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1 Introduction
Problem 21, page 10 of [1] states

Three integers a, b, ¢ are written on a blackboard. Then one of the integers is
erased and replaced by the sum of the other two diminished by 1. This operation
is repeated many times with the final result 17,1967,1983. Could the initial
numbers be (a) 2,2,2 (b) 3,3,37

This paper develops a mathematical context for a class of problems that includes this
one and solves them. We deal with Arthur Engel’s problem in section 8.
A set F of triplets of integers is said to be a Fibonacci set if

1. each t € F'is a triplet of the form ¢ = {x,y,x 4+ y} where x and y are positive integers
and x = y is allowed and

2. ift={x,y,z+y} € F then {z,x +y,20 +y} € F and {y,x +y,z + 2y} € F.

The main purpose of this paper is to compute in a closed form the smallest Fibonacci
set F;, = ¢(t) that contains the single element ¢t = {a,b,a + b} where a < b and a,b €
{1,2,3,...}. It is also possible to think of a,b as purely algebraic symbols. In the end, we
devise two algorithms for determining if {6, b,a+ 5} € g({a,b,a +b}) when @,b,a,b have
specific numerical values.

Throughout this paper, we use the notation N = {0,1,2,3,...} , N ={1,2/3,...}. The
main result is that if a,b € N* and a < b, then

g(a,b,a—i—b)z{{x,y,x—kg}:(z:):M- <Z),MEM}

where M - ( ch ) is matrix multiplication and

M:HZ ﬂ :9,¢,¢,neN,‘Z i‘:i1,9+¢§¢+w}.



2 Preliminary Concepts

For our purposes we will modify the definition of a Fibonacci set as follows:

Definition 1. A set F' is said to be a Fibonacci set if 1. and 2. are true.
1. Eacht € F is an ordered triple of the form t = (z,y,x + y) where x,y € N* and x < y.
2. If (x,y,x+y) € F then (x,x +y,2x+y) € F and (y,x + y,x + 2y) € F.

Notation 1. If (x,y,x +y), where x < y,x,y € Nt is a member of a Fibonacci set F we
will often use an abbreviated notation and write (z,y,x +y) = (z,y).

Definition 2. Suppose (z,y) = (z,y,x + y) € F where F is a Fibonacci set andx < y,x,y €
N*.

We define (z,z 4+ y) = (z,z + y,2x +y) and (y,z +y) = (v, + y, z + 2y) to be the im-
mediate successors of (z,y) = (z,y,z +y) in F. Of course, if z = y then the two immediate
successors of (x,y) are equal, and if x < y then the two immediate successors of (z,y) are
unequal. We denote them by (z,y) — (2,2 + y) and (z,y) — (y,x + y). Of course, we could
also denote them by (z,y,z +vy) — (z,2 +y,2x + y) and (z,y,2+y) — (y,x + y,x + 2y).
Call (z,y) = (x,y,z +y) the immediate predecessor of (x,x +vy) = (z,x +y,2x + y) and
call (z,y) = (z,y,z + y) the immediate predecessor of (y,z + y) = (y,z + y, x + 2y).

Note that if (Z,7) is an immediate successor of (x,y) in F' then T < 7.

Lemma 1. Suppose F is a Fibonacci set and (z,y,x+vy) € F where v < y,x,y € NT. If
(x,y,x 4+ y) has an immediate predecessor (0,¢,0 + ¢) in F, where < ¢,0,¢ € N, then
(0,0,0 + ¢) is unique.

Proof. Suppose (0,¢,0 + ¢) is an immediate predecessor of (z,y,z +y) in F where
0 < ¢,0,¢ € NT. Since (z,y,x + y) must be an immediate successor of (0, ¢,0 + ¢) in F,
we must have (1): (0,0 + ¢,20 + ¢) = (v,y,z +y) or (2): (¢,0+ ¢,0+2¢) = (z,y,x +vy).

Suppose (1). Then (6,0 + ¢,20 + ¢) = (x,y,x +y). Then 0 = z,0+¢ = y,20+¢ = x+y.
Therefore, 8 = x, ¢ = y — x and we require z < y — x.

