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Abstract 

We present a GPU-based implementation of the 
Space-Time Kernel Density Estimation (STKDE) that 
provides massive speed up in analyzing spatial-
temporal data. In our work we are able to achieve sub-
second performance for data sizes transferable over 
the Internet in realistic time. We have integrated this 
into web-based visual interactive analytics tools for 
analyzing spatial-temporal data. The resulting inte-
grated visual analytics (VA) system permits new anal-
yses of spatial-temporal data from a variety of sources. 
Novel, interlinked interface elements permit efficient, 
meaningful analyses.  

 
1. Introduction  
 

The amount of space-time data has exploded in re-
cent years due to new technologies [19]. It can be ex-
tremely difficult and computationally challenging to 
analyze, visualize and extract meaning from spatio-
temporal data in a real-time application. There is a 
need to find clusters and hotspots in space-time in or-
der to drive further analysis [5]. Using a Kernel Densi-
ty Estimation as part of an interactive tool is an effec-
tive way to analyze geospatial hotspots [23] [22]. Since 
these density estimations are usually 2D and are typi-
cally applied to spatial extent, important temporal be-
havior or combined space-time behavior can remain 
hidden. Using a space-time kernel density estimation, it 
is possible to find clusters to reveal this behavior, but 
there are critical limitations. Delmelle et al. [4] ex-
plored the use of the space-time kernel density estima-
tion on dengue fever outbreak in Cali, Columbia. 

This work demonstrated the computation chal-
lenge, but also the potential payoff, of the STKDE. 
Recently, there have been several prior works that fo-
cus on speeding up the KDE. Hohl et al. [14] have used 
a parallel CPU approach to compute the STKDE. In 
their method they use a spatial decomposition initially 
to subdivide the work load among a defined set of 
CPUs. Michailidis et al. [24] focused on using the GPU 
to accelerate the KDE using memory sharing tech-
niques. The most recent work in this area by Lopez- 
Novoa et al. [21] used crop and chop techniques to 

accelerate the KDE. As part of their work they re-
viewed all prior KDE techniques and benchmarked 
performance. Through their work they have produced 
the fastest known implementation for a 3D KDE, but 
even that implementation is not fast enough for pro-
ducing a sub-second, real-time approach.  

But if an interactive STKDE could be developed, 
it would be a boon for analyzing clusters and hotspots 
in time. The effects of latency on exploratory VA can 
be significant. Liu et al. [20] showed that even a 500ms 

delay had a dramatic impact on user’s actions. It lim-
ited the ability of users to generate effective decisions 
from analytical tools. Therefore, minimizing latency in 
VA is one of major constraints for incorporating the 
STKDE into an interactive VA tool. 

GPU computing has advanced significantly in re-

Figure 1. Overview of our web-based tool. (A) Tem-
poral View with selection made. (B) 3D view with 
STKDE structure and slicing planes. (C) 2D spatial 
view for temporal slice. (D) Spatial Slice. 
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cent years to accelerate specific types of computation-
ally intensive tasks [26]. In addition, GIS tasks can 
substantially be improved through parallel processing 
[31]. In this work we develop a GPU-based algorithm 
for accelerating STKDE for real-time analysis. Our 
focus is to optimize the STKDE for results that will be 
sent over the Internet. As the voxel count grows so 
does the transfer of data from the server. We thus are 
not as focused on larger voxel counts for the STKDE 
computation because it would be unrealistic to send the 
resulting calculations over the Internet in real time. 
Kapler et al. developed GeoTime for visualizing trends 
in space-time [15]. But, our focus is more on identify-
ing hotspots and not trends over time. 

Kaya et al. [16] explored the usage of 3D and 2D 
on spatiotemporal data. In their evaluations, they ex-
amined the benefits and disadvantages of using 2D and 
3D. For their visualizations they used heat maps for 2D 
and stacked heatmaps for 3D. They concluded that 
neither 2D nor 3D is significantly better for analyzing 
spatiotemporal data. But the use of stacked heatmaps in 
3D does not take into account the relationship between 
different points in time, as does our approach. It just 
uses slices at different time intervals stacked together. 
In addition, it may be that the data to which they ap-
plied their analyses does not show the distinct space-
time structure that we see in our 3D STKDE analysis.  

