concurrency P of AK,BL,CM . Also, in Fig. 1, (b), if rst = −1, we

say that the line l through K,L,M has Menelaus’ coordinates of (r, s, t) , rst = −1,and we write

this as l = l (r, s, t) , rst = −1. For line l we usually use the notation l = l (l,m, n) , lmn = −1,

in the place of (r, s, t) where BK
KC

= l, CL
LA

= m, AM
MB

= n.

If P (r, s, t) , rst = 1, Q
(
r, s, t

)
, rst = 1, are the Cevian coordinates of the points P,Q

then the point R = P · Q is defined by R = P (r, s, t) · Q
(
r, s, t

)
= R

(
rr, ss, tt

)
, where(

rr, ss, tt
)
, (rr) (ss)

(
tt
)
= 1, are the Cevian coordinates of R. Of course, (r, s, t) ·

(
r, s, t

)
=(

rr, ss, tt
)
is the standard inner product vector of the two vectors (r, s, t) ,

(
r, s, t

)
and the

operator (·) is a group when r, s, t, r, s, t ∈ R\ {0}. We will call R = P · Q the Cevian

product or the inner product point of the points P and Q. If P (r, s, t) , rst = 1, is a point

and l (l,m, n) , lmn = −1, is a line, then P (r, s, t) · l (l,m, n) = (rl, sm, tn) is a line since

(rl) (sm) (tn) = −1. Also, if l (l,m, n) , lmn = −1, and l∗ (l∗,m∗, n∗), l∗m∗n∗ = −1, are lines

then l (l,m, n) · l∗ (l∗,m∗, n∗) = (ll∗,mm∗, nn∗) is a point since (ll∗) (mm∗) (nn∗) = 1.

Thus, we can expand our group (·) to deal with (r, s, t) · (r∗, s∗, t∗) = (rr∗, ss∗, tt∗) when

rst = ±1, r∗s∗t∗ = ±1. We continue to call this group the Cevian group, and we call the

multiplication of two terms of the group the Cevian product.

If P (r, s, t) , rst = 1, is a point, the harmonic axis of P is the line l (−r,−s,−t), where

(−r) (−s) (−t) = −1. Also, if l (l,m, n) , lmn = −1, is a line, then the point

P (−l,−m− n) , (−l) (−m) (−n) = 1, is the harmonic pole of l (l,m, n). In this paper, we

are especially interested in the harmonic axis of the centroid G (1, 1, 1) which has Menelaus’

coordinates of (−1,−1,−1). This line (−1,−1,−1) lies at infinity.

Lemma 1 In △ABC of Fig. 1.(a), suppose |AB| = c, |AC| = b, where c, b are the lengths of

sides AB,AC of △ABC. Then sin θ2
sin θ1

= BK
KC

· b
c
.
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Proof. From △AKB, sin θ2
BK

= sinB
AK

. Also, from △AKC, sin θ1
KC

= sinC
AK

. Therefore, sin θ2
sin θ1

=

BK
KC

· sinB
sinC

= BK
KC

· b
c
.

Corollary 1 In Fig. 1.(a), AK,BL,CM are concurrent if and only if sin θ1
sin θ2

· sinϕ1
sinϕ2

· sinψ1

sinψ2
= 1.

Proof. The proof uses Lemma 1 with Ceva’s theorem.

4 Three Conjugates in a Triangle

We first define the isotomic conjugate of a point P . Using Fig. 1,(a), suppose P (r, s, t), rst = 1,

are the Cevian coordinates of a point P in △ABC. Define points K on BC,L on CA and M

on AB such that BK = KC,CL = LA and AM = MB are true in both magnitude and sign.

Then it is obvious that K
(
1
r

)
, L
(
1
s

)
,M

(
1
t

)
are the Cevian coordinates of the points K,L,M .

Also, AK,BL,CM are concurrent since
(
1
r

) (
1
s

) (
1
t

)
= 1. Calling P the point of concurrency of

AK,BL,CM we have P = P
(
1
r
, 1
s
, 1
t

)
and we define P to be the isotomic conjugate of the point

P (r, s, t). It is easy to see that P = P−1 where P−1 is the inverse of P in the Cevian group. Let

I be the incenter of △ABC. Also, in △ABC let |BC| = a, |CA| = b, |AB| = c. It is standard

that the Cevian coordinates of I are I
(
c
b
, a
c
, b
a

)
since BK

KC
= c

b
, CL
LA

= a
c
, AM
MB

= b
a
.

Also, G (1, 1, 1) are the Cevian coordinates of the centroid G. G (1, 1, 1) is the identity element

in the Cevian group.

We now define the isogonal conjugate of a point P . From Fig. 1, (a), we now use the

angles θ1, θ2, ϕ1, ϕ2, ψ1, ψ2. Suppose we reverse the two angles θ1, θ2, reverse the two angles

ϕ1, ϕ2 and reverse the two angles ψ1, ψ2 to define new points K ′, L′.M ′ on sides BC,CA,AB

respectively. In other words we find points K ′ on BC,L′ on CA and M ′ on AB such that

∠BAK ′ = θ1,∠K ′AC = θ2,∠CBL′ = ϕ1,∠L′BA = ϕ2,∠ACM ′ = ψ1,∠M ′CB = ψ2.

From Fig. 1, (a) and Lemma 1 we know that r = BK
KC

= sin θ2
sin θ1

· c
b
.

If K ′ (r′) , L′ (s′) ,M ′ (t′) are the Cevian coordinates of (K ′, L′,M ′), then r′ = BK′

K′C
= sin θ1

sin θ2
· c
b
.