Next, suppose (2). Then (¢,0 + ¢,0 + 2¢) = (z,y,x + y). Then ¢ = x,0+¢ = y,0+2¢ =
x 4y . Therefore, ¢ = 2,0 =y — x and we require 1 <y —z < x.

Of course, if x = y — z then (6,¢,0 + ¢) = (z,y — z,y) and (0,¢,0 + ¢) = (y — =, x,y)
are the same for both (1) and (2) and this implies that (0, ¢, 0 + ¢) is unique.

Also, if © < y — x we have (0,¢,0+ ¢) = (z,y —x,y) where § < ¢,0,¢ € NT and
if 1 <y—x <z, we have (0,¢,0 +¢) = (y — z,z,y) where § < ¢,0,¢ € N*. There-
fore, (6, ¢,0 + ¢) is uniquely determined from (z,y,z + y) if (z,y, x + y) has an immediate
predecessor (0, 0,0 + ¢) in F. m

Definition 3. Suppose A is any set such that for every t € A,t satisfies the condition
t=(z,y,x+y) = (z,y) where v < y,z,y € N*. Then Fy = g(A) is the smallest Fibonacci
set such that A C F'. We say that Fy = g (A) is generated by A and we generate Fy = g (A)
in a standard way by first insuring that A C F and then insuring that for all t in Fy the
two immediate successors of t are also in Fy. Also, if t = (x,y,x +y) = (z,y), where
v <y,x,y € Nt we define F, = Fryy = g ({t}) = g(t), and we say that F, is the Fibonacci
set generated by the single element t.



It is fairly easy to convince yourself that

k
F{tl,t2,~~- ,tk} - U Fti-

i=1

We do not give a formal proof of this since it is not used in this paper. Also, see Section
8 for another property.

In Fig. 1 we illustrate F(1 1) = F{1,1,2). Again note that if (Z,7) is an immediate successor
of (x,y), then we must have T < 7. Therefore, from Definition 2 and Lemma 1, we easily
see that F{1 1) is a binary tree since each vertex in Fiy 1y, (except the initial vertex (1,1,2)),
has two immediate successors and one immediate predecessor in F{; 1. We later explain why
F(1,1) is the basic or universal Fibonacci set.

(5,8,13)

(3,8,11)
(5,7,12)

(2,7,9)
(1,1,2)

(4,7,11)

(3,7,10)

(1,3.4) (4,5,9)

(1,4,5) (1,5,6)

Fig. 1. The binary tree F11) = g(1,1).

Lemma 2. Suppose a € NT. Then F (a,a) = g (a,a) = {(ax,ay) : (z,y) € g(1,1)}. Also,
suppose t is the greatest common divisor of a,b where a < b, and a,b € N*. Then Fi,p) =
g(a.b) = {(t,ty) : (x.y) €9 (5.9)}-

Proof. This is obvious. m

3 Statement of the Two Problems

Main Problem. Suppose that a,b are algebraic literal numbers where we agree that a <
b,a,b € N*. The secondary problem will take care of the case where a = b. We wish to
compute in a closed form the Fibonacci set Fiop) = Flapats) = g(a,b). We will use the
following easy secondary problem to help us solve the main problem.

Secondary Problem. Suppose that a is an algebraic literal number in N*. We wish to
compute in a closed form the Fibonacci set F,q) = Fq,0,2q)-



4 The Solution to the Secondary Problem

If a,b € NT, the notation (a,b) = 1 means that a and b are relatively prime.
Solution of the Secondary Problem. If a € N* is arbitrary but fixed, then Fi,q) =
g(a,a) ={(0a,¢a): 0,9 € N*.0 < ¢,(0,¢) = 1}.

Note 1. Of course, this solution implies that
Fayy=Fuai2={(0,0):0,0eN*,0<¢,(0,0) =1}.