Nakaya et al. [25] explored the use of STKDE on 
visualizing crime clusters. Klemm et al. [17] explored 
the use of 3D heatmap visualization for population 
data. They found that the 3D visualization worked very 
well as an overview of the entire data. Clusters or areas 
of interest could be spotted quickly and from that point 
additional exploratory analysis could be pursued. 
Brundson et al [1] explored the use of STKDE in visu-
alizing crime patterns in space and time. Demsˇar et al. 
[7] studied using STKDE for trajectory data mining. 
Gao et al. [11] used STKDE to visualize the impact of 
publications across space and time. In other work Gao 
et al [10] explored STKDE compared to other space-
time techniques and concluded that STKDE is much 
easier to visually identify clusters and areas of interest. 
In this paper we focus on three aspects of the space- 
time kernel density estimation.  
• Scale - Due to the nature and sheer volume of spa-

tiotemporal data, it can be computationally diffi-
cult to do any analysis at scale or in real-time. 
Even small amounts of latency can have dramatic 
effects on interaction. Therefore, we focus on im-
proving the existing state of the art.  

• Interaction - Without scale and real-time it is hard 
to achieve effective interaction.  

• Visual Analysis. Lastly, we need an easy to use 
VA approach with multiple coordinated views for 
visualizing different aspects of the STKDE.  

Based on our results, we see the STKDE as an im-
portant addition that should be integrated with a larger 
set of tools for understanding and exploring space-time 
data. In section 2 we detail our GPU-based algorithm 
discussing the underlying data structure used and the 
implementation with initial results. In section 3 we 
detail how we’ve incorporated our approach into a re-
al-time VA tool with novel interlinked interaction. In 
section 4 we discuss the results of our work. This in-
cludes the performance metrics achieved by using the 
approach and how it compares to the current state of 
the art. Gomez et al. [12] examined effective methods 
for evaluating spatiotemporal VA. We incorporated 
this methodology into our evaluation. We include a 
small user evaluation using our approach in an interac-
tive VA tool. We also cover several use-cases of our 
technique. 

 
2. Algorithm 
 

In this section, we detail our strategy for operating 
on each voxel independently in order to fully utilize 
parallel processing. For each voxel in a 3D region the 
density is calculated based on surrounding data points 
that fall within a spatial and temporal bandwidth, 
which are then weighted using an Epanechnikov kernel 
function as indicated in the equation below. For each 
voxel given the coordinates (x,y,t) the density is esti-
mated based on the surrounding data points given as 
(xi, yi, ti). The spatial and temporal distances between 
the voxel and data point is given by di and ti. The spa-
tial and temporal bandwidths are given by hs and ht. 

 
2.1. Oct-Tree/GPU data structures 

During our work on LiDAR analysis, we incorpo-
rated GPU-based techniques for analyzing massive 
LiDAR datasets [8]. In that work we used a Quad-Tree 
with pruning and spatial indexing [13] to optimize data 
lookup on the GPU. These techniques were a starting 
point in optimizing our workflow for doing the STK-
DE. On the GPU we are limited in several ways. There 
are memory limitations, hardware limitations, and limi-
tations in the programming API itself. This meant we 
had to work around not having a deep call stack, no 
recursion, no pointers, limited local memory, and 
thread divergence. Therefore, we had to use an opti-
mized data structure.  

We store the Oct-Tree as a pre-order indexed array. 
To reduce the memory footprint and lookup complexi-
ty we prune the tree depth based on the GPU memory 
limit. This limit is defined by the max buffer size spec-
ified by the OpenCL driver. We then use that size to 
calculate how many data points we can store in a single 
cell.  We take each leaf node to create a cell with an 
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index for each point inside that leaf node. We store the 
cells in first-in order in an indexed array. The indices 
of the cells are used to create a cell range lookup. Dur-
ing the building process the cell ranges are stored at 
each node in the tree. After constructing the tree we 
then thread the tree. The purpose of threading the tree 
is that on the GPU we cannot use recursion nor is using 
a stack type data structure feasible. Since our tree is 
stored in a pre-order fashion we can iteratively step 
through the top level nodes of the tree quickly isolating 
sections that fit within the space-time bandwidth. As 
the algorithm steps through the tree it needs to know 
where to go next if a particular node does not fit within 
the space-time bandwidth or it does not contain any 
more children. This is the purpose of the thread. It is an 
index for the next location into the array of nodes.  

In prior work by Wang et al. [33], a decomposition 
step was performed to optimize the work load between 
processors using a quad tree for grid computing. Our 
parallel algorithm diverges significantly at this point. 
We bypass doing a decomposition step as it is not nec-
essary using our data structure, and we operate at the 
voxel level. This is done by creating a three-
dimensional global work group using the voxel dimen-
sions.  
2.2. Implementation 

We implemented our technique using OpenCL; in 
this way we could evaluate the performance of running 
either on the GPU and CPU. 

