
Space-Time Kernel Density Estimation
for Real-Time Interactive Visual Analytics

Abstract

We present a GPU-based implementation of the
Space-Time Kernel Density Estimation (STKDE) that
provides massive speed up in analyzing spatial-
temporal data. In our work we are able to achieve sub-
second performance for data sizes transferable over
the Internet in realistic time. We have integrated this
into web-based visual interactive analytics tools for
analyzing spatial-temporal data. The resulting inte-
grated visual analytics (VA) system permits new anal-
yses of spatial-temporal data from a variety of sources.
Novel, interlinked interface elements permit efficient,
meaningful analyses.

1. Introduction

The amount of space-time data has exploded in re-
cent years due to new technologies [19]. It can be ex-
tremely difficult and computationally challenging to
analyze, visualize and extract meaning from spatio-
temporal data in a real-time application. There is a
need to find clusters and hotspots in space-time in or-
der to drive further analysis [5]. Using a Kernel Densi-
ty Estimation as part of an interactive tool is an effec-
tive way to analyze geospatial hotspots [23] [22]. Since
these density estimations are usually 2D and are typi-
cally applied to spatial extent, important temporal be-
havior or combined space-time behavior can remain
hidden. Using a space-time kernel density estimation, it
is possible to find clusters to reveal this behavior, but
there are critical limitations. Delmelle et al. [4] ex-
plored the use of the space-time kernel density estima-
tion on dengue fever outbreak in Cali, Columbia.

This work demonstrated the computation chal-
lenge, but also the potential payoff, of the STKDE.
Recently, there have been several prior works that fo-
cus on speeding up the KDE. Hohl et al. [14] have used
a parallel CPU approach to compute the STKDE. In
their method they use a spatial decomposition initially
to subdivide the work load among a defined set of
CPUs. Michailidis et al. [24] focused on using the GPU
to accelerate the KDE using memory sharing tech-
niques. The most recent work in this area by Lopez-
Novoa et al. [21] used crop and chop techniques to

accelerate the KDE. As part of their work they re-
viewed all prior KDE techniques and benchmarked
performance. Through their work they have produced
the fastest known implementation for a 3D KDE, but
even that implementation is not fast enough for pro-
ducing a sub-second, real-time approach.

But if an interactive STKDE could be developed,
it would be a boon for analyzing clusters and hotspots
in time. The effects of latency on exploratory VA can
be significant. Liu et al. [20] showed that even a 500ms

delay had a dramatic impact on user’s actions. It lim-
ited the ability of users to generate effective decisions
from analytical tools. Therefore, minimizing latency in
VA is one of major constraints for incorporating the
STKDE into an interactive VA tool.

GPU computing has advanced significantly in re-

Figure 1. Overview of our web-based tool. (A) Tem-
poral View with selection made. (B) 3D view with
STKDE structure and slicing planes. (C) 2D spatial
view for temporal slice. (D) Spatial Slice.

Isaac Cho
UNC Charlotte

 icho1@uncc.edu

Todd Eaglin
UNC Charlotte

teaglin@uncc.edu

William Ribarsky
UNC Charlotte

 ribarsky@uncc.edu

1381

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41318
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

cent years to accelerate specific types of computation-
ally intensive tasks [26]. In addition, GIS tasks can
substantially be improved through parallel processing
[31]. In this work we develop a GPU-based algorithm
for accelerating STKDE for real-time analysis. Our
focus is to optimize the STKDE for results that will be
sent over the Internet. As the voxel count grows so
does the transfer of data from the server. We thus are
not as focused on larger voxel counts for the STKDE
computation because it would be unrealistic to send the
resulting calculations over the Internet in real time.
Kapler et al. developed GeoTime for visualizing trends
in space-time [15]. But, our focus is more on identify-
ing hotspots and not trends over time.

Kaya et al. [16] explored the usage of 3D and 2D
on spatiotemporal data. In their evaluations, they ex-
amined the benefits and disadvantages of using 2D and
3D. For their visualizations they used heat maps for 2D
and stacked heatmaps for 3D. They concluded that
neither 2D nor 3D is significantly better for analyzing
spatiotemporal data. But the use of stacked heatmaps in
3D does not take into account the relationship between
different points in time, as does our approach. It just
uses slices at different time intervals stacked together.
In addition, it may be that the data to which they ap-
plied their analyses does not show the distinct space-
time structure that we see in our 3D STKDE analysis.

Nakaya et al. [25] explored the use of STKDE on
visualizing crime clusters. Klemm et al. [17] explored
the use of 3D heatmap visualization for population
data. They found that the 3D visualization worked very
well as an overview of the entire data. Clusters or areas
of interest could be spotted quickly and from that point
additional exploratory analysis could be pursued.
Brundson et al [1] explored the use of STKDE in visu-
alizing crime patterns in space and time. Demsˇar et al.
[7] studied using STKDE for trajectory data mining.
Gao et al. [11] used STKDE to visualize the impact of
publications across space and time. In other work Gao
et al [10] explored STKDE compared to other space-
time techniques and concluded that STKDE is much
easier to visually identify clusters and areas of interest.
In this paper we focus on three aspects of the space-
time kernel density estimation.
• Scale - Due to the nature and sheer volume of spa-

tiotemporal data, it can be computationally diffi-
cult to do any analysis at scale or in real-time.
Even small amounts of latency can have dramatic
effects on interaction. Therefore, we focus on im-
proving the existing state of the art.