Proof of the Solution. Of course, (a,a) € Flaq),(a,a) = (1-a,1-a) and (1,1) = 1. Now
Fla,q) is the Fibonacci set generated by (a,a) and we observe that if (fa, pa) € Fl4q), where
0 <¢,0,0 € N (6,0) =1, then the two immediate successors of (fa, pa) are (fa, (6 + ¢) a)
and (¢a, (0 + ¢) a). We see that 0 < 0+ ¢,0,0 + ¢ € NT and (0,0 + ¢) = 1 since (0,¢) = 1.
Also, p <0+ ¢,0,0 + ¢ € Nt and (¢,0 + ¢) = 1 since (0, ¢) = 1.

From this it follows that each (x,y) € F,4) must be of the form (z,y) = (da, ¢a) where
0 <¢,0,0cNtand (0,¢) =1.

We now reverse directions and show that any arbitrary (z,y) that satisfies (z,y) =
(Ba, pa), 0 < ¢,0,¢ € NT,(6,¢) = 1 must be in Fi, 4y = g (a,a). We do this by mathematical
induction on 6 + ¢ = n.

Now if n = 2 then § = ¢ = 1 and (fa,pa) = (1-a,1-a) = (a,a) € Fiuq). So we have
started the induction on n, and we now suppose that the conclusion is true for each 0+¢ =7
where @ € {1,2,3,...,n— 1} and n > 3. We now show that the conclusion is true for any
(0,6) when 0 + ¢ =n,0 < ¢,0,¢ € N (0,¢) = 1.

We consider three case.

Case (1). 6 = ¢ — 6.

Case (2). 0 < ¢ — 0.

Case (3). ¢ — 0 < 0.

We first observe that the conditions 6, ¢ € N*.,0 < ¢,(0,¢) = 1,0+ ¢ > 3 together imply
that 6 < ¢. Thus 1 < ¢ — 6.

Case (1). Now 0 = ¢ — 0 implies 20 = ¢ which implies § = 1,¢ = 2 since (0,¢) = 1.
Therefore, (fa, pa) = (a,2a). Also (a,a) € F(q,q) implies (a,2a) € Fi,q).

Case (2). By induction (fa, (¢ — 6) a) € Faq) since §,¢—0 € N, 0 < ¢p—0,(0,¢ —0) =1
and 0+ (¢ —0) <0+ ¢ =n.

Also, (Ba, (¢ —0)a,) = (Oa, (¢ —0) a,¢a) € F,q) implies (fa, pa) € Fqq).

Case(3). Now by induction ((¢ — 0)a,ba) € F4q) since (1) 6 < ¢ implies ¢ — 0,0 € N,
(2)p—0 <6, (3) (6—0,0)=1,and (4) (¢ —0) +6 < 0+ ¢ = n. Also, ((¢ — 0)a,fa) =
(¢ — 0)a,0a, pa) € Foq) implies (fa, pa) € Figq). ®

Observation 1. From Lemma 2, we know that if ¢ is the greatest common divisor of a, b
where a < b,a,b € N*, then Fl,p) = g (a,b) = {(t:z:,ty) (x,y) €g (%, %)} i

Also, (%,%’) = 1 and from Note 1 this implies that (%,%’) € Fu,1). Thus, (%,%) is a

member of the binary tree F{; ;) which is shown in Fig. 1. Therefore, F (2,2) consists of all of
tt

those vertices on the binary tree F{; ;) that are generated by the single vertex (%, %) Thus,
the binary tree F{; 1) contains embedded in itself sufficient information to compute all F, )
where a,b € N*, a < b. This is why we call F{; 1) the basic or universal Fibonacci set. Before
we solve the Main Problem, we will first develop the very basic matrix machinery that we

will need.




5 Basic Matrix Machinery
0 cb] 0 ¢
v om (Vs

Then (0,¢) =1, (¢,7) =1,(0,0) =1, (¢,7) =1,0+ ¢, +7) =1land (0 + ¢, 0+ ) =
1.

Lemma 3. Suppose 0, ¢, v, m € N and det [ = +1.