In order to make our approach more accessible and 
easy to use we incorporated it into a high level lan-

guage like Python. We implemented everything not 
related to the OpenCL computation into C++. This 
gave us the control we needed for managing memory 
and data structures. We then wrapped all of it into a 
Python binding. This allowed us to calculate the STK-
DE from a high level language, but retain all the con-
trol and performance from C++.  

For the OpenCL computation we only use one ker-
nel function. This function operates on each voxel in 
the space-time bounds. In our implementation we au-
tomatically detect an optimal voxel size unless one is 
strictly given. We used the approach detailed in [29] to 
compute an optimal bandwidth spatially and temporal-
ly. As a result of these efforts, we were able to achieve 
great performance. We used a Dengue Fever dataset 
[14]. We initially tested two different configurations: 
one using just the CPU and one using just the GPU. 
We used the same dataset and increased the voxel  

Figure 2. Axis-aligned (A) and non-aligned (B and 
C) spatial slicing results. The image returned con-
tains the contours of the slice and the aggregation 
across space and time. The time units are in days 
and the spatial units are in meters with respect to 
the map projection used. 

count for each run. As the starting benchmark, we 
were able to process 6.3 million voxels in 0.636 se-
conds on the GPU, and 3.425 seconds on the CPU. We 
also incorporated one more optimization that can be 
used for larger data sets. Instead of computing the in-
fluence of each sample point in a given leaf node we 
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can use the centroid of those points for a given leaf. 
The points in the leaf are very similar to each other and 
using the centroid is a slight approximation that can 
have a significant performance boost. During the con-
struction of the tree we compute and save the centroid 
for each leaf. We then compute the density given this 
one point weighted based on the number of points in 
the leaf. As the data points grow this technique be-
comes more effective. For example, given an average 
of 10 points per leaf node this can effectively reduce 
the data size by a factor of 10. We ran this technique 
on the Dengue Fever dataset. We were able to now 
process the same 6.3 million voxels on the GPU in 
0.387 seconds and 1.22 seconds on the CPU. In algo-
rithm 1 we provide pseudocode for the non-coalescing 
version of the algorithm. The variables hs ht are the 
spatial and temporal bandwidths. voxelSize is the di-
mensions of a single voxel. bbMin is the minimum 
point on the bounding box that contains all voxels. 
Lastly, globalId is a built in OpenCL call for getting 
the global position of a thread with respect to the glob-
al work group. The centroid version of this algorithm 
removes the inner for loop and uses a center point in-
stead of acquiring a data point. 

 
3. Visual Analytics  

 
In this section, we discuss how we created an inte-

grated VA tool for visualizing and interacting with the 
STKDE. We utilized multiple coordinated views fol-
lowing the guidelines in [27]. We set up our technique 
as a web-service using a GPU computing server.  
3.1. Web Based Design 

One of our major goals with this work was to make 
it accessible, plugin free and easy to use right from a 
web-browser. A web-based tool could be easily ac-
cessed and used with minimal hardware and software. 
Delmelle et al. [6] developed a web-based tool for vis-
ualizing Dengue Fever. Cho et al. [2] developed a web-
based analytical system for visualizing temporal and 
spatial data in multi-coordinated views. We followed 
their paradigm using WebGL, an OpenGL ES version 
for web browsers, and establishing the STKDE compu-
tation and visualization as a webservice. As we detail 
in the implementation section, we developed this ap-
proach with the goal of incorporating it into a high 
level language like Python. We calculate the STKDE 
in a Python framework (permitting easy integration 
with existing frameworks and data analytics tools) and 
embedded it into a web service on a GPU server.  

In order to visualize the STKDE, we needed a 3D 
mapping system that could be integrated with existing 
web-based tools and multi- coordinated views. All of 
the existing mapping tools like Google Maps, Apple 
Maps, Bing, etc. did not have extensive 3D capabili-

ties. The mapping tool also needed to have an easy way 
to incorporate custom 3D geometry. In prior work [9] 
we developed such a mapping system for mobile de-
vices using OpenGL. Our mapping system was built in 
3D, but used a 2D projection. Therefore, we ported it 
to WebGL using ThreeJS. 
3.2. 3D View 

In this section, we discuss the importance of our 3D 
view, some of the interactions, and how it is coordinat-
ed with other views. The 3D view is the most im-
portant view for visualizing our space-time kernel den-
sity estimation. We’ve incorporated a 3D tile map with 
level of detail that you would see in other existing 
mapping systems.  