Therefore, r′ =
(
c
b

)2 · 1
r
. Likewise, s′ =

(
a
c

)2 · 1
s
and t′ =

(
b
a

)2 · 1
t
. Therefore, AK ′, BL′, CM ′

are concurrent since r′s′t′ = 1. If we call θ (P ) the point of concurrent of AK ′, BL′, CM ′, we

define θ (P ) to be the isogonal conjugate of the point P (r, s, t) and it is obvious that θ (P ) =((
c
b

)2 1
r
,
(
b
c

)2 1
s
,
(
b
a

)2 1
t

)
= I · I ·P = I2 ·P = I2 ·P−1 where I is the incenter of △ABC,P = P−1

is isotomic conjugate of P and multiplication is in the Cevian group. We also mention that
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I2 = θ (G) = K is called the Lemoine point of △ABC and it is usually denoted by K.

For completeness, we define ϕ (P ) = I · P to be the basic conjugate of the point P . We

do not know of a geometric meaning of ϕ (P ). If l (l,m, n) , lmn = −1 is a line, we can also

define l (l,m, n) =
(
1
l
, 1
m
, 1
n

)
, ϕ (l) = I · l and θ (l) = I2 · l to be the isotomic, basic and isogonal

conjugates of the line l. Even though we do not know the geometric meaning of ϕ, it is used

endlessly in developing the deeper properties of the triangle. As an example, if Ia, Ib, Ic are the

three excenters of △ABC and X, Y, Z are the three points of contact of the incircle with the

sides of △ABC, then the two triangles △IaIbIc and △XY Z are homothetic and the homothetic

center of these two triangles is ϕ(M) = ϕ(N), where N is the Nagel point andM is the Gergonne

point, two terms defined in Section 7.

If P is a point, it is easy to prove by induction that we can construct I2n ·P and I2n ·P when

n ∈ Z by using only the isotomic conjugate P and the isogonal conjugate θ (P ) .

(a) Note that for n ∈ N, I2n · P = I
2n · P and I2n · P = I

2n · P .

(b) If by induction we can construct I2n · P and I2n · P for some n ∈ N , then θ
(
I2n · P

)
=

θ
(
I
2n · P

)
= I2n+2 · P and θ

(
I2n · P

)
= θ

(
I
2n · P

)
= I2n+2 · P . By combining (a) and (b), we

can construct I2n · P and I2n · P for any n ∈ Z.

As examples I4 · P = θ
(
θ (P )

)
and I4 · P = θ

(
θ
(
P
))
.

From this we see that by starting with the centroid G (1, 1, 1) and the incenter I
(
c
b
, a
c
, b
a

)
we

can construct any point In, n ∈ Z , by using only G, I, θ (P ) , P . We will call In, n ∈ Z, the

generalized incenter.

Also, by induction we can construct In · P, In · P for any n ∈ Z by using only the isotomic

conjugate P and the basic conjugate ϕ (P ) .

If we use all three conjugate P , θ (P ) , ϕ (P ), then we can construct the points

In · P, In · P , n ∈ Z, in different ways. Indeed, θ (P ) = ϕ
(
ϕ(P )

)
= I2 · P . Also,

(
P
)
=

P, θ (θ (P )) = P and ϕ (ϕ (P )) = P.

For this reason, we will always leave our points in the form In ·P and In ·P , and we will not

use θ and ϕ at all.
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5 Basic Properties of Lines and Points in the Cevian

Group

We will make use of the following three theorems.

Theorem 1 Suppose P (r, s, t) , rst = 1, is a point and l (l,m, n) , lmn = −1, is a line written

with respect to △ABC. Then P lies on l (written P ∈ l) if and only if (a) is true or (b) is true

or (c) is true where (a),(b),(c) are logically equivalent.

(a) mt (r − l) = 1,

(b) nr (s−m) = 1,

(c) ls(t− n) = 1.

Theorem 2 Suppose △A′B′C ′ is the medial triangle of △ABC. Thus, A′, B′, C ′ are the

midpoints of sides BC,CA,AB respectively. Suppose a point P has Cevian coordinates of

(r, s, t) , rst = 1, with respect to △ABC and P has Cevian coordinates of (r′, s′, t′) , r′s′t′ = 1,

with respect to △A′B′C ′. Then

(a) (r, s, t) =
(
t′+1
1
s′+1

, r
′+1
1
t′+1

, s
′+1
1
r′+1

)
and

(b) (r′, s′, t′) =
(

t− 1
s
+1

−t+ 1
s
+1
,
r− 1

t
+1

−r+ 1
t
+1
,
s− 1

r
+1

−s+ 1
r
+1

)
.

Note 1 The anti-complementary △A′′B′′C ′′ of △ABC is the triangle such that △ABC is the

medial triangle of △A′′B′′C ′′. Thus, the formulas (a), (b) of Theorem 2 can also be used when

P = (r, s, t) are the Cevian coordinates of a point P with respect to △ABC and P = (r′′, s′′, t′′)

are the Cevian coordinates of P with respect to △A′′B′′C ′′.

Theorem 3 P (r, s, t) , rst = 1, are the Cevian coordinates of a point P in △ABC. Also, in

vector form P = xA+ yB + zC, x+ y + z = 1. Then (a), (b) are true.

(a). (r, s, t) =
(
z
y
, x
z
, y
x

)
.

(b) (x, y, z) =
(

1
1+t+rt

t
1+t+rt

rt
1+t+rt

)
=
(

s
1+s+st

, st
1+s+st

, 1
1+s+st

)
=
(

rs
1+r+rs

, 1
1+r+rs

r
1+r+rs

)
.

Proof of Theorem 3 Formula (a) is almost obvious from the definition of Cevian coordinates

if we write P = xA+(y + z)
[
yB
y+z

+ zC
y+z

]
= yB+(x+ z)

[
xA
x+z

+ zC
x+z

]
= zC+(x+ y)

[
xA
x+y

+ yB
x+y

]
.