Proof. (0,¢) = (¢, 7) =
The proof of (6 + 1, qf)—l—ﬂ)
0+od=m,+71=n.

( ¢) = (¢, ) = 1is obvious. We show that (§ + ¢, + 7) = 1.

is the same. Suppose p is a prime such that p|m, p|n where

0 ¢ 6 m-—~0 6 m
No =
" ‘ S I TR B
Now ‘ Z f: = +1 is impossible since p|m,p|n. =

Lemma 4. Suppose 1 < m < n are relatively prime positive integers. Then there exists a

unique 2 X 2 matriz [ Z i } that satisfies the following conditions.

(1). 0,¢,1, 7 are non-negative integers
0 ¢ |_

(2). ‘ o wl=t

(3). 0+ =m,+7=n.

Proof. First suppose that 1 =m < n.

Now Z j: = 0m — ¢ = 1 implies 0 # 0,7 # 0. Therefore, 6 + ¢ = m = 1 implies
0 =1,¢=0. Therefore, § =1,¢ = 0,0r—1Y¢ = 1 implies 7 = 1. Therefore, V+7m=n,7m =1

implies ¢ = n — 1. Therefore, {Z f:} = [nil (1)]

Second, suppose that 2 < m <n. From 0 + ¢ = m,y) + 1 = n, Z i‘zlwe have the
following:
p=m—0,Tr=n—1
0 ¢ 0 m-—40 6 m
and = = =nf —my = 1.
vel=le nl]=]e n ’

Now obviously, 8 # 0. Also, 2 < n implies ¢ # 0 since 1) = 0 would imply n|1l. Suppose
¢ = 0. Then 6 + ¢ = m implies § = m and nf — my = nm — my = 1 is impossible since
m > 2.

Therefore, ¢ # 0.

Suppose m = 0. Then ¢+ 7 = n implies ¢ = n and nf —my = nf —mn = 1 is impossible
since 2 < n.

Therefore, m # 0. Therefore, 6 +¢ = m, ¥ +71 =n,0 # 0,9 # 0,9 # 0,7 # 0 imply
1<0<m-1,1<op<m-11<¢y<n—landl<n7<n-—1.

Since 2 < n,2 < m and n,m are relatively prime we know from number theory (the
Euclidean algorithm) that there exists a unique (0,7) with 1 <0 <m —-1,1<¢p <n-1



that satisfies nf —m = 1. From this unique (0,v) and from 6 + ¢ = m, 1) + 7 = n we see

that (¢, ) is also unique. Therefore { Z

o | . .
.
o | 15 unique

Corollary 1. Suppose 1 < m < n are relatively prime positive integers. Then, there exists
a unique 2 X 2 matriz % i ] that satisfies the following conditions.
(1) §7$a_7ﬁ eN
b ¢
2). | — =—1.
o |33

(3). 0+ =m,+7=n.

Also, the unique matrix { % i } of Corollary 1 and the unique matrix { Z jr) } of
6 ¢ [o 0
Lemma 4 are related by {E ﬁ} = [7( W 1 .

Proof. We use Lemma 4 with the matrix [ f: Z } .

Corollary 2. The conclusion of Lemma 4 remains true if we drop 1 < m < n and simply
assume that m,n are any relatively prime positive integers.

Proof. If 1 < n < m we use Corollary 1 with the matrix [ z g } .
Corollary 3. The conclusion of Corollary 1 remains true if we drop 1 < m <n and simply
assume that m,n are any relatively prime positive integers.

6 Solving the Main Problem

In the main problem we consider a,b to be algebraic literal numbers and we assume that
a < b,a,b € Nt. We can assume that a < b since the case where a = b,a € N* was solved
in the secondary problem.