The 3D view has several interactions. The first is 
rotating. We utilize an orbiting camera fixed around a 
focal point. A user can rotate the camera around the 
focal point by dragging with the left mouse. This is 
typical interaction you would find in a 3D application. 
The second is panning, using the right mouse a user 
can pan the 3D view based on the viewing angle with 
relation to the up vector of the 3D scene. The third 
navigation interaction is zooming, which can be done 
using the mouse wheel. Lastly, there is interaction with 
the 3D structures produced by the space-time kernel 
density estimation. These interactions include slicing, 
which is further discussed in the section on slicing. The 
view is also linked with the other existing views, both 
the 2D spatial view, and the temporal view.  

Using a 3D perspective introduces uncertainty and 
ambiguity into the visualization. Ambiguity can cause 
significant problems for users trying to use VA sys-
tems. Examples of these ambiguities include trying to 
visually discern where different 3D features exist spa-
tially and temporally in relation to one another. This is 
crucial for understanding orientation and position of 
3D structures without significant cognitive load.  

The first step we do is utilize a space-time cube 
around the entire STKDE. The lowest point on the Z 
axis corresponds to the oldest date and the highest 
point is the most recent. This technique was used in 
prior work and proved very effective for helping to 
discern the bounds both spatially and temporally of 
given 3D structures. The space-time kernel density 
estimation does not generate any information about the 
center of clusters, but additional techniques can be 
used to find the high density centers. In order to mini-
mize the spatial ambiguity, we use the mean shift algo-
rithm [3] in order to find high density centers. This 
works by providing the algorithm only voxel centers 
with a high density. Once we find the high density cen-
ters we create a center line to the surface of the 3D 
map. For rendering we utilize phong shading with 
specular highlights in order to enhance and visually 
detail the surfaces. We also apply a slight transparency 
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to the surfaces to help with occlusion. This can be seen 
in figure 2.  
3.3. Surface Extraction 

As part of the visualization we use isosurface ex-
traction to approximate the surface for a given density 
in order to create 3D structures. For the purposes of 
this work, we do not delve into this area because the 
field of isosurface extraction has been well researched. 
While isosurface extraction can have a high time com-
plexity, the topic has been explored deeply with nu-
merous techniques that aim to improve performance. 
We realized that no matter how long the Space-Time 
Kernel Density Estimation took if the isosurface ex-
traction took a long time as well it would be detri-
mental to our work and would hinder using the tech-
nique in real-time analytics. Therefore, we opted to 
using a parallel GPU-based marching cubes to help 
improve computation time. Our efforts in this area 
could be further improved by more recent work that 
could be incorporated into our systems. Smistad et al. 
[30] developed a real-time technique for surface ex-
traction that uses GPU computing and histogram-
pyramids to further optimize surface extraction.  
3.4. Caching, Compression, and Data Format 

Caching is one of the most crucial aspects of our 
web-based design. In prior work [9], a mobile client-
server architecture was developed for hurricane simu-
lation ensemble data. We used the design principles 
from this work for establishing our caching system, 
compression process, and the data format. For the data 
format we stored the data as a compressed JSON of the 
raw indexed triangles, vertices, and normals.  
3.5. Slicing 

In this section we detail two interactions we incor-
porated to further explore and analyze the space-time 
kernel density estimation. Klemm et al. [17] incorpo-
rated substantial usage of slicing planes in their work 
on 3D regression heatmap analysis. For the purposes of 
our work we incorporate two different types of slicing. 
Temporal slicing involves selecting a region in time 
and viewing just that slice in a 2D-spatial view. Spatial 
slicing involves selecting a region in space and view-
ing the slice across all time just for that region.  
3.5.1. Temporal-Slicing. As part of our tool, we in-
corporated a coordinated time graph linked with the 
other views. Walker et al. [32] explored different time-
series visualizations for effective interactions. We 
found the best choice to be a brush + zoom interaction 
and visualization. We provide a time graph that depicts 
the entire time-signature across the entire data set. A 
user brushes along this global time view to make a 
selection. Then a zoomed in portion of the time graph 
for that selection is created to show a more detailed 
view of temporal events. The time graph selection gen-
erates a corresponding bounding box in the 3D view 

that specifics the region in time that was selected. In 
the 2D view we generate a heatmap using just a kernel 
density estimation. This is all shown in the over view 
in figure 1.  