Also, the three formulas in (b) are obviously equivalent, and they are easy to derive from

(a). The proofs of (b) are also self evident since from the first formula in (b) we easily see that

x+ y + z = 1+t+rt
1+t+rt

= 1 and
(
z
y
, x
z
, y
x

)
=
(
rt
t
, 1
rt
, t
1

)
= (r, s, t) .

The proofs of Theorems 1, 2 are now easy applications of Theorem 3 and the details are left to
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the reader. To prove Theorem 1, we write P = xA+ yB+ zC = B+x (A−B)+ z (C −B) , x+

y + z = 1. We then set up an oblique co-ordinate system with B = (0, 0) as the origin, BC as

the x-axis with C = (1, 0) and BA as the y-axis with A = (0, 1). Therefore, P = (z, x) are the

coordinates of P in this co-ordinate system. From line l (l,m, n) , lmn = −1, we can find real

numbers x∗, y∗ such that l =
{

x
x∗

+ y
y∗

= 1 : x, y ∈ R
}

in this oblique co-ordinate system. The

condition P ∈ l is now a simple problem in analytic geometry and the proof is exactly the same

as in rectangular co-ordinate analytic geometry.

The proof of Theorem 2 uses Theorem 3 and the obvious facts that A′ = 1
2
(B + C) , B′ =

1
2
(A+ C) , C ′ = 1

2
(A+B) , A = −A′ +B′ + C ′, B = A′ −B′ + C ′, C = A′ +B′ − C ′.

Lemma 2 Suppose distinct points P (r, s, t) , rst = 1, Q
(
r, s, t

)
, rst = 1, lie on line l (l,m, n) , lmn =

−1. Then l =
1
s
− 1

s

t−t ,m =
1
t
− 1

t

r−r , n =
1
r
− 1

r

s−s .

Proof. Since (r, s, t) ∈ l and
(
r, s, t

)
∈ l, from Theorem 1 we know that mt (r − l) = 1 and

mt (r − l) = 1. Therefore, r− l = 1
mt

and r− l = 1
mt
. Therefore, r−r = 1

m

(
1
t
− 1

t

)
and m =

1
t
− 1

t

r−r .

Likewise, we have the formulas for l and n.

Lemma 2′(optional) The lines l (l,m, n) , lmn = −1, and l
(
l,m, n

)
, lmn = −1, intersect

at the point P (r, s, t) , rst = 1. Then r = −( 1
n
− 1

n)
m−m , s = −( 1

l
− 1

l
)

n−n , t = −( 1
m
− 1

m)
l−l .

Proof. From Theorem 1, since P ∈ l and P ∈ l we have mt (r − l) = 1 and mt
(
r − l

)
= 1.

Therefore, r − l = 1
mt

and r − l = 1
mt
. Therefore, l − l = 1

t

(
1
m
− 1

m

)
.

Therefore, t = −( 1
m
− 1

m)
l−l .

The formulas for r, s are proved the same way.

Corollary 2 In △ABC the three distinct points P (r, s, t) , rst = 1, Q
(
r, s, t

)
,

rst = 1, R (r∗, s∗, t∗) , r∗s∗t∗ = 1, are colinear if and only if any one of the following logically

equivalent conditions (a), (b), (c) is satisfied. We use Q
(
r, s, t

)
as the anchor point in (a), (b),

(c). By symmetry we could also use P (r, s, t) or R (r∗, s∗, t∗) as the anchor point.

(a)
1
r
− 1

r

s−s =
1
r∗−

1
r

s∗−s ,

(b)
1
s
− 1

s

t−t =
1
s∗−

1
s

t∗−t ,

(c)
1
t
− 1

t

r−r =
1
t∗−

1
t

r∗−r .

Proof. Let line QP intersect side BC in the point x and let line QR intersect the side BC

in the point y. Then the three points Q,P,R are colinear if and only if x = y. Thus, from
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Lemma 2, we see that formula (b) gives a necessary and sufficient condition such that Q,P,R

are colinear. Likewise, formulas (a) and (c) give necessary and sufficient conditions such that

Q,P,R are colinear.

Lemma 3 Suppose P (r, s, t), rst = 1, is a point and l (l,m, n) , lmn = −1, is a line. Also,

suppose C (x, y, z) , xyz = 1, is a point. Then P ∈ l if and only if C · P ∈ C · l.

Proof. We prove P ∈ l implies C · P ∈ C · l. The proof that C · P ∈ C · l implies P ∈ l

is similar. From Theorem 1, P ∈ l if and only if mt (r − l) = 1. Also, C · P = (xr, ys, zt) ∈

C · l = (x · l, y ·m, z · n) if and only if (ym) (zt) (xr − xl) = 1. Now (ym) (zt) (xr − xl) =

(xyz) (mt) (r − l) = (mt) (r − l) = 1. Therefore, C · P ∈ C · l.

Corollary 3 Suppose line l = {Pi = (ri, si, ti) : i ∈ I} where l (l,m, n) , lmn = −1, are the

Menelaus coordinates of l and {Pi = (ri, si, ti) : i ∈ I}, each risiti = 1, are the Cevian coordinates

of the points on line l. If C (x, y, z) , xyz = 1, is a point then C · l = {C · Pi : i ∈ I}. That

is, {C · Pi : i ∈ I} where C · Pi = (x, y, z) · (ri, si, ti) = (xri, ysi, zti) are the points on line

C · l = (x, y, z) · (l,m, n) = (xl, ym, zn).

Proof. Obvious from Lemma 3 and the proof of Lemma 3.

Corollary 4 Suppose P,Q,R,C are points. Then P,Q,R are colinear if and only if C ·P,C ·

Q,C ·R are colinear.

Proof. Obvious from Lemma 3.

Note 2 If a is a fixed point, then the mapping f (x) = a · x, x is a point, maps lines into

lines and preserves cross-ratios. Thus, the Cevian group distributes over the Euclidean projective

space.