Starting with (a,b) = (a,b,a + b), in Fig. 2 we show a few of the branches in the binary
tree that represents the Fibonacci set F' (a,b) = g (a,b) .



o (a+2b,2a+3b,3a+5b):[ y 2 }:33

oy I I
(b7a+b,a+2b):{? 0(a+b,2a+5b,3a+4b)7[ 5 3}7,43
. (a+2b,a+3b,a+5b):[ 1 ; ]:BAB
_ |0 1| _ 42
® (b,a+3b,a+4b) = 1 3 = A*B
1 0
(a,b,a+b):{ 0 1}:,40:30
_| 2 1| _ p2
® (2a + b,3a + 2b,5a + 3b) = 3 9 = B4A
o(a+b,3a+2b,4a+3b):[§ i}:ABA
2 1 5
_[1 o0 ° (2a+b,3a+b,5a+2b)=[ 31 }—BA
(a,a+b,2a+b)7{ 1 1]
° (a,3a+b,4a+b):{é ?]:A:s

Fig. 2. The binary tree Fi,5 = g (a,b).

Of course, F{,3 must be a binary tree since it is a binary tree for specific values of a, b.

As always, each vertex on the binary tree F{, ;) has exactly two immediate successors on
the tree and each vertex except (a, b) has exactly one immediate predecessor on the tree. As
always, from this it follows that all of the vertices shown on the binary tree F{,s must be
distinct. Also, the successive levels of the tree have 1,2,4,8,16,--- vertices respectively.

The following statement (x) is easy to prove by mathematical induction.

(x) If (Ba + @b, vYa + 7b) = (Oa + ¢b,va + b, (0 + 1) a+ (¢ + m) b) is any vertex on the
binary tree Fi, ) except (a,b), then 8,4, ¢,m € N0+ ¢ € Nt )+ 7€ Nt 0 <1, ¢ <7 and
at least one of § < ¥, ¢ < w. Therefore, § + ¢ < ¥ + 7. (x) follows by induction because
each vertex (fa + ¢b,1a + wb) of the binary tree F|, ;) has two immediate successors namely

(Ya + b, (6 + ¢)a + (¢ + m)b)
(Oa + @b, Ya + mwb)
(Oa + ¢b, (0 +)a+ (¢ + m)b)

Suppose (fa + ¢b,a + wb) satisfies the above conditions (x). Also, suppose we wish
to decide whether (fa + ¢b,vYa + 7b) = (fa + ¢b,vYa + 7b, (0 + V) a + (¢ + m) b) lies on the
binary tree Fi,). To do this, let us first define ka + hb < ka+hbif k,hk,h e Nk+h €
Nt k+h € Ntk < k,h < h and at least one of k < k,h < h. We next assume that
(Ba + ¢b,1pa + 7b) lies on Fap). Then since each vertex of Fi,p) except (a,b) has exactly
one immediate predecessor in Fi,p), we work backwards from (fa + ¢b,¢a + 7b) one step
at a time, using the above definition of <, until we either reach (a,b) or else reach a point

where an immediate predecessor does not exist. By using the above definition of <, these



immediate predecessors can be computed exactly as we did in the proof of Lemma 1. We
now derive a lemma that will tell us directly whether (6, b) = (fa + ¢b,pa + 7b) lies on F,y)
or not.

. |10 101 1 1 0 1
Notat10n2.LetA—[11},3—{11].ThenA —{_11]andB =
-1 1
1 0|

Lemma 5. Suppose (x,y) = (z,y,x +vy), where x,y € N 2z < y, is an element in a

Fibonacci set F'. Then the two immediate successors of (x,y) = ‘z > in F are the following.

(z,9)

Proof. This is obvious. =

Observations 2. It follows from Lemma 5 that each element (z,y) = ( S; ) of the binary

tree Fip) = ¢ (a,b) can be written (z,y) = ( o ) =T- < “ ) where T' = C4 - Cy - - - Gy

Y b
with each C; € {A, B} and where we also include T'= A° = B° = {(1] ?]
: 10 0 1 : . . o |10
SlnceA—[1 1},3—{1 1} and since we are also including A° = B —{0 1}

we immediately see that T" = { z i } satisfies the following conditions which are slightly

weaker than the conditions (*) mentioned earlier.

(1). detT = 1.

(2). 0,¢,¢,m € N,

B)1<0+¢p<tY+m.