In the user evaluation detailed later we examined 
our tool with just temporal slicing. After doing the 
evaluation we realized that additional work had to be 
done for different types of slicing and that temporal 
slicing alone was not enough. Thus, from that evalua-
tion we learned that we needed to add spatial slicing 
due to the unique structures created via the STKDE.  
3.5.2. Spatial-Slicing.  

Spatial slicing is a new technique that arises from 
the STKDE. It is important because the STKDE vol-
ume is often not symmetric around its perpendicular 
axis. It may be stretched in one direction or have a 
bump; it may merge with another volume in a particu-
lar direction. The temporal behavior of a slice in one 
direction can thus be significantly different than that in 
another direction, and this difference can be meaning-
ful, as we will discuss further in the use cases below. 
Therefore, it is important to quickly and easily set up 
slicing so that volumetric features can be accessed with 
reasonable precision and lack of ambiguity.  

In the same way that temporal slicing shows a dis-
tinct region across time, spatial slicing shows a slice in 
space. We looked at several options for implementing 
the interaction for spatial slicing. Our goal is to make 
the tool as straightforward as possible, but there could 
be situations where the slicing plane needed to be an-
gled away from an axis.  

Ultimately we opted for doing the slicing in the 3D 
view. Instead of adding elaborate menu items for 
changing interaction modes, we used double clicking 
in the 3D view to select regions on the wireframe 
bounding box of the space-time kernel density struc-
tures. The process works as follows. A user selects a 
point on the wireframe bounding box. This generates a 
perpendicular dotted line from the wireframe selected. 
An example of this can be seen in figure 2A.  

At the end is a large point that the user can double 
click to complete the line segment and create the slic-
ing plane. We incorporated this option because it 
would be difficult for a user to make a perfectly axis- 
aligned slicing plane if he or she wanted to. Otherwise, 
the user can select any other point on the top of the 
wireframe to create an angled slicing plane (figures 2B 
and 2C). This is the minimal amount of effort and by-
passes the need for more complex interactions.   

The resulting slice is shown in figure 2. The con-
tours provide a detail analysis. The user can see how 
they spread in the selected spatial direction over time 
and, in this case end abruptly. In addition, the image 
shows temporal and spatial components aggregated at 
the right side and stop, respectively. Thus, for example, 
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the right side shows the timeline along the selected 
spatial direction.  

Implementing spatial slicing was more technically 
challenging than temporal slicing because a lot of the 
existing tools for doing the data extraction and visuali-
zation could not be used for spatial slicing. Additional 
work also had to be done in order to handle angled 
slicing planes. Therefore, we had to fully develop a 
process for generating the spatial slice through our 
web-services and then visualize. We examined several 
options, but we ended up doing server-side rendering 
of the data to an image. Our goal was to keep the client 
application as thin as possible. Using server-side ren-
dering is very fast because we already have the GPU 
hardware for doing computation. Due to the caching 
system in place, acquiring the data on the server-side is 
a trivial task and requires minimal computation.  

Once a user makes a slicing plane selection the cli-
ent sends the points detailing the plane to the server. 
The original data computed from the space-time kernel 
density estimation is voxels. The server calculates the 
normal of the plane. The normal is used to determine 
which voxel face to aggregate for rendering. In cases 
where the plane is not axis-aligned a face can be gen-
erated from the diagonals of the voxel. The slicing will 
find the closest angle. Using the angle, the perpendicu-
lar distance between each voxel and the plane is com-
puted based on the center point of the voxel. If the dis-
tance is less than or equal to the corresponding voxel 
dimension, then the face is collected and used.  

4. Results 
 
In this section we detail all the results of our Space-

Time Kernel Density Estimation and compare them 
with the state of the art. We also detail our evaluation 

and several use case studies we performed using our 
techniques and tools.  
4.1. Performance 

In this section we discuss in more depth the per-
formance results achieved by using our GPU-based 
technique. We also included CPU results for compari-
son. We’ve placed a heavy emphasis on performance 
because all of our tools, interactions, visual analysis 
depend on how quickly we can calculate the STKDE. 
For all tests we used one CPU configuration consisting 
of an Intel Xeon with 6 cores at 3.5GHz. We also used 
a GTX 770 for the GPU benchmarks.    