• Interaction - Without scale and real-time it is hard
to achieve effective interaction.

• Visual Analysis. Lastly, we need an easy to use
VA approach with multiple coordinated views for
visualizing different aspects of the STKDE.

Based on our results, we see the STKDE as an im-
portant addition that should be integrated with a larger
set of tools for understanding and exploring space-time
data. In section 2 we detail our GPU-based algorithm
discussing the underlying data structure used and the
implementation with initial results. In section 3 we
detail how we’ve incorporated our approach into a re-
al-time VA tool with novel interlinked interaction. In
section 4 we discuss the results of our work. This in-
cludes the performance metrics achieved by using the
approach and how it compares to the current state of
the art. Gomez et al. [12] examined effective methods
for evaluating spatiotemporal VA. We incorporated
this methodology into our evaluation. We include a
small user evaluation using our approach in an interac-
tive VA tool. We also cover several use-cases of our
technique.

2. Algorithm

In this section, we detail our strategy for operating
on each voxel independently in order to fully utilize
parallel processing. For each voxel in a 3D region the
density is calculated based on surrounding data points
that fall within a spatial and temporal bandwidth,
which are then weighted using an Epanechnikov kernel
function as indicated in the equation below. For each
voxel given the coordinates (x,y,t) the density is esti-
mated based on the surrounding data points given as
(xi, yi, ti). The spatial and temporal distances between
the voxel and data point is given by di and ti. The spa-
tial and temporal bandwidths are given by hs and ht.

2.1. Oct-Tree/GPU data structures

During our work on LiDAR analysis, we incorpo-
rated GPU-based techniques for analyzing massive
LiDAR datasets [8]. In that work we used a Quad-Tree
with pruning and spatial indexing [13] to optimize data
lookup on the GPU. These techniques were a starting
point in optimizing our workflow for doing the STK-
DE. On the GPU we are limited in several ways. There
are memory limitations, hardware limitations, and limi-
tations in the programming API itself. This meant we
had to work around not having a deep call stack, no
recursion, no pointers, limited local memory, and
thread divergence. Therefore, we had to use an opti-
mized data structure.

We store the Oct-Tree as a pre-order indexed array.
To reduce the memory footprint and lookup complexi-
ty we prune the tree depth based on the GPU memory
limit. This limit is defined by the max buffer size spec-
ified by the OpenCL driver. We then use that size to
calculate how many data points we can store in a single
cell. We take each leaf node to create a cell with an

1382

index for each point inside that leaf node. We store the
cells in first-in order in an indexed array. The indices
of the cells are used to create a cell range lookup. Dur-
ing the building process the cell ranges are stored at
each node in the tree. After constructing the tree we
then thread the tree. The purpose of threading the tree
is that on the GPU we cannot use recursion nor is using
a stack type data structure feasible. Since our tree is
stored in a pre-order fashion we can iteratively step
through the top level nodes of the tree quickly isolating
sections that fit within the space-time bandwidth. As
the algorithm steps through the tree it needs to know
where to go next if a particular node does not fit within
the space-time bandwidth or it does not contain any
more children. This is the purpose of the thread. It is an
index for the next location into the array of nodes.

In prior work by Wang et al. [33], a decomposition
step was performed to optimize the work load between
processors using a quad tree for grid computing. Our
parallel algorithm diverges significantly at this point.
We bypass doing a decomposition step as it is not nec-
essary using our data structure, and we operate at the
voxel level. This is done by creating a three-
dimensional global work group using the voxel dimen-
sions.
2.2. Implementation

We implemented our technique using OpenCL; in
this way we could evaluate the performance of running
either on the GPU and CPU.

In order to make our approach more accessible and
easy to use we incorporated it into a high level lan-

guage like Python. We implemented everything not
related to the OpenCL computation into C++. This
gave us the control we needed for managing memory
and data structures. We then wrapped all of it into a
Python binding. This allowed us to calculate the STK-
DE from a high level language, but retain all the con-
trol and performance from C++.

For the OpenCL computation we only use one ker-
nel function. This function operates on each voxel in
the space-time bounds. In our implementation we au-
tomatically detect an optimal voxel size unless one is
strictly given. We used the approach detailed in [29] to
compute an optimal bandwidth spatially and temporal-
ly. As a result of these efforts, we were able to achieve
great performance. We used a Dengue Fever dataset
[14]. We initially tested two different configurations:
one using just the CPU and one using just the GPU.
We used the same dataset and increased the voxel

Figure 2. Axis-aligned (A) and non-aligned (B and
C) spatial slicing results. The image returned con-
tains the contours of the slice and the aggregation
across space and time. The time units are in days
and the spatial units are in meters with respect to
the map projection used.

count for each run. As the starting benchmark, we
were able to process 6.3 million voxels in 0.636 se-
conds on the GPU, and 3.425 seconds on the CPU. We
also incorporated one more optimization that can be
used for larger data sets. Instead of computing the in-
fluence of each sample point in a given leaf node we