From Lemma 3, conditions (1), (2) also imply that (0 + ¢,¢ +7) = 1.

If weinclude T'= A° = B° = [ (1) (1)
(1), (2), (3) exactly determine all of the 2 x 2 matrices T" such that T = C; - Cy - - - C; with
each C; € {A, B}. This will be the complete solution to the Main Problem.

Also, suppose T = C} - Cy---C.,T = Cy - Cy---C, where each C; € {A, B} and each
C; € {A,B}.

, then we will soon show that these three properties



Starting at (a,b) = on the binary tree. Fi,,) = g(a,b), where a < b,a,b € N,

a
b
we see that T - ( Z ) and T - ( (Z ) will be the same vertex on the tree F{, if and only if

r = s and for every ¢ € {1,2,--- ,_7‘23},6’2- =C,.
Therefore, it follows that T'= T if and only if r = s and for every ¢ € {1,2,--- ;r = s},C; =
C.

Lemma 6. Suppose (z,y) = (z,y,x +vy),z,y € NT, x <y, is an element in a Fibonacci set
F.

If (x,y) = ( :; ) has an immediate predecessor (T,Y) in F, then either

o ()=o) 1) ()
o e (3)-r(3)-[23](G)- ()

Proof. The proof is obvious. m

or

i } are 2 X 2 matrices. We say that [ o

cb]N
Yo

D(—iﬁnition 4. Suppose [ fﬁ :i} : { %
0 ¢ if 0 ¢ [o 0
T U N I RV
Lemma 7. Suppose R, S are 2 x 2 matrices, and R ~ S. Then AR ~ AS and BR ~ BS.

Proof.LetR:-H ¢},S:[¢ 8].

YT T
[ro0][6 o] [ o ¢
ThenAR_{l 1Hw w]_leﬂb ¢+7r]‘
fr1o07[e 0] [ ¢ 0
AISO’AS_L 1H7r ¢}_{¢+W 0+¢]

Therefore, AR ~ AS. Likewise BR ~ BS. m

Lemma 8. Let T be the matriz product T = Cy - Cy - - Cy where each C; € {A, B}. Then
detT = £1.

Also, TA ~ TB.

Proof. Since det A = 1,det B = —1 it follows that detT = +1. Also, since A ~ B it
follows from repeated use of Lemma 7 that TA~TB. =

Observations 3. In the Fig. 2 Fibonacci tree Fi, ), we observe that A* ~ A*B, BA* ~
BAB,ABA ~ AB? B%?A ~ B?. From Lemma 8, we note in general that the 2" elements

in level n 4 1 of the Fibonacci tree F{, ;) must occur in symmetric pairs [ Z f: } ( Z ) =

Oa + @b ¢ 0 a\ [ ¢a+0b . .
( va + b ) and { i ] ( b ) = ( o + b . For example, in the 4th level of the Fig.

9



2 Fibonacci tree, we note that (a + b, 2a + 3b) = ; ; Z = AB? ( ch ) € Flap) and

1 1 a a
(a+b,3a+2b)—[3 2:|<b)—ABA(b)€F(a7b).
This is because AB - B ~ AB - A.

Lemma 9. Suppose m,n € N are any arbitrary members of NT that satisfy m < n and
(m,n) = 1. Then there exists at least one matriz T of the form T = C1-Cy---C, = Z i 1 ,
where each C; € {A, B}, such that 0 + ¢ = m,¥ + 7 = n. This includes T = A° = B° =

{(1] (1]] Also, 0,¢,9, m € N and det T = +1.

Proof. From the solution of the Secondary Problem, we know that
g(a,a) = {(0a,¢a) : 0,6 e N*,6 <, (0,¢) =1}.

Let § = m,$ = n. By letting a = b and using the properties of the binary tree Flap) it

follows that there exists T'=Cy - Cy--- Cy = [ Z i } with each C; € {A, B} such that

0 ¢ a\ |0 ¢ a\ [ @+¢)a ) [ ma
VT b ) | Y« a) \W+ma) \ na )’
Corollary 4. Suppose m,n € NT.m < n and (m,n) = 1. Then from Lemma 8 and

Observation 3 we know that there exists at least two distinct matrices T, T that satisfy the
conclusion of Lemma 9.