In the first part of our performance evaluation we 
examine our techniques against the state of the art [21]. 
In their work they evaluate a 3D KDE by generating 
two synthetic datasets with the mvrnorm function from 
the R framework, which generates multivariate sam-
ples with a normal distribution. We use the exact same 
approach to generate two sets of data with 500,000 
samples and 1,000,000 samples each. We then vary the 
voxel count in relation to their evaluation tests. We 
also use the same heuristic approach to compute a 
bandwidth for the given datasets [29]. For 500,000 
samples at 10 million voxels we were able to calculate 
it in 1.596 seconds on the CPU and 0.937 on the GPU. 
Using coalescing we were able to improve the time 
further to 0.74 seconds on the CPU and 0.679 on the 
GPU. For 1 million samples at 10 million voxels we 
were able to calculate it in 2.17 seconds on the CPU 
and 1.184 on the GPU. Using coalescing we were to 
achieve 0.9 seconds on the CPU and 0.727 seconds on 
the GPU. Compared to previous work we were able to 
achieve over 10 times an increase in performance as 
shown in figure 3. 

We acquired a copy of the Dengue Fever data from 
prior work to evaluate our algorithm [14]. For our 
comparisons we used the same data, the same tem-
poral, spatial and voxel size in order to maintain con-
trol on all these metrics. The data consisted of roughly 
7,000 space-time points and the voxel count used was 
approximately 6.3 million. Running the STKDE se-
quentially takes approximately 23 minutes. Hohl et al. 
[14] proposed a decomposition step that must be per-
formed before running the STKDE. For this setup the 
decomposition step took 62.96 seconds. We include 
this in the timing metrics because it still adds a signifi-
cant amount of time. For our tests we started with 6.3 
million voxels and gradually increased the voxel. The 
algorithm took approximately 245.86 seconds at 6.3M 
voxels to execute the STKDE running on an Intel Xeon 
with 8 cores at 2.97GHz. Running our algorithm on the 
CPU took approximately 3.425 seconds. This is about 
72 times faster using 2 fewer CPU cores. This is a sig-
nificant improvement, but pales in comparison to the 
GPU. On the GPU we were able to do the same calcu-
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Figure 3. Graphed results for 1 Million sample points 
using mvrnorm. S-KDE is the crop and chop KDE 
algorithm. GPU-C and CPU-C is our algorithm with 
coalescing. 
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lation in 0.636 seconds, almost 386 times faster. Over-
all we are able to achieve sub-second computation 
times to produce real-time results for voxel sizes that 
can be transferred through our web-based services. 
4.2. Evaluation 

We ran a user evaluation with 10 participants to 

evaluate our VA tool. The participants were evenly 
split between male and female. Their ages ranged from 
college age to senior citizen age. Their professional 
backgrounds also covered a wide range from medical 
to engineering. We used a Likert scale for each ques-
tion, ranging from 1 (not at all) to 7 (very much so). 
The scores are indicated in the boxes below, where the 
questions in each box are on the same topic.  

Initially we showed the participants a multi-
coordinated 2D spatial view + temporal graph. From 
the temporal graph, participants could select ranges in 
time through brushing. Upon making a selection, a 2D 
kernel density estimation was generated showing the 
spatial hotspots in space for that selected time range.  

We started with the multi-coordinated 2D spatial 
view and time graph as a control and a starting point 

before introducing the STKDE. We wanted partici-
pants to try and analyze the data to find clusters in 
space and time before we showed them the STKDE.  

 

After introducing the addition of the STKDE and 
allowing participants to examine the structure in 3D, 
we asked them to interact with it further by doing tem-
poral slicing. Temporal slicing was done as described 
in section 3.6. In the next part of the evaluation we 
introduced the STKDE as an additional visualization 
tool alongside the 2D spatial view + temporal graph, 
linking it to the 2D view and the time graph. We calcu-
lated the STKDE for the entire data set. We asked par-
ticipants to examine the 3D structure produced by the 
STKDE and to detail where clusters occurred using 
just the visualization of the STKDE.  

All of the participants found the addition of the 
STKDE much more useful for finding clusters than just 
the 2D view. But slicing was not nearly as helpful as 
we had anticipated and additional slicing should be 
added to improve the usefulness. Therefore, after this 
evaluation we included spatial slicing to further im-
prove interaction and analysis.  