Lemma 4 (optional) Point P (r, s, t) , rst = 1, lies on line l (l,m, n) , lmn = −1. Let

Q (−l,−m,−n) , (−l) (−m) (−n) = 1, be the harmonic pole of l (l,m, n). Now P (r, s, t) =(
1
r
, 1
s
, 1
t

)
and Q (−l,−m,−n) =

(
−1

l
.− 1

m
,− 1

n

)
are the isotomic conjugates of P,Q. Then Q lies

on the harmonic axis of P.

Proof. The easy proof uses Theorem 1.

Lemma 5 Let G (1, 1, 1) be the centroid of △ABC and let l (−1,−1,−1) be the harmonic

axis of G.

Let (r, s, t) =
(
z
y
, x
z
, y
x

)
be a point. Then (r, s, t) lies on (−1,−1,−1) if and only if any one

of the logically equivalent conditions (a), (b), (c), (d) is true.

8



(a) 1 + r + rs = 0.

(b) 1 + t+ tr = 0.

(c) 1 + s+ st = 0.

(d) x+ y + z = 0.

Proof. We show that
(
z
y
, x
z
, y
x

)
∈ (−1,−1,−1) if and only if x + y + z = 0. The logically

equivalent conditions (a), (b), (c) easily follow from this.

From Theorem 1, we know that
(
z
y
, x
z
, y
x

)
∈ (−1,−1,−1) if and only if (−1)

(
y
x

) (
z
y
+ 1
)
= 1.

This is equivalent to − z
x
− y

x
= 1 which is equivalent to x+ y + z = 0.

Problem 1 Suppose P (r, s, t) , rst = 1, is a point in △ABC. Find necessary and sufficient

conditions on (r, s, t) , rst = 1, so that (r, s, t) lies at infinity.

Solution In Fig.1(a), let |BC| = a, |CA| = b, |AB| = c be the lengths of sides BC,CA,AB.

Also, in order for Fig.1(a) to be realistic, we place K to the left of B and C so that B now

lies between K and C. Now since BK
KC

= r, CL
LA

= s, we see that KC = a
1+r

and CL = sb
1+s

.

Now P (r, s, t) lies at infinity, if and only if AK||BL which is equivalent to BC
CL

= KC
CA

. This

is equivalent to a

( sb
1+s)

=
( a
1+r )
b

. This is equivalent to (1 + r) (1 + s) = s which is equivalent to

1 + r + rs = 0. Using this with Lemma 5, we now see that P (r, s, t) , rst = 1, lies at infinity if

and only if P (r, s, t) ∈ (−1,−1,−1) .

6 Properties of the Medial and Anti-complementary Tri-

angles

Problem 2 In Problems 2, 3, we let |BC| = a, |CA| = b, |AB| = c. Suppose I ′ is the incenter of

the medial triangle △A′B′C ′ of △ABC. Since △ABC ∼ △A′B′C ′ and I =
(
c
b
, a
c
, b
a

)
we see that

the Cevian coordinates (r′, s′, t′) of I ′ with respect to △A′B′C ′ are also I ′ (r′, s′, t′) =
(
c
b
, a
c
, b
a

)
.

Let (I ′)n = (r′n, s
′
n, t

′
n) =

((
c
b

)n
,
(
a
c

)n
,
(
b
a

)n)
, be the nth power of I ′ with respect to the Cevian

group of △A′B′C ′ where n ∈ Z. We wish to compute the Cevian coordinates (rn, sn, tn) of (I
′)n

with respect to △ABC.

Solution Using formula (a) of Theorem 2. We see that (rn, sn, tn) =
(
an+bn

an+cn
, b

n+cn

bn+an
, c

n+an

cn+bn

)
.
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Problem 3 Let I ′′ be the incenter of the anti-complementary △A′′B′′C ′′ of △ABC. Since

△ABC ∼ △A′′B′′C ′′, the Cevian coordinates (r′′, s′′, t′′) of I ′′ with respect to △A′′B′′C ′′ are

I ′′ (r′′, s′′, t′′) =
(
c
b
, a
c
, b
a

)
.

Let (I ′′)n =
((

c
b

)n
,
(
a
c

)n
,
(
b
a

)n)
, be the nth power of I ′′ with respect to the Cevian group of

△A′′B′′C ′′ where n ∈ Z. We wish to compute the Cevian coordinates (rn, sn, tn) of (I
′′)n with

respect to △ABC.

Solution Since △ABC is the medial triangle of △A′′B′′C ′′ using formula (b) of Theorem 2

we see that (rn, sn, tn) =
(
an+bn−cn
an−bn+cn ,

−an+bn+cn
an+bn−cn ,

an−bn+cn
−an+bn+cn

)
.

7 Generalized Points in a Triangle

△ABC is a triangle with |BC| = a, |CA| = b, |AB| = c. Using Problems 2, 3 we define for all

n ∈ Z, (I ′′)n = Hn =
(
an+bn−cn
an−bn+cn ,

−an+bn+cn
an+bn−cn ,

an−bn+cn
−an+bn+cn

)
, (I ′)n = hn =

(
an+bn

an+cn
, b

n+cn

an+bn
, a

n+cn

bn+cn

)
, where

Hn, hn are the isotomic conjugates of Hn, hn in △ABC.

Of course, In =
((

c
b

)n
,
(
a
c

)n
,
(
b
a

)n)
.

Also, I0 = G (1, 1, 1) is the centroid and I1 = I
(
c
b
, a
c
, b
a

)
is the incenter of △ABC.

Also, I2 = θ (G) = K is the Lemoine point. Also, H2 = H is the orthocenter and θ (H2) =

θ (H) = I2· H = O is the circumcenter.