1383

can use the centroid of those points for a given leaf.
The points in the leaf are very similar to each other and
using the centroid is a slight approximation that can
have a significant performance boost. During the con-
struction of the tree we compute and save the centroid
for each leaf. We then compute the density given this
one point weighted based on the number of points in
the leaf. As the data points grow this technique be-
comes more effective. For example, given an average
of 10 points per leaf node this can effectively reduce
the data size by a factor of 10. We ran this technique
on the Dengue Fever dataset. We were able to now
process the same 6.3 million voxels on the GPU in
0.387 seconds and 1.22 seconds on the CPU. In algo-
rithm 1 we provide pseudocode for the non-coalescing
version of the algorithm. The variables hs ht are the
spatial and temporal bandwidths. voxelSize is the di-
mensions of a single voxel. bbMin is the minimum
point on the bounding box that contains all voxels.
Lastly, globalId is a built in OpenCL call for getting
the global position of a thread with respect to the glob-
al work group. The centroid version of this algorithm
removes the inner for loop and uses a center point in-
stead of acquiring a data point.

3. Visual Analytics

In this section, we discuss how we created an inte-

grated VA tool for visualizing and interacting with the
STKDE. We utilized multiple coordinated views fol-
lowing the guidelines in [27]. We set up our technique
as a web-service using a GPU computing server.
3.1. Web Based Design

One of our major goals with this work was to make
it accessible, plugin free and easy to use right from a
web-browser. A web-based tool could be easily ac-
cessed and used with minimal hardware and software.
Delmelle et al. [6] developed a web-based tool for vis-
ualizing Dengue Fever. Cho et al. [2] developed a web-
based analytical system for visualizing temporal and
spatial data in multi-coordinated views. We followed
their paradigm using WebGL, an OpenGL ES version
for web browsers, and establishing the STKDE compu-
tation and visualization as a webservice. As we detail
in the implementation section, we developed this ap-
proach with the goal of incorporating it into a high
level language like Python. We calculate the STKDE
in a Python framework (permitting easy integration
with existing frameworks and data analytics tools) and
embedded it into a web service on a GPU server.

In order to visualize the STKDE, we needed a 3D
mapping system that could be integrated with existing
web-based tools and multi- coordinated views. All of
the existing mapping tools like Google Maps, Apple
Maps, Bing, etc. did not have extensive 3D capabili-

ties. The mapping tool also needed to have an easy way
to incorporate custom 3D geometry. In prior work [9]
we developed such a mapping system for mobile de-
vices using OpenGL. Our mapping system was built in
3D, but used a 2D projection. Therefore, we ported it
to WebGL using ThreeJS.
3.2. 3D View

In this section, we discuss the importance of our 3D
view, some of the interactions, and how it is coordinat-
ed with other views. The 3D view is the most im-
portant view for visualizing our space-time kernel den-
sity estimation. We’ve incorporated a 3D tile map with
level of detail that you would see in other existing
mapping systems.

The 3D view has several interactions. The first is
rotating. We utilize an orbiting camera fixed around a
focal point. A user can rotate the camera around the
focal point by dragging with the left mouse. This is
typical interaction you would find in a 3D application.
The second is panning, using the right mouse a user
can pan the 3D view based on the viewing angle with
relation to the up vector of the 3D scene. The third
navigation interaction is zooming, which can be done
using the mouse wheel. Lastly, there is interaction with
the 3D structures produced by the space-time kernel
density estimation. These interactions include slicing,
which is further discussed in the section on slicing. The
view is also linked with the other existing views, both
the 2D spatial view, and the temporal view.

Using a 3D perspective introduces uncertainty and
ambiguity into the visualization. Ambiguity can cause
significant problems for users trying to use VA sys-
tems. Examples of these ambiguities include trying to
visually discern where different 3D features exist spa-
tially and temporally in relation to one another. This is
crucial for understanding orientation and position of
3D structures without significant cognitive load.

The first step we do is utilize a space-time cube
around the entire STKDE. The lowest point on the Z
axis corresponds to the oldest date and the highest
point is the most recent. This technique was used in
prior work and proved very effective for helping to
discern the bounds both spatially and temporally of
given 3D structures. The space-time kernel density
estimation does not generate any information about the
center of clusters, but additional techniques can be
used to find the high density centers. In order to mini-
mize the spatial ambiguity, we use the mean shift algo-
rithm [3] in order to find high density centers. This
works by providing the algorithm only voxel centers
with a high density. Once we find the high density cen-
ters we create a center line to the surface of the 3D
map. For rendering we utilize phong shading with
specular highlights in order to enhance and visually
detail the surfaces. We also apply a slight transparency

1384

to the surfaces to help with occlusion. This can be seen
in figure 2.
3.3. Surface Extraction

As part of the visualization we use isosurface ex-
traction to approximate the surface for a given density
in order to create 3D structures. For the purposes of
this work, we do not delve into this area because the
field of isosurface extraction has been well researched.
While isosurface extraction can have a high time com-
plexity, the topic has been explored deeply with nu-
merous techniques that aim to improve performance.
We realized that no matter how long the Space-Time
Kernel Density Estimation took if the isosurface ex-
traction took a long time as well it would be detri-
mental to our work and would hinder using the tech-
nique in real-time analytics. Therefore, we opted to
using a parallel GPU-based marching cubes to help
improve computation time. Our efforts in this area
could be further improved by more recent work that
could be incorporated into our systems. Smistad et al.
[30] developed a real-time technique for surface ex-
traction that uses GPU computing and histogram-
pyramids to further optimize surface extraction.
3.4. Caching, Compression, and Data Format