We asked participants if they thought the calcula-
tion latency would affect the overall usefulness of the 
STKDE. We used a comparison of 5 seconds to 5 
minutes because our approach is significantly faster 
than prior work given the calculated speed up. Such a 
comparison is reflective of the time difference that one 
would see using both approaches. Overall they thought 
that the such a time difference was significant to the 
usefulness of the STKDE. Although the evaluation 
gave the 3D STKDE spatial view linked to interactive 
temporal slicing high marks in terms of ease of under-
standing and ability to select and slice clusters of inter-
est, it became apparent to us that further interface ele-
ments would be needed for detailed understanding of 
the space-time behavior. Therefore, we added further 
interaction to the 3D view as described in section 3.6.2, 
building on the responses we got from the evaluation. 
4.3. Use-Cases 

In this section we describe three use-case studies 
we performed using our approach. In the first use-case, 
we demonstrate the capability of our approach to Den-
gue fever data. In the second case, we apply our ap-
proach to analyzing hurricane simulation data. In the 
third use-case, we examine data provided by a local 
company with whom we collaborated.  
4.3.1. Dengue Fever Data. As part of our results we 
compared our algorithm to that of prior work on Den-
gue fever outbreaks in Cali, Columbia [14]. The den-
gue fever dataset is important because it is based on 
real world cases of dengue fever. Analyzing disease 
spread is spatiotemporal in nature. The data itself oc-
curred during the first six months of the year. It can be 

Question Mean 

How intuitive was the time graph + 2D spatial 
view 5.625 
How easy was it to find clusters in space-time 
using the 2D view + time graph. 4.75 
How easy is the STKDE to understand 5.0 
How easy is it to find clusters in the STKDE. 6.0 
How easy was it to understand temporal slic-
ing. 5.25 
Is slicing helpful to understand certain re-
gions in time. 5.75 
How beneficial is the STKDE as an additional 
visualization. 6.375 
Does the STKDE structure provide new in-
formation about clusters in space-time. 6.375 
Was the addition of the STKDE easier than 
just the 2D view to find clusters. 6.25 
Is the addition of the 2DView/slicing helpful 
to understand the STKDE. 5.375 
If the STKDE took 5 minutes instead of 5 
seconds to calculate would that make it less 
useful for interactive tasks. 5.75 
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difficult to understand how disease cases migrate to 
different areas, but also how they evolve over time. 
Our new version of STKDE revealed the results in [14] 
efficiently and effectively. Our STKDE produced six 
unique structures. The majority of the clusters begin 
closer to the start of the year and then gradually decline 
towards the end. There are two larger elongated, spa-
tially localized structures side by side that begin very 
early on and continue for a significant amount of time. 
These indicated locations where the disease persisted. 
These clusters also occurred in highly populated areas. 
Smaller, later structures show how the disease moves 
north through the city. Our interactive interface permit-
ted study of the relationship of all these patterns plus 
detailed examination.  

4.3.2. Hurricane Simulation Data. In prior work 
[18], we analyzed Hurricane simulation data for critical 
infrastructure in the state of North Carolina. This simu-
lation data contained the effects and outages caused by 
hurricanes across multiple simulation runs in order to 
build an exhaustive simulation space. The intercon-
nected infrastructures include multiple systems like 
electrical systems, road networks, transportation, water 
and sewage networks, which can fail in sequence.  

Our simulation data is spatiotemporal for this 

reason. Therefore, including the space-time kernel den-
sity estimation is an important addition for understand-
ing these types of events. In prior visualization work 
[9], we focused on a mobile application for first re-

sponders and planners to use in the field. The tool used 
complex filtering on different categories of critical 
infrastructure, hurricane paths, and temporal filtering. 
We then used these filters to generate 2D spatial 
hotspots in real-time. For these cases pre-computing 
space-time behavior was near impossible because the 
combinations of filters were exponentially large. Our 
STKDE is a great addition because it is fast enough for 
dynamic filtering.  

Using the STKDE revealed some important struc-
tures that were previously hard to see. For example, 
Hurricane Diana hit the coast of North Carolina, 
moved back out into the Atlantic Ocean, and then cir-
cled again inland. The resulting space-time structures 
clearly reveal the relationships and differences between 
the first and second hits over space-time as shown in 
figure 4. We see the overlapping effects of the two 
hurricane passes, where they start in time, and how 
they evolve. We see that the areas of infrastructure 
breakdown follow the hurricane path to some extent 
but then spread on their own. It would be difficult to 
study this behavior in detail without the STKDE.  

4.3.2. Device Reporting Data. We collaborated 
with a local company to acquire some of their data to 
evaluate our approach. The company has devices rang-
ing from kiosks to point of sale systems in retail loca-
tions across the U.S. Hundreds to thousands of users 
use these devices daily generating large amounts of 
reporting data. We acquired a small subset of that data 
consisting of approximately 1,000,000 records. The 
records covered a time period of one month.  