Also, by Lemma 8 and Observati(zl 3wecancal T'=Cy-Cqy--- Ct_-A and call T =
C,-Cy---C,- B. Since det T = — det T' we also conclude that {det T, det T} ={-1,1}.
Proof. The proof is obvious. =

Lemma 10. Define T = {Cy - Cy---C; : t € N, each C; € {A, B}} where we agree that C, -

10
Cg~-~Ct—[O 11 when t = 0.
syl A RO 0 ¢ _
Also,M—{{dj W}.@,(ﬁ,w,ﬂ'GN, ‘¢ W‘_i1,9+¢§w+w}.
Then T = M.
Erratum. Technically, T = M \ {[(1) (1)}} We patch this up by agreeing that M =
M\{{(l) (1)}} Proof. First we show that T C M.
Let T = [Z jﬁ] = C) - Cy---C; where each C; € {A,B}. We show T € M. Now
. 0 ¢ | _ C[10 CJo 1],
obviously 0, ¢,¢¥,m € N and ‘ b 7 ‘ = 41. Also, since A = {1 1],3— [1 1} it

10



is obvious by induction that 8 + ¢ < ¥ + w. Also, when t = 0, we define T' = [ (1) (1) 1

Therefore, T € M.

Next we show that M C T, where we consider M = M \ { [ ? é } }.

Therefore, suppose { Z fﬁ } € M is any fixed member of M.

Now since = 41, we know from Lemma 3 that (6 + ¢, +7) = 1.

0 ¢
Vo
Let us call # + ¢ = m, 1+ 7 = n where m, n are fixed, m,n € N*,m <n and (m,n) = 1.
Since the case m = n = 1 is trivial, we suppose that 1 < m < n.
From Lemma 4 and Corollary 1, we now know the following.

(a). If b0 _ 1, then there is only one possible matrix 4 ? that satisfies
Y om v T
57 0 ¢|_ I S 0 o|_[0 ¢
H,Qﬁ,w,WEN,‘E - —1and€+¢—m,w+7r—n,namely{E 71_[7# W].
0 ¢ . . [0 ¢ :
(b). If = —1, then there is only one possible matrix | — _ | that satisfies
Yo VT
. 0 6| == g 6] _[6 ¢
9,¢,w,W€N,’E ~|= 1and9+¢—m,¢+7r—nnamely,{a f}_[@b 7?}

e [N

Also, from Lemma 9 and Corollary 4, we know that this unique matrix

] _

<] I

l Z j: } of cases (a), (b) must lie in 7 and this completes the proof. m

Solution to the Main Problem.
We are required to compute Fi,) = g (a,b) in a closed form.

Calling (z,y) = ( ; ) we know that F,p) = {T- ( Z > T e T} where T is defined

in Lemma 10.
Now T = M, where M is also defined in Lemma 10. Therefore Fay =

(3 )ewremt} = {[2 2] (2)comnner| 2 ¢ |=sr0rocurs)

Note 2. It is easy to compute members M € M. Suppose, for example, that 8, ¢, ¢, 7 €

N, ‘ Z jr) ' = £1 and 0+4¢ > 1+m. We just reverse the two rows and we have ’ g) g ‘ =41

withy +1 <0+ ¢
7 Solving Specific Numerical Problems

Suppose a, be N*t,a < b,a@,b € Nt, @ < b are specific positive integers and we wish to decide
whether (@,b) € g (a,b) when (@,b) # (a,b).
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Define t = ged (a,b) ,t = ged (6, 5) where gcd denotes the greatest common divisor. From
Lemma 2 (or by induction) it is easy to prove that if (@,b) € g (a,b) then t = ¢ is a necessary
condition.

Also, if a < b and (E, l_)) € g (a,b), then the inequalities of Fig. 3 are also easily proved
necessary conditions.

ae< eq

A A

be < eb

Fig. 3. Inequalities when (E 5) €g(a,b) and a < b.

