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A standard technique for solving the recursion xn+1 = g (xn), where g : C → C is a
complex function, is to first find a fairly simple function g : C → C and a bijection (i.e.,
a 1-1 onto function) f : C → C such that g = f−1 ◦ g ◦ f where ◦ is the composition of
functions and f−1 is the inverse function of f . Then xn = gn(x0) = (f−1 ◦ gn ◦ f)(x0) where
gn and gn are the n-fold compositions and gn is fairly easy to compute. With this motivation
we are in general interested in studying all pairs of rational functions g, g such that for some
a, b, c, d ∈ C

g =

(
ax + b

cx + d

)−1

◦ g ◦
(

ax + b

cx + d

)
where a, b, c, d satisfy

∣∣∣∣ a b
c d

∣∣∣∣ 6= 0.

In this paper we study an intermediate problem by finding all pairs of quadratic polyno-
mials g, g and also all pairs of cubic polynomials g, g such that for some a, b ∈ C, a 6= 0, g =
(ax + b)−1 ◦ g ◦ (ax + b). We denote such pairs by g ≈ g and we show that g ≈ g if and only
if g and g have the same signature which we define as those invariants that quadratic and
cubic polynomials have under the linear transformation g = (ax + b)−1 ◦ g ◦ (ax + b) .

1 Introductory Concepts

Let C be the set of complex numbers. If g : C → C and g : C → C are arbitrary functions
from C into C, we say that g and g are similar (denoted by g ∼ g) if there exists a bijection
(i.e., a 1-1 onto function) f : C → C such that g = f−1 ◦ g ◦ f where ◦ is the composition of
functions. From elementary set theory, we know that the word similar means exactly what
it says. Thus, for example, suppose that g and g are similar bijections on C. If we break
each of g and g down into its cycles. . . , g−2 (x) , g−1 (x) , g0 (x) = x, g (x) , g2 (x) , . . ., then
the types of these cycles will be the same in both g and g.

For example, if all of the cycles in g are the 3-cycles x, g (x) , g2 (x) , g3 (x) = x, then all
of the cycles in g will also be the 3-cycles x, g (x) , g2 (x) , g3 (x) = x. If g and g are rational
functions (i.e., the quotient of polynomials) and

g =

(
ax + b

cx + d

)−1

◦ g ◦
(

ax + b

cx + d

)
,
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then we encounter a stronger type of similarity which we will call algebraic similarity. Intu-
itively algebraic similarity means that g and g have similar algebraic properties. However,
we have not been able to define exactly what this means. None-the-less we have still been
able to use this intuitive concept to heuristically derive a technique for computing all of the
invariants that g and g must have when g and g are either polynomials or rational functions

of any arbitrary degree and g =
(

ax+b
cx+d

)−1 ◦ g ◦
(

ax+b
cx+d

)
,

∣∣∣∣ a b
c d

∣∣∣∣ 6= 0.

We will show the reader how to do this when g = (ax + b)−1 ◦ g ◦ (ax + b) and g, g are
polynomials of degree 2 or degree 3. These same ideas also generalize for higher degree
polynomials. However, the invariants quickly become so complex that they must all be
proved with a computer. Indeed, one of the three invariants used in this paper was (for
convenience only) computer proved.

2 Very Linearly Similar Quadratic Polynomials

Definition 1 Suppose g and g are nth degree complex polynomials. We say that g and
g are very linearly similar (denoted by g ≈ g) if there exists a, b ∈ C, a 6= 0, such that
g = (ax + b)−1 ◦ g ◦ (ax + b) .

Theorem 1 The relation ≈ is an equivalence relation on the collection of all complex poly-
nomials.

Proof. We let the reader verify the following three conditions which define an equivalence
relation.

a. g ≈ g.(reflexive condition).

b. g ≈ g implies g ≈ g. (symmetric condition).

c. g ≈ g and g ≈ g∗ implies g ≈ g∗. (transitive condition).

Problem 1 Suppose g (x) = Ax2 + Bx + C, A 6= 0, is a quadratic polynomial.
Define

(
x
a
− b

a

)
◦ (Ax2 + Bx + C) ◦ (ax + b) = g (x) = Ax2 + Bx + C where a 6= 0, b are

arbitrary complex numbers and (ax + b)−1 = x
a
− b

a
.