Also, H1 = M is the Gergonne point and M = H1 = N is the Nagel point. (N usually

denotes the 9-point center).

The Gergonne point M is the common point of concurrency of the lines joining the vertices

of a triangle with the points of contact of the opposite sides with the inscribed circle, p.160,

[1]. The Nagel point N is the common point of concurrency of the lines joining the vertices of a

triangle to the points of contact of the opposite sides with the excircles relative to these sides,

p. 160-162, [1].

For n ∈ Z, we call In the generalized incenter. We call Hn the generalized orthocenter and hn

the generalized little orthocenter. Suppose ln = (G, In) , n ∈ Z, is the line through the centroid

G and the point In. Then from Lemma 2, we easily see that ln (l,m, n) =
(
cn−an
bn−an ,

an−bn
cn−bn ,

bn−cn
an−cn

)
.

If Pn (r, s, t) is the harmonic pole of line (G, In), then Pn =
(
an−cn
bn−an ,

bn−an
cn−bn ,

cn−bn
an−cn

)
.

From Lemma 5, it is obvious that for all n ∈ Z, Pn ∈ (−1,−1,−1) where P n is the isotomic
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conjugate of Pn.

The following identities are used in Section 9 and they are easily proved by simple algebra.

(a) In · hn = h−n, for all n ∈ Z.

(a′) I
n · hn = h−n, for all n ∈ Z.

(b) P−n = I
n · Pn, for all n ∈ Z.

(b′) P−n = In · P n, for all n ∈ Z.

(b′′) P−1 · P−n = In−1 · P1 · Pn, for all n ∈ Z.

(c) P2n · P n = hn, for all n ∈ N .

(c′) P2n · P 1 = h1 · h2 · h4 · · ·h2n−1 , for all n ∈ N .

For example, (a) is equivalent to
((

c
b

)n
,
(
a
c

)n
,
(
b
a

)n) · (an+bn
an+cn

, b
n+cn

an+bn
, a

n+cn

bn+cn

)
=((

1
a

)n
+
(
1
b

)n(
1
a

)n
+
(
1
c

)n , (1b)n + (1c)n(
1
a

)n
+
(
1
b

)n , ( 1a)n + (1c)n(
1
b

)n
+
(
1
c

)n
)

which is obviously true.

8 Four Points on the Euler Line

The three points G,H2 = H,O = θ (H2) = I2 ·H2 are standard points on the Euler line.

From Corollary 2, if we use G (1, 1, 1) as the anchor point, it is very easy and also fairly

short to show that G,H2 = H and I2 · H4 = θ (H4) are colinear. Thus, we now have the four

points G,H2 = H,O = I2 · H2 and I2 · H4 on the Euler line. The point I2 · H2 = θ
(
H
)

also lies on the Euler line, but this is derived in Section 10 along with endless other col-

inear points. (This point, by the way, is the homothetic center of the tangential triangle

and the orthic triangle of a △ABC.) Also, the harmonic pole of the Euler line is easily

computed to be P2 · H2 where (·) is multiplication in the Cevian group. To see this, define

x = −a2 + b2 + c2, y = a2 − b2 + c2, z = a2 + b2 − c2. Then the Euler line is (G,H) =

(G,H2) =
(
(1, 1, 1) ,

(
y
z
, z
x
, x
y

))
, and from Lemma 2 the Menelaus coordinates (l,m, n) of the
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Euler line (G,H) are (l,m, n) =
(

x
z
−1

x
y
−1
,

y
x
−1

y
z
−1
,

z
y
−1

z
x
−1

)
=
((

y
z

) (
x−z
x−y

)
,
(
z
x

) (
y−x
y−z

)
,
(
x
y

) (
z−y
z−x

))
=((

y
z

) (
c2−a2
b2−a2

)
,
(
z
x

) (
a2−b2
c2−b2

)
,
(
x
y

)(
b2−c2
a2−c2

))
= H2 · P2 · (−1,−1,−1) where P2 was computed in

Section 7. Therefore, H2 · P2· is the harmonic pole of the Euler line (G,H). Before we go into

the last four sections, we summarize the following easy facts.

If P,Q are two points, there is a unique points x such that P · x = Q namely x = P ·Q since

P = P−1 . If l, l∗ are lines, there is a unique point x such that l · x = l∗ namely x = l · l∗ since

l = l−1.

If P is the harmonic pole of line l, then l = P · (−1,−1,−1) where (−1,−1,−1) is the

harmonic axis of G (1, 1, 1). Thus, if P is the harmonic pole of line l and P ∗ is the harmonic pole

of line l∗, then the unique point x such that l · x = l∗ can also be written x = l · l∗ = P ·P ∗ since

l = P · (−1,−1,−1) , l∗ = P ∗ · (−1,−1,−1) and (−1,−1,−1) · (−1,−1,−1) = (1, 1, 1) .

9 Transferring the Four Points on the Euler Line to Line

(−1,−1,−1)

Since the Euler line
(
G,H2, I

2 ·H2, I
2 ·H4

)
= P2·H2·(−1,−1,−1), we know that (−1,−1,−1) =

P 2 ·H2· Euler line.

Therefore, from Corollary 3, P 2 · H2 · G = P 2 · H2 ∈ (−1,−1,−1) , P 2 · H2 · H2 = P 2 ∈

(−1,−1,−1) , P 2 · H2 · I2 · H2 = I2 · P 2 · H2 · H2 ∈ (−1,−1,−1) and P 2 · H2 · I2 · H4 = I2·

P 2 ·H2 ·H4 ∈ (−1,−1,−1) .