Caching is one of the most crucial aspects of our
web-based design. In prior work [9], a mobile client-
server architecture was developed for hurricane simu-
lation ensemble data. We used the design principles
from this work for establishing our caching system,
compression process, and the data format. For the data
format we stored the data as a compressed JSON of the
raw indexed triangles, vertices, and normals.
3.5. Slicing

In this section we detail two interactions we incor-
porated to further explore and analyze the space-time
kernel density estimation. Klemm et al. [17] incorpo-
rated substantial usage of slicing planes in their work
on 3D regression heatmap analysis. For the purposes of
our work we incorporate two different types of slicing.
Temporal slicing involves selecting a region in time
and viewing just that slice in a 2D-spatial view. Spatial
slicing involves selecting a region in space and view-
ing the slice across all time just for that region.
3.5.1. Temporal-Slicing. As part of our tool, we in-
corporated a coordinated time graph linked with the
other views. Walker et al. [32] explored different time-
series visualizations for effective interactions. We
found the best choice to be a brush + zoom interaction
and visualization. We provide a time graph that depicts
the entire time-signature across the entire data set. A
user brushes along this global time view to make a
selection. Then a zoomed in portion of the time graph
for that selection is created to show a more detailed
view of temporal events. The time graph selection gen-
erates a corresponding bounding box in the 3D view

that specifics the region in time that was selected. In
the 2D view we generate a heatmap using just a kernel
density estimation. This is all shown in the over view
in figure 1.

In the user evaluation detailed later we examined
our tool with just temporal slicing. After doing the
evaluation we realized that additional work had to be
done for different types of slicing and that temporal
slicing alone was not enough. Thus, from that evalua-
tion we learned that we needed to add spatial slicing
due to the unique structures created via the STKDE.
3.5.2. Spatial-Slicing.

Spatial slicing is a new technique that arises from
the STKDE. It is important because the STKDE vol-
ume is often not symmetric around its perpendicular
axis. It may be stretched in one direction or have a
bump; it may merge with another volume in a particu-
lar direction. The temporal behavior of a slice in one
direction can thus be significantly different than that in
another direction, and this difference can be meaning-
ful, as we will discuss further in the use cases below.
Therefore, it is important to quickly and easily set up
slicing so that volumetric features can be accessed with
reasonable precision and lack of ambiguity.

In the same way that temporal slicing shows a dis-
tinct region across time, spatial slicing shows a slice in
space. We looked at several options for implementing
the interaction for spatial slicing. Our goal is to make
the tool as straightforward as possible, but there could
be situations where the slicing plane needed to be an-
gled away from an axis.

Ultimately we opted for doing the slicing in the 3D
view. Instead of adding elaborate menu items for
changing interaction modes, we used double clicking
in the 3D view to select regions on the wireframe
bounding box of the space-time kernel density struc-
tures. The process works as follows. A user selects a
point on the wireframe bounding box. This generates a
perpendicular dotted line from the wireframe selected.
An example of this can be seen in figure 2A.

At the end is a large point that the user can double
click to complete the line segment and create the slic-
ing plane. We incorporated this option because it
would be difficult for a user to make a perfectly axis-
aligned slicing plane if he or she wanted to. Otherwise,
the user can select any other point on the top of the
wireframe to create an angled slicing plane (figures 2B
and 2C). This is the minimal amount of effort and by-
passes the need for more complex interactions.

The resulting slice is shown in figure 2. The con-
tours provide a detail analysis. The user can see how
they spread in the selected spatial direction over time
and, in this case end abruptly. In addition, the image
shows temporal and spatial components aggregated at
the right side and stop, respectively. Thus, for example,

1385

the right side shows the timeline along the selected
spatial direction.

Implementing spatial slicing was more technically
challenging than temporal slicing because a lot of the
existing tools for doing the data extraction and visuali-
zation could not be used for spatial slicing. Additional
work also had to be done in order to handle angled
slicing planes. Therefore, we had to fully develop a
process for generating the spatial slice through our
web-services and then visualize. We examined several
options, but we ended up doing server-side rendering
of the data to an image. Our goal was to keep the client
application as thin as possible. Using server-side ren-
dering is very fast because we already have the GPU
hardware for doing computation. Due to the caching
system in place, acquiring the data on the server-side is
a trivial task and requires minimal computation.

Once a user makes a slicing plane selection the cli-
ent sends the points detailing the plane to the server.
The original data computed from the space-time kernel
density estimation is voxels. The server calculates the
normal of the plane. The normal is used to determine
which voxel face to aggregate for rendering. In cases
where the plane is not axis-aligned a face can be gen-
erated from the diagonals of the voxel. The slicing will
find the closest angle. Using the angle, the perpendicu-
lar distance between each voxel and the plane is com-
puted based on the center point of the voxel. If the dis-
tance is less than or equal to the corresponding voxel
dimension, then the face is collected and used.

4. Results

In this section we detail all the results of our Space-

Time Kernel Density Estimation and compare them
with the state of the art. We also detail our evaluation

and several use case studies we performed using our
techniques and tools.
4.1. Performance

In this section we discuss in more depth the per-
formance results achieved by using our GPU-based
technique. We also included CPU results for compari-
son. We’ve placed a heavy emphasis on performance
because all of our tools, interactions, visual analysis
depend on how quickly we can calculate the STKDE.
For all tests we used one CPU configuration consisting
of an Intel Xeon with 6 cores at 3.5GHz. We also used
a GTX 770 for the GPU benchmarks.