We wish to compute an invariant for g (x) and g (x). This means that we wish to find an
expression involving A, B, C that remains unchanged when we substitute A, B, C for A, B, C.

Solution 1 Suppose that Ax + Bx + C and Ax2 + Bx + C, A 6= 0, A 6= 0 are any arbitrary
complex quadratics.

We now show that we can linearly transform Ax2 + Bx + C into Ax2 + Bx + C by

(∗) Ax2 + Bx + C =

(
x

a
− b

a

)
◦

(
Ax2 + Bx + C

)
◦ (ax + b)
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(where a 6= 0) if and only if a certain condition is met, and this condition will define the
invariance relation that (A, B, C) and

(
A, B, C

)
have under the above linear transformation

(∗) .
Now (

x

a
− b

a

)
◦

(
Ax2 + Bx + C

)
◦ (ax + b)

=

(
x

a
− b

a

)
◦

[
A (ax + b)2 + B (ax + b) + C

]
=

(
x

a
− b

a

)
◦

(
Aa2x2 + (2Aab + Ba) x + Ab2 + Bb + C

)
= Aax2 + (2Ab + B) x +

Ab2 + (B − 1) b + C

a
= Ax2 + Bx + C.

Now Aa = A, 2Ab + B = B implies a = A
A
, b = B−B

2A
.

Therefore,

C =
1

a

[
Ab2 + (B − 1) b + C

]
=

A

A

[
A

(
B −B

2A

)2

+ (B − 1)

(
B −B

2A

)
+ C

]
.

Therefore,

4AC =
(
B −B

)2
+ 2 (B − 1)

(
B −B

)
+ 4AC

= B
2 − 2BB + B2 + 2BB − 2B − 2B2 + 2B + 4AC.

This implies (B2 − 2B) − 4AC =
(
B

2 − 2B
)
− 4AC. Therefore, (B − 1)2 − 4AC =(

B − 1
)2 − 4AC , and this expression must be the invariant relation when Ax2 + Bx +

C ≈ Ax2 + Bx + C. This invariant can also easily be checked (by hand) by substituting

A = Aa, B = 2Ab + B, C = Ab2+(B−1)b+C
a

for A, B, C in (B − 1)2 − 4AC and showing that

(B − 1)2 − 4AC remains unchanged.

Definition 2 We call θ = (B − 1)2 − 4AC the signature of Ax2 + Bx + C.

In solving Problem 1, we have also proved Theorem 2.

Theorem 2 Suppose Ax2 + Bx + C, Ax2 + Bx + C, A 6= 0, A 6= 0, are arbitrary complex
quadratics. Then Ax2+Bx+C ≈ Ax2+Bx+C if and only if Ax2+Bx+C and Ax2+Bx+C
have the same signature θ.
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2.1 A note on the Discriminant of a Polynomial

If P (x) = a0x
n + a1x

n−1 + · · ·+ a0 is any single variable polynomial, then from algebra we
know that there is a standard expression (denoted by ρ (P (x) , P ′ (x)) which is called the
discriminant of P (x). See p. 99, [1].

When the discriminant of P (x) is zero, we know from algebra that P (x) has a repeated
root, and when the discriminant of P (x) is non-zero, we know that the n roots of P (x) are
all distinct.

Of course, the discriminant of the quadratic P (x) = a0x
n + a1x + a2 is a2

1 − 4a0a2.
We observe that the invariant of the quadratic Ax2 + Bx + C, A 6= 0, that was derived

in the last section is also the discriminant of Ab2 + (B − 1) b + C, when we substitute b = x

for b and where Ax2 + Bx + C = Aax2 + (2Ab + B)x + Ab2+(B−1)b+C
a

.
This simple observation (with one slight modification) appears to generalize for arbi-

trary degree polynomials, and it will soon be used to compute the second invariant of cubic
polynomials.