In △ABC with |BC| = a, |CA| = b, |AB| = c, suppose P (r (a, b, c) , s (a, b, c) , t (a, b, c)) ∈

(−1,−1,−1) where the Cevian coordinates r (a, b, c) , s (a, b, c) , t (a, b, c) , r (a, b, c) · s (a, b, c) ·

t (a, b, c) = 1, and functions of a, b, c. From Lemma 5, it is fairly obvious that if we substitute

any function f (a, b, c) for a, substitute any function g (a, b, c) for b, and substitute any function

h (a, b, c) for c in r (a, b, c) , s (a, b, c) , t (a, b, c), then the new point will still lie on (−1,−1,−1).

(This simple fact is the reason for dealing with the line (−1,−1,−1) .)

Therefore, in particular, if P (r (a, b, c) , s (a, b, c) , t (a, b, c)) ∈ (−1,−1,−1) then

P (r (an, bn, cn) , s (an, bn, cn) , t (an, bn, cn)) ∈ (−1,−1,−1) for all n ∈ R. Therefore, we now know

that the following 32 points lie on (−1,−1,−1) where the f (n) , f (−n) columns are duals.
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We note that (a), (b), (c), (d), (a′), (b′), (c′), (d′) are generated from P 2 ·H2.

Also, (e) , (f) , (g) , (h) , (i) , (j) , (e′) , (f ′) , (g′) , (h′) , (i′) , (j′) are generated from P 2.

Also, (k) , (l) , (m) , (n) , (k′) , (l′) , (m′) , (n′) are generated from I2 · P 2 ·H2 ·H2.

Also, (o) , (p) , (o′) , (p′) are generated from I2 · P 2 ·H2 ·H4.

Note that we are restricting Pi, hi, Hi so that −4 ≤ i ≤ 4. We also use the identities

a, a′, b, b′, b′′, c, c′ of Section 7.

f (n) f (−n)

(a)P1 ·H1 (a′)P−1 ·H−1 = I · P 1 ·H−1

(b)P 2 ·H2 = P 1 · h1 ·H2 (b′)P−2 ·H−2 = I2 · P 2 ·H−2 = I2 · P 1 · h1 ·H−2

(c)P 3 ·H3 (c′)P−3 ·H−3 = I3 · P 3 ·H−3

(d)P 4 ·H4 = P 1 · h1 · h2 ·H4 (d′)P−4 ·H−4 = I4 · P 4 ·H−4 = I4 · P 1 · h1 · h2 ·H−4

(e)P 1 (e′)P−1 = I · P 1

(f)P 2 = P 1 · h1 (f ′)P−2 = I2 · P 2 = I2 · P 1 · h1
(g)P 3 (g′)P−3 = I3 · P 3

(h)P 4 = P 1 · h1 · h2 (h′)P−4 = I4 · P 4 = I4 · P 1 · h1 · h2
(i)P 6 = P 3 · h3 (i′)P−6 = I6 · P 6 = I6 · P 3 · h3
(j)P 8 = P 1 · h1 · h2 · h4 (j′)P−8 = I8 · P 8 = I8 · P 1 · h1 · h2 · h4
(k) I · P 1 ·H1 ·H1 (k′) I · P−1 ·H−1 ·H−1 = P 1 ·H−1 ·H−1

(l) I2 · P 2 ·H2 ·H2 = I2 · P 1 · h1 ·H2 ·H2 (l′) I
2 · P−2 ·H−2 ·H−2 = P 1 · h1 ·H−2 ·H−2

(m) I3 · P 3 ·H3 ·H3 (m′) I
3 · P−3 ·H−3 ·H−3 = P 3 ·H−3 ·H−3

(n) I4 · P 4 ·H4 ·H4 = I4 · P 1 · h1 · h2 ·H4 ·H4 (n′) I
4 · P−4 ·H−4 ·H−4 = P 1 · h1 · h2 ·H−4 ·H−4

(o) I · P 1 ·H1 ·H2 (o′) I · P−1 ·H−1 ·H−2 = P 1 ·H−1 ·H−2

(p) I2 · P 2 ·H2 ·H4 = I2 · P 1 · h1 ·H2 ·H4 (p′) I
2 · P−2 ·H−2 ·H−4 = P 1 · h1 ·H−2 ·H−4

10 Using the 32 Points on (−1,−1,−1) to Generate Col-

inear Points

If P is any point, then from Corollary 3, {P · Pi : Pi ∈ (−1,−1,−1)} = P · (−1,−1,−1) which

implies {P · Pi : Pi ∈ (−1,−1,−1)} are colinear points. We now choose the point P and also
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choose the points P1, P2, · · · , Pk from the 32 points {a, a′, b, b′, · · · , p, p′} ⊆ (−1,−1,−1) that

are given in Section 9 so that P · P1, P · P2, · · · , P · Pk are points of the form In, In · hm, In ·

hm, I
n · Hm, I

n · Hm where n ∈ Z and m ∈ {−4,−3,−2,−1, 1, 2, 3, 4}. Note that we are only

allowing −4 ≤ m ≤ 4. Of course, if Q is any point, then the points In ·Q, In ·Q,n ∈ Z, can be

constructed by using various combinations of the basic conjugate ϕ (P ), the isogonal conjugate

θ (P ) and the isotomic conjugate P . Also, I2n · Q, I2n · Q,n ∈ Z, can be constructed by using

only the isogonal conjugate and the isotomic conjugate. In the following list, we mention a few

of the inner relations of these lines.

1. Since (b) = P 1 · h1 ·H2, (b
′) = I2 · P 1 · h1 ·H−2, (e) = P 1, (e

′) = I · P 1, (f) = P 1 · h1, (f ′) =

I2 · P 1 · h1, (h) = P 1 · h1 · h2, (h′) = I4 · P 1 · h1 · h2 all lie on the line (−1,−1,−1), we see

that P1 · h1 · (b, b′, e, e′, f, f ′, h, h′) =
(
H2, I

2 ·H−2, h1, I · h1, G, I2, h2, I4 · h2
)
are colinear.