In the first part of our performance evaluation we
examine our techniques against the state of the art [21].
In their work they evaluate a 3D KDE by generating
two synthetic datasets with the mvrnorm function from
the R framework, which generates multivariate sam-
ples with a normal distribution. We use the exact same
approach to generate two sets of data with 500,000
samples and 1,000,000 samples each. We then vary the
voxel count in relation to their evaluation tests. We
also use the same heuristic approach to compute a
bandwidth for the given datasets [29]. For 500,000
samples at 10 million voxels we were able to calculate
it in 1.596 seconds on the CPU and 0.937 on the GPU.
Using coalescing we were able to improve the time
further to 0.74 seconds on the CPU and 0.679 on the
GPU. For 1 million samples at 10 million voxels we
were able to calculate it in 2.17 seconds on the CPU
and 1.184 on the GPU. Using coalescing we were to
achieve 0.9 seconds on the CPU and 0.727 seconds on
the GPU. Compared to previous work we were able to
achieve over 10 times an increase in performance as
shown in figure 3.

We acquired a copy of the Dengue Fever data from
prior work to evaluate our algorithm [14]. For our
comparisons we used the same data, the same tem-
poral, spatial and voxel size in order to maintain con-
trol on all these metrics. The data consisted of roughly
7,000 space-time points and the voxel count used was
approximately 6.3 million. Running the STKDE se-
quentially takes approximately 23 minutes. Hohl et al.
[14] proposed a decomposition step that must be per-
formed before running the STKDE. For this setup the
decomposition step took 62.96 seconds. We include
this in the timing metrics because it still adds a signifi-
cant amount of time. For our tests we started with 6.3
million voxels and gradually increased the voxel. The
algorithm took approximately 245.86 seconds at 6.3M
voxels to execute the STKDE running on an Intel Xeon
with 8 cores at 2.97GHz. Running our algorithm on the
CPU took approximately 3.425 seconds. This is about
72 times faster using 2 fewer CPU cores. This is a sig-
nificant improvement, but pales in comparison to the
GPU. On the GPU we were able to do the same calcu-

0

50

100

1 0 1 8 3 0 6 0

1 MILLIONGPU CPU
GPU-C CPU-C
S-KDE(i7) S-KDE(Phi)

Figure 3. Graphed results for 1 Million sample points
using mvrnorm. S-KDE is the crop and chop KDE
algorithm. GPU-C and CPU-C is our algorithm with
coalescing.

1386

lation in 0.636 seconds, almost 386 times faster. Over-
all we are able to achieve sub-second computation
times to produce real-time results for voxel sizes that
can be transferred through our web-based services.
4.2. Evaluation

We ran a user evaluation with 10 participants to

evaluate our VA tool. The participants were evenly
split between male and female. Their ages ranged from
college age to senior citizen age. Their professional
backgrounds also covered a wide range from medical
to engineering. We used a Likert scale for each ques-
tion, ranging from 1 (not at all) to 7 (very much so).
The scores are indicated in the boxes below, where the
questions in each box are on the same topic.

Initially we showed the participants a multi-
coordinated 2D spatial view + temporal graph. From
the temporal graph, participants could select ranges in
time through brushing. Upon making a selection, a 2D
kernel density estimation was generated showing the
spatial hotspots in space for that selected time range.

We started with the multi-coordinated 2D spatial
view and time graph as a control and a starting point

before introducing the STKDE. We wanted partici-
pants to try and analyze the data to find clusters in
space and time before we showed them the STKDE.

After introducing the addition of the STKDE and
allowing participants to examine the structure in 3D,
we asked them to interact with it further by doing tem-
poral slicing. Temporal slicing was done as described
in section 3.6. In the next part of the evaluation we
introduced the STKDE as an additional visualization
tool alongside the 2D spatial view + temporal graph,
linking it to the 2D view and the time graph. We calcu-
lated the STKDE for the entire data set. We asked par-
ticipants to examine the 3D structure produced by the
STKDE and to detail where clusters occurred using
just the visualization of the STKDE.

All of the participants found the addition of the
STKDE much more useful for finding clusters than just
the 2D view. But slicing was not nearly as helpful as
we had anticipated and additional slicing should be
added to improve the usefulness. Therefore, after this
evaluation we included spatial slicing to further im-
prove interaction and analysis.