2.2 Computing the Linear Transformation of Cubic Polynomials

By straightforward calculations we see that(
x

a
− b

a

)
◦

(
Ax3 + Bx2 + Cx + D

)
◦ (ax + b)

=

(
x

a
− b

a

)
◦

(
A (ax + b)3 + B (ax + b)2 + C (ax + b) + D

)
=

(
x

a
− b

a

)
◦

[
Aa3x3 + (3Aa2b + Ba2) x2

+ (3Aab2 + 2Bab + Ca) x + Ab3 + Bb2 + Cb + D

]
= Aa2x3 + (3Aab + Ba) x2 +

(
3Ab2 + 2Bb + C

)
x + (Ab3 + Bb2 + (C − 1) b + D)/a

= Ax3 + Bx2 + Cx + D.

2.3 Two Invariants of Cubic Polynomials under Linear Transfor-
mation

Problem 2 Suppose g (x) = Ax3 + Bx2 + Cx + D, A 6= 0, is a cubic polynomial.
Define

(
x
a
− b

a

)
◦ (Ax3 + Bx2 + Cx + D) ◦ (ax + b) = g (x) = Ax3 +Bx2 +Cx+D where

a 6= 0, b are arbitrary complex numbers. We wish to compute two invariants for g (x) and
g (x). This means that we wish to find two expressions involving A, B, C,D that remain
unchanged when we substitute A, B, C, D for A, B, C,D.

Solution 2 The first invariant can be computed exactly as we did in solving Problem 1.
From the previous section; we must have Aa2 = A, 3Aab + Ba = B, 3Ab2 + 2Bb + C = C

and Ab3+Bb2+(C−1)b+D
a

= D.

Now a2 = A/A, b = B−Ba
3Aa

, from which it follows that C = 3A
[

B−Ba
3Aa

]2

+ 2B
[

B−Ba
3Aa

]
+

C =
(B−Ba)

2

3Aa2 +
2B(B−Ba)

3Aa
+ C. Hence, C = B

2−2BBa+B2a2+2BBa−2B2a2+3Aa2C
3Aa2 . Thus 3Aa2C =
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B
2 −B2a2 + 3Aa2C. Therefore, 3A

(
A
A

)
C = B

2 −B2
(

A
A

)
+ 3A

(
A
A

)
C. Thus 3AC = B

2 −
B2A

A
+ 3AC. Finally it follows that 3C − B2

A
= 3C − B

2

A
.

We will call θ = C − B2

3A
the first invariant of g (x) = Ax3 + Bx2 + Cx + D under the

linear transformation g (x) = (ax + b)−1 ◦ g (x) ◦ (ax + b) .
We observe that θ is also equivalent to ρ (3Ax2 + 2Bx + C) /A where we substitute b = x

in C = 3Ab2+2Bb+C. This invariant θ can also easily be verified by showing that θ remains
unchanged when we substitute A = Aa2, B = 3Aab + Ba and C = 3Ab2 + 2Bb + C in θ
for A, B, C respectively. This can easily be done by hand. When we try to compute the
second invariant for Ax3 + Bx2 + Cx + D ≈ Ax3 + Bx2 + Cx + D in this exact same
way, we run into insurmountable difficulty. Therefore, we will simply conjecture that the
second invariant called φ = ρ (Ax3 + Bx2 + (C − 1) x + D) /Ak where k is decided by using
a specific example. This division by Ak is the modification that we referred to earlier.

Now the standard discriminant for the cubic polynomial P (x) = a0x
3 + a1x

2 + a2x +
a3 is ρ (P (x), P ′ (x)) = −27a2

0a
2
3 + 18a0a1a2a3 − 4a3

1a3 − 4a0a
3
2 + a2

1a
2
2. Therefore, φ =

(−27A2D2 + 18AB (C − 1) D − 4B3D − 4A (C − 1)3 + B2 (C − 1)2)/A since a specific ex-
ample shows that Ak = A must be true.

Professor Ben Klein of Davidson College has verified that φ is an invariant by using the
Mathematica software.

Definition 3 We define the signature of the cubic polynomial Ax3 + Bx2 + Cx + D, A 6= 0,
to be the ordered pair (θ, φ) where θ and φ are the invariants specified above.