We met with the CTO, President of Technology, 
Director of Operations, and President of Sales and 
Marketing, using our techniques and tool to evaluate 
the data they gave us and eliciting their feedback and 
analysis. Initially we showed them a 2D view + tem-
poral graph as we did in our user evaluation. We did 
this initially because we wanted them to think about 
the results they saw just using a 2D view. This way 
they would develop their own ideas about where 
hotspots occurred in space and time. We examined 
several of their retail locations across the East Coast 
using the 2D view trying to make sense of where 
hotspots occur in space-time.  

In the next step we included STKDE. We followed 
the same procedure and analyzed the same groups of 
retail locations as we did using just the 2D view. We 
found several interesting examples using the STKDE 
that would have been extremely difficult to detect 
without it. There were several different retail locations 
that were examined, and they all followed a cyclical 
pattern of peak activity on Saturdays. In some locations 
the activity had abnormal and interesting behavior. 
Locations around Virginia only peaked once. In North 
Carolina locations peaked then gradually declined and 

Figure 4. STKDE in our mobile interface for outages 
of critical infrastructure over space and time for hur-
ricane Diana along the North Carolina coast. The hur-
ricane path is shown in blue. 
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then stopped. Activity picked up the following week-
end. However, some locations in Florida experienced 
very sporadic activity. All this could be visualized di-
rectly and immediately through the STKDE, as shown 
in figure 5, leading to areas for further analysis. This 
can be done by setting the spatial and temporal slicing 
planes in the overview to see relationships among fea-

tures or zooming in on particular features and then 
setting slicing planes. We asked the executives to 
summarize their thoughts after seeing the analysis with 
and without the STKDE. These are their comments.  
• The STKDE adds value by adding another dimen-

sion, which provides more information.  
• The human has to remember the details of the 2D 

and time graph. Whereas the STKDE reveals eve-
rything simultaneously.  

• After viewing both approaches, it is meaningless 
to not use the STKDE.  

The data they provided to us was multivariate and 
contained additional information with respect to their 
devices, the nature of the report, software versions, and 
application types. They wanted to be able to run more 
complex filters and sub-filtering for these attributes in 
order to analyze using the STKDE. This highlights the 
major problem we worked to solve. Since the analysis 
is user driven, the STKDE has to be done in real-time. 
There are too many combinations to do exhaustive pre-
computing for their data and their data is constantly 
growing. Therefore, our technique is crucial in that it 
solves this problem and allows for real-time analytics. 

  
5. Limitations and Future Work  

 
One of the major limitations with our technique is 

the limit on the size of both voxels and the spatiotem-
poral data. Although it is possible to use multiple 
GPUs to divide up the voxel regions in order to process 
higher resolutions, each GPU must have a copy of the 

entire spatiotemporal data. Therefore, if the spatiotem-
poral data exceeds the size of memory for the GPU 
then GPU processing cannot be used. Fortunately GPU 
memory has increased over the years so this limitation 
may be minimal and only apply to certain cases.  

The space-time kernel density calculation itself is 
not flawless. The computation tends to overestimate 
boundaries due to the varying metrics for the temporal 
and spatial bandwidths used. Calculating the temporal 
and spatial bandwidth is not a defined science either. In 
this work we used the approach by Silverman et al. 
[29] as it was used by Lopez-Novoa et al. [21]. Since 
we compared our work to Lopez-Novoa we used the 
same approach in order to maintain consistency. An-
other focus of future work is incorporating volumetric 
rendering into our interface. Volumetric rendering has 
benefits for visualizing this type of data, but doing so 
in a web-based interface has significant challenges.  

 

6. Conclusion  
 
In this paper we presented a GPU-based implemen-

tation of the Space-Time Kernel Density Estimation 
that provides massive speed up in analyzing spatial-
temporal data. We have inserted this capability into a 
web based visual interactive analytics tools for analyz-
ing spatial-temporal data.  

To fully integrate the STKDE into meaningful, un-
derstandable analysis, we had to develop new interac-
tive methods that linked the STKDE to traditional tem-
poral and spatial visualizations. The utility and effec-
tiveness of our interactive, linked visualizations was 
demonstrated via user studies and evaluations. Using 
our tools, we performed an evaluation and several use 
case studies. In one of those studies we connected with 
a local company and acquired some of their data. The 
use cases showed the interactive advantage of having 
real-time STKDE analytics and the power of being 
able to do integrated space- time analysis.  
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