We asked participants if they thought the calcula-
tion latency would affect the overall usefulness of the
STKDE. We used a comparison of 5 seconds to 5
minutes because our approach is significantly faster
than prior work given the calculated speed up. Such a
comparison is reflective of the time difference that one
would see using both approaches. Overall they thought
that the such a time difference was significant to the
usefulness of the STKDE. Although the evaluation
gave the 3D STKDE spatial view linked to interactive
temporal slicing high marks in terms of ease of under-
standing and ability to select and slice clusters of inter-
est, it became apparent to us that further interface ele-
ments would be needed for detailed understanding of
the space-time behavior. Therefore, we added further
interaction to the 3D view as described in section 3.6.2,
building on the responses we got from the evaluation.
4.3. Use-Cases

In this section we describe three use-case studies
we performed using our approach. In the first use-case,
we demonstrate the capability of our approach to Den-
gue fever data. In the second case, we apply our ap-
proach to analyzing hurricane simulation data. In the
third use-case, we examine data provided by a local
company with whom we collaborated.
4.3.1. Dengue Fever Data. As part of our results we
compared our algorithm to that of prior work on Den-
gue fever outbreaks in Cali, Columbia [14]. The den-
gue fever dataset is important because it is based on
real world cases of dengue fever. Analyzing disease
spread is spatiotemporal in nature. The data itself oc-
curred during the first six months of the year. It can be

Question Mean

How intuitive was the time graph + 2D spatial
view 5.625
How easy was it to find clusters in space-time
using the 2D view + time graph. 4.75
How easy is the STKDE to understand 5.0
How easy is it to find clusters in the STKDE. 6.0
How easy was it to understand temporal slic-
ing. 5.25
Is slicing helpful to understand certain re-
gions in time. 5.75
How beneficial is the STKDE as an additional
visualization. 6.375
Does the STKDE structure provide new in-
formation about clusters in space-time. 6.375
Was the addition of the STKDE easier than
just the 2D view to find clusters. 6.25
Is the addition of the 2DView/slicing helpful
to understand the STKDE. 5.375
If the STKDE took 5 minutes instead of 5
seconds to calculate would that make it less
useful for interactive tasks. 5.75

1387

difficult to understand how disease cases migrate to
different areas, but also how they evolve over time.
Our new version of STKDE revealed the results in [14]
efficiently and effectively. Our STKDE produced six
unique structures. The majority of the clusters begin
closer to the start of the year and then gradually decline
towards the end. There are two larger elongated, spa-
tially localized structures side by side that begin very
early on and continue for a significant amount of time.
These indicated locations where the disease persisted.
These clusters also occurred in highly populated areas.
Smaller, later structures show how the disease moves
north through the city. Our interactive interface permit-
ted study of the relationship of all these patterns plus
detailed examination.

4.3.2. Hurricane Simulation Data. In prior work
[18], we analyzed Hurricane simulation data for critical
infrastructure in the state of North Carolina. This simu-
lation data contained the effects and outages caused by
hurricanes across multiple simulation runs in order to
build an exhaustive simulation space. The intercon-
nected infrastructures include multiple systems like
electrical systems, road networks, transportation, water
and sewage networks, which can fail in sequence.

Our simulation data is spatiotemporal for this

reason. Therefore, including the space-time kernel den-
sity estimation is an important addition for understand-
ing these types of events. In prior visualization work
[9], we focused on a mobile application for first re-

sponders and planners to use in the field. The tool used
complex filtering on different categories of critical
infrastructure, hurricane paths, and temporal filtering.
We then used these filters to generate 2D spatial
hotspots in real-time. For these cases pre-computing
space-time behavior was near impossible because the
combinations of filters were exponentially large. Our
STKDE is a great addition because it is fast enough for
dynamic filtering.

Using the STKDE revealed some important struc-
tures that were previously hard to see. For example,
Hurricane Diana hit the coast of North Carolina,
moved back out into the Atlantic Ocean, and then cir-
cled again inland. The resulting space-time structures
clearly reveal the relationships and differences between
the first and second hits over space-time as shown in
figure 4. We see the overlapping effects of the two
hurricane passes, where they start in time, and how
they evolve. We see that the areas of infrastructure
breakdown follow the hurricane path to some extent
but then spread on their own. It would be difficult to
study this behavior in detail without the STKDE.

4.3.2. Device Reporting Data. We collaborated
with a local company to acquire some of their data to
evaluate our approach. The company has devices rang-
ing from kiosks to point of sale systems in retail loca-
tions across the U.S. Hundreds to thousands of users
use these devices daily generating large amounts of
reporting data. We acquired a small subset of that data
consisting of approximately 1,000,000 records. The
records covered a time period of one month.

We met with the CTO, President of Technology,
Director of Operations, and President of Sales and
Marketing, using our techniques and tool to evaluate
the data they gave us and eliciting their feedback and
analysis. Initially we showed them a 2D view + tem-
poral graph as we did in our user evaluation. We did
this initially because we wanted them to think about
the results they saw just using a 2D view. This way
they would develop their own ideas about where
hotspots occurred in space and time. We examined
several of their retail locations across the East Coast
using the 2D view trying to make sense of where
hotspots occur in space-time.

In the next step we included STKDE. We followed
the same procedure and analyzed the same groups of
retail locations as we did using just the 2D view. We
found several interesting examples using the STKDE
that would have been extremely difficult to detect
without it. There were several different retail locations
that were examined, and they all followed a cyclical
pattern of peak activity on Saturdays. In some locations
the activity had abnormal and interesting behavior.
Locations around Virginia only peaked once. In North
Carolina locations peaked then gradually declined and

Figure 4. STKDE in our mobile interface for outages
of critical infrastructure over space and time for hur-
ricane Diana along the North Carolina coast. The hur-
ricane path is shown in blue.