The rest of this paper is devoted mainly to proving that two cubic polynomials g (x) and
g (x) are very linearly similar if and only if g (x) and g (x) have the same signature (θ, φ) .

3 Proving our Main Results for Cubic Polynomials

Theorem 3 The signature of the cubic polynomial x3+Cx+D is (θ, φ) =
(
C,−27D2 − 4 (C − 1)3) .

Proof. Using A = 1, B = 0, C = C, D = D in the formulas for θ, φ gives the signature
(θ, φ) .

Corollary 1 Suppose x3 + Cx + D has a signature (θ, φ) .

Then C = θ and D ∈
{√

−φ−4(θ−1)3

27
,−

√
−φ−4(θ−1)3

27

}
.

Proof. Follow from Theorem 3.

Theorem 4 Suppose Ax3 + Bx2 + Cx + D, A 6= 0, is any arbitrary cubic polynomial. Then
there exists a cubic polynomial x3 + Cx + D such that Ax3 + Bx2 + Cx + D ≈ x3 + Cx + D.
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Proof. Now (
x

a
− b

a

)
◦

(
Ax3 + Bx2 + Cx + D

)
◦ (ax + b)

= Aa2x3 + (3Aab + Ba) x2 +
(
3Ab2 + 2Bb + C

)
x

+
Ab3 + Bb2 + (C − 1) b + D

a
= x3 + 0 · x2 + Cx + D.

Let a, b be defined so that Aa2 = 1, 3Aab + Ba = 0. Therefore, a = ±
√

1
A
, b = −B

3A
which

completes the proof.

Theorem 5 Suppose x3 + Cx + D and x3 + Cx + D have the same signature (θ, φ). Then
x3 + Cx + D ≈ x3 + Cx + D.

Proof. From Corollary 1 we know that C = C = θ. Also, from Corollary 1, D, D ∈{√
−φ−4(θ−1)3

27
−

√
−φ−4(θ−1)3

27

}
.

Therefore, D = D or else D = −D.
Therefore, we can complete the proof by assuming that D = −D. Using A = 1, B =

0, C = C, D = D, A = 1, B = 0, C = C, D = D in the proof of Theorem 4, we have
a = ±1, b = 0. Let us use a = −1. Therefore, ax+b = −x and we have (−x)◦(x3 + Cx + D)◦
(−x) = (−x) ◦ (−x3 − Cx + D) = x3 + Cx−D.

Therefore, x3 + Cx + D ≈ x3 + Cx−D = x3 + Cx + D.
Main Theorem 6. Two cubic polynomials g (x) and g (x) are very linearly similar if

and only if g (x) and g (x) have the same signature (θ, φ) .
Proof. Of course, if g (x) and g (x) are very linearly similar, then they must have the

same signature (θ, φ) since θ and φ are invariants under ≈ .
Conversely, if g (x) and g (x) have the same signature (θ, φ), then we know from Theorems

4, 5 and from the equivalence relation properties of ≈ that were proved in Theorem 1 that
g (x) ≈ g (x) must be true.

4 Some Concluding Remarks

We note that the signature of g (x) = x3 = 1 · x3 + 0 · x2 + 0 · x + 0 is (θ, φ) = (0, 4) . Also,
we note that the recursion xn+1 = x3

n can easily be solved in a closed form. Suppose g (x) =
Ax3 + Bx2 + Cx + D, A 6= 0, is any cubic polynomial that has a signature (θ, φ) = (0, 4) .
From this we know that g (x) ≈ x3, and we can now easily solve the recursion xn+1 = g (xn)
in a closed form.

Also this paper can be generalized as follows. Suppose g (x) = a0x
n + a1x

n−1 + · · ·+ an

and g (x) = a0x
n+a1x

n−1+ · · ·+an are very linearly similar nth degree complex polynomials.
That is, g (x) = (ax + b)−1 ◦ g (x) ◦ (ax + b) for some a, b ∈ C, a 6= 0.

Then we can almost certainly derive the n− 1 invariants that g (x) and g (x) must have.
We do this exactly as we did in this paper, and we then prove that the invariants are correct
by using a computer program such as Mathematica.
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