1. Find the minimum value of the function $f(x) = x^2 + \frac{1}{x^2 + 1}$, $x \in \mathbb{R}$.

(A) $\frac{1}{16}$ (B) $\frac{3}{16}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$ (E) 1

2. How many solutions does the equation $\sqrt{x+1} + 2\exp(x^3 + 1) = 2019$ have?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

3. What is the remainder when $x^{2019} + 2019x - 2018$ is divided by x - 1?

(A) 1 (B) 2 (C) 2017 (D) 2019 (E) 2020

4. Let $n \ge 2$. Assume that $(x - a_1)(x - a_2) \dots (x - a_n) = x^n + P(x)$ for all $x \in \mathbb{R}$, where P(x) is a polynomial of degree n - 2. Find the value of the sum $a_1 + a_2 + \dots + a_n$. (A polynomial of degree k is a function of the form $\alpha_k x^k + \alpha_{k-1} x^{k-1} + \dots + \alpha_0$.)

(A) 1 (B) -1 (C) n (D) -n (E) 0

5. Let a be a real number. The system of equations 3x + 2y = 8 and ax - 8y = 9 has no solutions (x, y). What is the value of a?

(A) 0 (B) 1 (C) 3 (D) -8 (E) -12

6. How many real numbers x with $0 < x \le 10$ are solutions to $\log_{10}(x) = \sin(x)$, where x in $\sin(x)$ is in radians and $\log_{10}(x)$ is the logarithm of x to base 10?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

7. Positive integer numbers a and b satisfy the equation $\sqrt{3+2\sqrt{2}} = a+b\sqrt{2}$. What is the value of a+b?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

8. Let $x^2 + y^2 = 10$. What is the biggest value for xy?

(A) 10 (B) 20 (C) 5 (D) $10\sqrt{5}$ (E) 6

9. If $n! = 7! \, 6!$ then what is n?

(A) 8 (B) 9 (C) 10 (D) 13 (E) Such n does not exist

10. What is the value of $\sqrt{1+2+4+8+16+\cdots+2^{2019}}$, rounded up to the nearest whole number?

(A) $2^{1010} - 1$ (B) 2^{1010} (C) $2^{1010} + 1$ (D) $2^{2019} - 1$ (E) $2^{2019} + 1$

11. The numbers x and y satisfy $2^x = 9$ and $3^y = 16$. What is the value of xy?

(A) 7 (B) 8 (C) $\frac{64}{9}$ (D) $\frac{69}{8}$ (E) $\frac{25}{3}$

12. Let $f(x) = \frac{x-1}{x+1}$ and let $f^{(n)}(x)$ denote the *n*-fold composition of f(x) with itself. That is, $f^{(1)}(x) = f(x)$ and $f^{(n)}(x) = f(f^{(n-1)}(x))$. Which of the following is $f^{(2019)}(x)$?

(A) $-\frac{x+1}{x-1}$ (B) $-\frac{1}{x}$ (C) $\frac{x-1}{x+1}$ (D) x (E) $-\frac{x-1}{x+1}$

13. It is known that a + b + c = 5 and ab + bc + ac = 5. What could be the value of $a^2 + b^2 + c^2$?

(A) 10 (B) 15 (C) 20 (D) 25 (E) 30

14. For which value of a does the straight line y = 6x intersect the parabola $y = x^2 + a$ at exactly one point?

(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

15. The solutions of the quadratic equation $x^2 + px + q = 0$ are obtained by adding 5 to each of the solutions of $x^2 - 4x + 2 = 0$. Find the value of 3p + q.

(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

16. How many solutions (a, b, c) does the following system have?

1 + a + b = ab, 2 + a + c = ac, 5 + b + c = bc.

(A) 0 (B) 1 (C) 2 (D) 3 (E) Infinitely many

17. Find the value of the product $P = \left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \dots \cdot \left(1 - \frac{1}{10^2}\right)$.

(A) 0.25 (B) 0.33 (C) 0.44 (D) 0.55 (E) 0.66

18. The sequence a_n is defined by $a_n = 1 + \sqrt{\frac{1}{n}} - \sqrt{\frac{1}{n+1}} - \sqrt{\frac{1}{n} - \frac{1}{n+1}}$. What is the value of the product $a_1 a_2 \cdots a_{99}$?

(A) $\frac{1}{55}$ (B) $\frac{1}{110}$ (C) $\frac{1}{99}$ (D) $\frac{2}{99}$ (E) $\frac{1}{100}$

19. The graph of the function $y = \frac{x-3}{x^2-x+6}$ is obtained from the graph of $y = \frac{1}{x+2}$ by deleting a single point (u, v). What is the value of $u \cdot v$?

(A) $-\frac{3}{5}$ (B) $-\frac{1}{5}$ (C) 0 (D) $\frac{1}{5}$ (E) $\frac{3}{5}$

20. Find the value of the expression $S = 1! \cdot 3 - 2! \cdot 4 + 3! \cdot 5 - 4! \cdot 6 + \dots - 2016! \cdot 2018 + 2017!$.

(A) 1 (B) -1 (C) -2018 (D) 2018 (E) 2017