Note that H2 = H, I2 · H−2 = θ (H−2) , I · h1 = ϕ
(
h1
)
, I2 = K, the Lemoine point, and

I4 · h2 = θ
(
θ (h2)

)
.

1′. Multiplying the points of (1) by In, n ∈ Z, we see that(
In ·H2, I

n+2 ·H−2, I
n · h1, In+1 · h1, In, In+2, In · h2, In+4 · h2

)
are colinear. When n = 2, line 1′ become

(
I2 ·H2, I

4 ·H−2, I
2 · h1, I3 · h1, I2, I4, I2 · h2, I6 · h2

)
.

We note that I2 ·H2 = I2 ·H = θ (H) = O, I2 = K and I4 = θ
(
K
)
. This line is called the

Brogard diameter, and it is perpendicular to the Lemoine axis (which is the harmonic axis

of K). The Brogard diameter is also perpendicular to the harmonic axis of θ(H).

2. P1 · h1 ·H2 · (b, f, f ′, l, p) =
(
G,H2, I

2 ·H2, I
2 ·H2, I

2 ·H4

)
are colinear. This is the Euler

line which is the line that we started with. We note that we have also picked up the

new point I · H2 = I2 · H = θ
(
H
)
, which was mentioned in Section 8. The Euler line is

perpendicular to the harmonic axis of K, and it is perpendicular to the harmonic axis of

H.

2′. Multiplying the points of (2) by In, we see that
(
In, In ·H2, I

n+2 ·H2, I
n+2 ·H2, I

n+2 ·H4

)
are colinear. The line I

2 ·(2) =
(
I
2
, I

2 ·H2, H2, H2, H4

)
is parallel to the Brogard diameter.

3. P1 · (a, a′, e, e′, f, f ′) =
(
H1, I ·H−1, G, I, h1, I

2 · h1
)
one colinear. Note that H1 =M = N

is the Nagel point of a triangle.
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3′. In · (3) ≡
(
In ·H1, I

n+1 ·H−1, I
n, In+1, In · h1, In+2 · h1

)
are colinear.

4. P1 ·H1 · (a, e, e′, k, o) =
(
G,H1, I ·H1, I ·H1, I ·H2

)
are colinear. Note that H1 =M is the

Gergonne point of a triangle.

4′. In · (4) =
(
In, In ·H1, I

n+1 ·H1, I
n+1 ·H1, I

n+1 ·H2

)
are colinear. If n = −1, we see

that
(
I, I ·H1 = I ·M,H1 =M,H1 = N,H2 = H

)
are colinear. This line is parallel to

line I · (3) =
(
I ·H1, I

2 ·H−1, I, I
2, I · h1, I3 · h1

)
.

5. P1 ·H2 · (b, e, e′, o) =
(
h1, H2, I ·H2, I ·H1

)
are colinear.

5′. In ·(5) =
(
In · h1, In ·H2, I

n+1 ·H2, I
n+1 ·H1

)
are colinear. When n = −1 we have I ·(5) =(

I · h1, I ·H2, H2, H1

)
=
(
I · h1, I ·H,H,N

)
.

This line is parallel to the line I · (4) =
(
I, I ·H1, I

2 ·H1, I
2 ·H1, I

2 ·H2

)
.

6. P1 · h1 ·H1 · (a, f, f ′) = (h1, H1, I
2 ·H1) are colinear.

6′. In · (6) = (In · h1, In ·H1, I
n+2 ·H1) are colinear.

7. P1 · h1 · h2 · (d, d′, f, f ′, h, h′, j, j′) =
(
H4, I

4 ·H−4, h2, I
2 · h2, G, I4, h4, I8 · h4

)
are colinear.

7′. In · (7) =
(
In ·H4, I

n+4 ·H−4, I
n · h2, In+2 · h2, In, In+4, In · h4, In+8 · h4

)
are colinear.

8. P1 · h1 ·H4 · (d, f, f ′, p) =
(
h2, H4, I

2 ·H4, I
2 ·H2

)
are colinear.

8′. In · (8) =
(
In · h2, In ·H4, I

n+2 ·H4, I
n+2 ·H2

)
are colinear.

9. P3 · (c, c′, g, g′, i, i′) =
(
H3, I

3 ·H−3, G, I
3, h3, I

6 · h3
)
are colinear.

9′. In · (9) =
(
In ·H3, I

n+3 ·H−3, I
n, In+3, In · h3, In+6 · h3

)
are colinear.

10. P3 ·H3 · (c, g, g′,m) =
(
G,H3, I

3 ·H3, I
3 ·H3

)
are colinear.

10′. In · (10) =
(
In, In ·H3, I

n+3 ·H3, I
n+3 ·H3

)
are colinear.

11. P1 · h1 ·H−1 · (a′, f, f ′) = (I · h1, H−1, I
2 ·H−1) are colinear.

11′. In · (11) = (In+1 · h1, In ·H−1, I
n+2 ·H−1) are colinear.
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12. P1 · h1 ·H−2 · (b′, f, f ′, l′, p′) =
(
I2, H−2, I

2 ·H−2, H−2, H−4

)
are colinear.

12′. In · (12) =
(
In+2, In ·H−2, I

n+2 ·H−2, I
n ·H−2, I

n ·H−4

)
are colinear.

13. P1 · h1 · h2 ·H4 · (d, h, h′, n) =
(
G,H4, I

4 ·H4.I
4 ·H4

)
are colinear.

13′. In · (13) =
(
In, In ·H4, I

n+4 ·H4, I
n+4 ·H4

)
are colinear.

14. P1 ·H−2 · (b′, e, e′, o′) =
(
I2 · h1, H−2, I ·H−2, H−1

)
are colinear.

14′. In · (14) =
(
In+2 · h1, In ·H−2, I

n+1 ·H−2, I
n ·H−1

)
are colinear.