1388

then stopped. Activity picked up the following week-
end. However, some locations in Florida experienced
very sporadic activity. All this could be visualized di-
rectly and immediately through the STKDE, as shown
in figure 5, leading to areas for further analysis. This
can be done by setting the spatial and temporal slicing
planes in the overview to see relationships among fea-

tures or zooming in on particular features and then
setting slicing planes. We asked the executives to
summarize their thoughts after seeing the analysis with
and without the STKDE. These are their comments.
• The STKDE adds value by adding another dimen-

sion, which provides more information.
• The human has to remember the details of the 2D

and time graph. Whereas the STKDE reveals eve-
rything simultaneously.

• After viewing both approaches, it is meaningless
to not use the STKDE.

The data they provided to us was multivariate and
contained additional information with respect to their
devices, the nature of the report, software versions, and
application types. They wanted to be able to run more
complex filters and sub-filtering for these attributes in
order to analyze using the STKDE. This highlights the
major problem we worked to solve. Since the analysis
is user driven, the STKDE has to be done in real-time.
There are too many combinations to do exhaustive pre-
computing for their data and their data is constantly
growing. Therefore, our technique is crucial in that it
solves this problem and allows for real-time analytics.

5. Limitations and Future Work

One of the major limitations with our technique is

the limit on the size of both voxels and the spatiotem-
poral data. Although it is possible to use multiple
GPUs to divide up the voxel regions in order to process
higher resolutions, each GPU must have a copy of the

entire spatiotemporal data. Therefore, if the spatiotem-
poral data exceeds the size of memory for the GPU
then GPU processing cannot be used. Fortunately GPU
memory has increased over the years so this limitation
may be minimal and only apply to certain cases.

The space-time kernel density calculation itself is
not flawless. The computation tends to overestimate
boundaries due to the varying metrics for the temporal
and spatial bandwidths used. Calculating the temporal
and spatial bandwidth is not a defined science either. In
this work we used the approach by Silverman et al.
[29] as it was used by Lopez-Novoa et al. [21]. Since
we compared our work to Lopez-Novoa we used the
same approach in order to maintain consistency. An-
other focus of future work is incorporating volumetric
rendering into our interface. Volumetric rendering has
benefits for visualizing this type of data, but doing so
in a web-based interface has significant challenges.

6. Conclusion

In this paper we presented a GPU-based implemen-

tation of the Space-Time Kernel Density Estimation
that provides massive speed up in analyzing spatial-
temporal data. We have inserted this capability into a
web based visual interactive analytics tools for analyz-
ing spatial-temporal data.

To fully integrate the STKDE into meaningful, un-
derstandable analysis, we had to develop new interac-
tive methods that linked the STKDE to traditional tem-
poral and spatial visualizations. The utility and effec-
tiveness of our interactive, linked visualizations was
demonstrated via user studies and evaluations. Using
our tools, we performed an evaluation and several use
case studies. In one of those studies we connected with
a local company and acquired some of their data. The
use cases showed the interactive advantage of having
real-time STKDE analytics and the power of being
able to do integrated space- time analysis.

7. Acknowledgements

This work is supported in part by the Army Research Of-
fice under contract number W911NF-13-1-0083 and the
U.S. Department of Homeland Security’s VACCINE
Center under award no. 2009-ST- 061-CI0002.

8. References

[1] C. Brunsdon, J. Corcoran, and G. Higgs. Visualising

space and time in crime patterns: A comparison of meth-
ods. Computers, Environment and Urban Systems,
31(1):52–75, 2007.

[2] I. Cho, W. Dou, D. X. Wang, E. Sauda, and W. Ribarsky.
VAiRoma: A visual analytics system for making sense of
places, times, and events in roman history. IEEE Trans.
On Visualization and Computer Graphics, 22(1):210–219,

Figure 5. STKDE result for retail reporting data,
showing several different types of activity.

1389

2016.
[3] D.Comaniciu and P.Meer. Meanshift: A robust approach

toward feature space analysis. IEEE Trans. On Pattern
Analysis and Machine Intelligence, 24(5):603–619, 2002.

[4] E. Delmelle, C. Dony, I. Casas, M. Jia, and W. Tang.
Visualizing the impact of space-time uncertainties on den-
gue fever patterns. International Journal of Geographical
Information Science, 28(5):1107–1127, 2014.

[5] E. Delmelle, C. Kim, N. Xiao, and W. Chen. Methods for
space-time analysis and modeling: An overview. Interna-
tional Journal of Applied Geospatial Research (IJAGR),
4(4):1–18, 2013.

[6] E. M. Delmelle, H. Zhu, W. Tang, and I. Casas. A web-
based geospatial toolkit for the monitoring of dengue fe-
ver. Applied Geography, 52:144– 152, 2014.

[7] U. Demsˇar and K.Virrantaus.Space–time density of tra-
jectories: exploring spatio-temporal patterns in movement
data. International Journal of Geographical Information
Science, 24(10):1527–1542, 2010.

[8] T. Eaglin, X. Wang, and W. Ribarsky. Interactive visual
analytics in support of image-encoded lidar analysis. Elec-
tronic Imaging, 2016(1):1–9, 2016.

[9] T. Eaglin, X. Wang, W. Ribarsky, and W. Tolone. En-
semble visual analysis architecture with high mobility for
large-scale critical infrastructure simulations. In
IS&T/SPIE Electronic Imaging, pages 939706–939706. In-
ternational Society for Optics and Photonics, 2015.