From Lemma 2, it is also easy to show that (@, b) € g(a,b) if and only if (% %) cg(2Y)
where ¢ = ged (@, b) = ged (a,b) .

We will now develop two algorithms for deciding if (@,b) € g(a,b) when (a,b) #
(a,b),gcd (a,b) = ged (5, l;) = 1 and the necessary inequalities of Fig. 3 are met. We will
suppose a < b since the secondary problem has already taken care of the easy case where
a = b. Since ged (a,b) = ged (a,b) = 1, we know that (a,b) and (@,b) are vertices on the

basic Fibonacci tree F{; ;). Therefore, it makes sense to talk about immediate predecessors
on the tree.

(A). One way to numerically decide if (a, B) € g(a,b) is to work backwards from (G, 5)
by finding consecutive immediate predecessors until we either arrive at (a,b) or else arrive
at a contradiction to the necessary inequalities of Fig. 3.

(B) We will now develop a matrix solution that uses the solution to the Main Problem.

We know that (d, Z_)) € ¢g(a,b) is true if and only if there exists a matrix [ Z f: } that

satisfies the following conditions.

(1) 8,¢,¢,m € N.

9 ¢ | _
(2) 2=
(3) 6 —|— o<+
[0) [ a

ez (G)-(5)
6 ¢ : o : 0 ¢ |
b T } that satisfies conditions (1), (2), (3) can be written as [ b T } =
Cl . CQ .. 'Ct with each Cl c {A, B} .

Also, each distinct Cy - Cy - - - Cy places (Cy - Cy -+ - Cy) ( Z > at a different vertex on the

Each matrix

Fibonacci tree Fi, 4. Thus, if [ Z f: } exists that satisfies conditions (1), (2), (3), (4) then

it is unique.
From (1), (2), (3), (4) we have the following.
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(1) O — pp = £1.

(2") 0a + ¢b =a.

(3") va + b = b.

Therefore, (2") 6 =

(3") v = =rb

Therefore, (1”) [E_T‘ﬁb} T — [%] o=+l

Therefore, am — brp — b + brp = +a.

Thus (#*) ar — bg = Fa. From (3), we see that 0 < 7 < b since b > 2. Also, from
(2') we see that 0 < ¢ < @ since b > 2. From (xx) we have (x* )7 = i“TJ“b(ﬁ
0<¢p<a0<m<b.

Since (@,b) = 1, it is easy to see that if solutions (¢, 7) exist for (* ) then they must
be unique for each =+a.

Therefore, the matrix solution requires us to first find these unique solutions (¢, ) to
(x * *) subject to the side conditions 0 < 7 < b,0 < ¢ < @ if such solutions exist.

If a solution (¢, 7) to (* * *) exists, for either +a, then (0,1) can be uniquely computed

¢

a—¢b
=

subject to

from (¢, 7). We then check to see if the matrix satisfies the conditions 6,79 € N

0
Vvow
and 0 + ¢ <1 + m. The other conditions in (1), (2), (3), (4) are automatically satisfied.

8 Some Concluding Remarks

It is possible to prove more properties of Fibonacci sets than we have proved in this paper.

As an example, suppose a,b,@,b € Nt are a < b,@ < b. We say that (a,b) and (6, 5) are
independent if (a,b) ¢ g (@,b) and (@,b) ¢ g (a,b). If (a,b) and (@,d) are independent, then
we can show that g (a,b) Ng (E, 5) = ¢, the empty set.

As a further extension, the reader might like to use the isomorphism f : (Z,0,+) —
(Z,1,%), where Z is the set of all integers, f(x) = x + l,a*xb = a + b — 1, and then
substitute this operator * for + and study para-Fibonacci sets F that satisfy both (1) for
allt € F, t = {x,y,v+y} where z,y,x *y € NT and (2) if t = {a,b,a*b} € F, then
{a,axb,ax (a*b)} € F and {b,a*b,b* (axb)} € F.
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