15. P1 · h1 · h2 · h4 · (h, h′, j, j′) = (h4, I
4 · h4, G, I8) are colinear.

15′. In · (15) = (In · h4, In+4 · h4, In, In+8) are colinear.

16. P3 · h3 · (g, g′, i, i′) = (h3, I
3 · h3, G, I6) are colinear.

16′. In · (16) = (In · h3, In+3 · h3, In, In+6) are colinear.

17. P1 · h1 · h2 ·H−4 · (d′, h, h′, n′) =
(
I4, H−4, I

4 ·H−4, H−4

)
are colinear.

17′. In · (17) =
(
In+4, In ·H−4, I

n+4 ·H−4, I
n ·H−4

)
are colinear.

18. P3 ·H−3 · (c′, g, g′,m′) =
(
I3, H−3, I

3 ·H−3, H−3

)
are colinear.

18′. In · (18) =
(
In+3, In ·H−3, I

n+3 ·H−3 · In ·H−3

)
are colinear.

19. P1 ·H−1 · (a′, e, e′, k′, o′) =
(
I,H−1, I ·H−1, H−1, H−2

)
are colinear.

19′. In · (19) =
(
In+1, In ·H−1, I

n+1 ·H−1, I
n ·H−1, I

n ·H−2

)
are colinear.

20. P1 · h1 ·H−4 · (d′, f, f ′, p′) =
(
I4 · h2, H−4, I

2 ·H−4, H−2

)
are colinear.

20′. In · (20) =
(
In+4 · h2, In ·H−4, I

n+2 ·H−4, I
n ·H−2

)
are colinear.

21. P1 · h1 · h2 ·H−2 · (b′, h, h′) = (I2 · h2, H−2, I
4 ·H−2) are colinear.

21′. In · (21) = (In+2 · h2, In ·H−2, I
n+4 ·H−2) are colinear.

22. P1 · h1 · h2 · h4 ·H−4 · (d′, j, j′) = (I4 · h4, H−4, I
8 ·H−4) are colinear.
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22′. In · (22) = (In+4 · h4, In ·H−4, I
n+8 ·H−4) are colinear.

23. P3 · h3 ·H−3 · (c′, i, i′) = (I3 · h3, H−3, I
6 ·H−3) are colinear.

23′. In · (23) = (In+3 · h3, In ·H−3, I
n+6 ·H−3) are colinear.

24. P1 · h1 · h2 ·H2 · (b, h, h′) = (h2, H2, I
4 ·H2) are colinear.

24′. In · (24) = (In · h2, In ·H2, I
n+4 ·H2) are colinear.

25. P3 · h3 ·H3 · (c, i, i′) = (h3, H3, I
6 ·H3) are colinear.

25′. In · (25) = (In · h3, In ·H3, I
n+6 ·H3) are colinear.

26. P1 · h1 · h2 · h4 ·H4 · (d, j, j′) = (h4, H4, I
8 ·H4) are colinear.

26′. In · (26) = (In · h4, In ·H4, I
n+8 ·H4) are colinear.

27. P1 · h2 · (e, e′, h, h′) =
(
h2, I · h2, h1, I4 · h1

)
are colinear.

27′. In · (27) = (In · h2, In+1 · h2, In · h1, In+4 · h1) are colinear.

28. P1 · h1 · h4 · (f, f ′, j, j′) =
(
h4, I

2 · h4, h2, I8 · h2
)
are colinear.

28′. In · (28) =
(
In · h4, In+2 · h4, In · h2, In+8 · h2

)
are colinear.

11 Using the 32 Points on (−1,−1,−1) in Unusual Ways

As we learn more about the triangle, we will discover unusual ways to use the 32 points on

the line (−1,−1,−1). We now give an example. Suppose △DEF is the orthic triangle of

△ABC and let MDEF be the Gergonne point of △DEF . Using techniques similar to this paper,

we can show MDEF = I2 · h2 · H2 = θ(h2 · H2) where H2, h2 are the orthocenter and little

orthocenter of triangle ABC. Using the 32 points a, a′, b, b′, . . . , p, p′ on (−1,−1,−1), we can

now compute points on the Euler line of section 10 by P1 · h1 ·H2 · (b, f, f ′, l, p, h = P1 · h1 · h2) =

(G,H2, I
2 ·H2, I

2 ·H2, I
2 ·H4, h2 ·H2 = I

2 ·MDEF ). Now, I
2 ·MDEF = θ(MDEF ) where θ(MDEF )

is the isotomic conjugate of the isogonal conjugate of MDEF . Thus θ(MDEF ) lies on the Euler

line of △ABC.
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12 Concluding Remarks

By considering other triangles in addition to the medial and anti- complementary triangles and

also by allowing both n,m ∈ Z in In, In · hm, In · hm, In ·Hm, I
n ·Hm of Section 10 it is simple

and straightforward to vastly expand the collection of colinear points given in Section 10. This

means that the material in Section 10 is not even remotely close to being exhaustive. Another

problem is to find more points on the Euler line. We are also researching the infinite number

of perpendicular and parallel lines that exist in the triangle as well as other types of points.

As one example, if P (r, s, t) , rst = 1, is a point, then the harmonic associates of P (r, s, t)

are the points Pa (r,−s,−t) , Pb (−r, s,−t) , Pc (−r,−s, t). We are also researching the different

substitution (f (a, b, c), g (a, b, c) , h(a, b, c)) that we can use for (a, b, c) . We conclude with the

following example. We can show that line IH is parallel to line N, ϕ(H). Also, these two parallel

lines are perpendicular to the harmonic axis of each of N, ϕ(M), ϕ(N), ϕ(O). This example also

illustrates how the basic conjugate ϕ keep appearing in the triangle.
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