[10] S.Gao. Spatio-temporal analytics for exploring human
mobility patterns and urban dynamics in the mobile age.
Spatial Cognition & Computation, 15(2):86–114, 2015.

[11] S.Gao, Y.Hu, K.Janowicz, and G.McKenzie. A spate
temporal scientometrics framework for exploring the cita-
tion impact of publications and scientists. In Proceedings
of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages
204– 213. ACM, 2013.

[12] S. R. Gomez, H. Guo, C. Ziemkiewicz, and D. H.
Laidlaw. An insight-and task-based methodology for eval-
uating spatiotemporal visual analytics. In Visual Analytics
Science and Technology (VAST), 2014 IEEE Conference
on, pages 63–72. IEEE, 2014.

[13] E.J.Hastings, J. Mesit, and R.K. Guha. Optimization of
large-scale, real- time simulations by spatial hashing. In
Proc. 2005 Summer Computer Simulation Conference,
volume 37, pages 9–17, 2005.

[14] A. Hohl, E. M. Delmelle, and W. Tang. Spatiotemporal
Domain Decomposition for Massive Parallel Computation
of Space-Time Kernel Density. ISPRS Annals of Photo-
grammetry, Remote Sensing and Spatial Information Sci-
ences, pages 7–11, July 2015.

[15] T. Kapler and W. Wright. Geotime information visuali-
zation. IEEE Symposium On Information Visualization,
pages 25-32, Oct 2004.

[16] E. Kaya, M. T. Eren, C. Doger, and S. Balcisoy. Do 3d
visualizations fail? an empirical discussion on 2d and 3d
representations of the spatio- temporal data.

[17] P. Klemm, K. Lawonn, S. Glaßer, U. Niemann, K. He-
genscheid, H. Volzke, and B. Preim. 3d regression heat
map analysis of population study data. IEEE Trans. On
Visualization and Computer Graphics, 22(1):81–90, 2016.

[18] S. Ko, J. Zhao, J. Xia, S. Afzal, X. Wang, G. Abram, N.

Elmqvist, L. Kne, D. Van Riper, K. Gaither, et al. Vasa:
Interactive computational steering of large asynchronous
simulation pipelines for societal infrastructure. IEEE
Trans. On Visualization and Computer Graphics,
20(12):1853–1862, 2014.

[19] M.-P. Kwan and T. Neutens. Space-time research in
giscience. International Journal of Geographical Infor-
mation Science, 28(5):851–854, 2014.

[20] Z.Liu and J.Heer. The effects off interactive latency on
exploratory visual analysis. IEEE Trans. On Visualization
and Computer Graphics, 20(12):2122–2131, 2014.

[21] U.Lopez-Novoa,J.Sa ́enz, A.Mendiburu, and J.Miguel-
Alonso.An efficient implementation of kernel density es-
timation for multi-core and many-core architectures. Inter-
national Journal of High Performance Computing Appli-
cations, 29(3):331–347, 2015.

[22] J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen.
Understanding hotspots: A topological visual analytics ap-
proach. In Proceedings of the 23rd SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information
Systems, GIS ’15, pages 36:1–36:10, New York, NY,
USA, 2015. ACM.

[23] R. Maciejewski, S. Rudolph, R. Hafen, A. M. Abusalah,
M. Yakout, M. Ouzzani, W. S. Cleveland, S. J. Grannis,
and D. S. Ebert. A visual analytics approach to understand-
ing spatiotemporal hotspots. IEEE Trans. On Visualization
and Computer Graphics, 16(2):205–220, 2010.

[24] P. D. Michailidis and K. G. Margaritis. Accelerating
kernel density estimation on the gpu using the cuda
framework. Applied Mathematical Sciences,
7(30):14471476, 2013.

[25] T. Nakaya and K. Yano. Visualising crime clusters in a
space-time cube: An exploratory data-analysis approach
using space-time kernel density estimation and scan statis-
tics. Transactions in GIS, 14(3):223–239, 2010.

[26] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. Gpu computing. Proceedings of
the IEEE, 96(5):879–899, 2008.

[27] J. C. Roberts. State of the art: Coordinated & multiple
views in exploratory visualization. Fifth International
Conference O Coordinated and Multiple Views in Ex-
ploratory Visualization, 2007. CMV’07. pages 61–71.
IEEE, 2007.

[28] D. Seo, B. Yoo, and H. Ko. Visual interaction for spatio
temporal content using zoom and pan with level-of-detail.

[29] B.W. Silverman. Density estimation for statistics and
data analysis,volume 26. CRC press, 1986.

[30] E. Smistad, A. C. Elster, and F. Lindseth. Real-time
surface extraction and visualization of medical images us-
ing opencl and gpus. Norsk informatikkonferanse, pages
141–152, 2012.

[31] I. Turton. Parallel processing geography. Eds. S. Open-
shaw, R. Abrahart, GeoComputation, pages 48–65, 2003.

[32] J. Walker, R. Borgo, and M. W. Jones. Timenotes: A
study on effective chart visualization and interaction tech-
niques for time-series data. IEEE Trans. on Visualization
and Computer Graphics, 22(1):549–558, 2016.

[33] S. Wang and M.P. Armstrong. A quad tree approach to
domain decomposition for spatial interpolation in grid
computing environments. Parallel Computing,
29(10):1481–1504, 2003.

1390

