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Abstract

We discuss the generalization of the classical Gittins Index for a Markov chain and

propose a transparent recursive algorithm for its calculation. The foundation for

this algorithm is a modified version of the Elimination algorithm proposed earlier

by the author to solve the problem of optimal stopping of a Markov chain in discrete

time and a finite or countable state space.
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1. Introduction. The goal of this paper is twofold. First, to explain a natural general-

ization of the classical Gittins Index (GI). This new, Generalized Gittins Index (GGI) in

a sense clarifies the ”true meaning” of the GI. Second, to present a transparent recursive

algorithm to calculate this GGI.

Our algorithm is based on the well-known representation of the GI through a family of

stopping problems due to P. Whittle (1980) and on earlier work of the author on the

recursive algorithm for the optimal stopping of a Markov chain, the Elimination algo-

rithm (EA), described in Sonin (1999a) (see also (1995), (1999b) and (2006)).

We will use the following notation. A pair M = (X, P ), where X is a countable state
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space, P = {p(x, y)} is a transition matrix, is called a Markov model. A Markov chain

(MC) from a family of MCs defined by a Markov model is denoted by (Zn). The

probabilistic measure for the Markov chain with initial point x and the correspond-

ing expectation are denoted by Px and Ex, respectively. A tuple M = (X,P, c, g, β),

where c(x) is a one step reward (cost) function, g(x) is a terminal reward function,

both defined on X, and β is a discount factor, 0 < β ≤ 1, is called an Optimal

Stopping (OS) model. The value function v(x) for an OS model is defined as v(x) =

supτ≥0 Ex[
∑τ−1

i=0 βic(Zi) + βτg(Zτ )], where the sup is taken over all stopping times τ,

τ ≤ ∞, and g(Z∞) = 0. We assume that the model M is such that v(x) < ∞ for all x.

It is well known that function v is a minimal solution of a corresponding Bellman (op-

timality) equation v = max(g, c + βPv), where Pf(x) =
∑

y p(x, y)f(y) is the averaging

operator, defined by a transition matrix P . Let us denote by S = {x : v(x) = g(x)}. If

the state space X is finite then the random time τ0 = min{n ≥ 0 : Zn ∈ S} is an optimal

stopping time. The set S is called the optimal stopping set. We call an OS model with

the terminal reward function g(x) = 0 for all x a reward model.

Given a reward model M = (X, P, c, β), and point x ∈ X the classical Gittins index,

γ(x), is defined as the maximum of the expected discounted total reward during the

interval [0, τ) per unit of expected discounted time for the Markov chain starting from

x, i.e.

γ(x) = sup
τ>0

Ex
∑τ−1

n=0 βnc(Zn)

Ex
∑τ−1

n=0 βn
= (1− β) sup

τ>0

Ex
∑τ−1

n=0 βnc(Zn)

1− Exβτ
, (1)

where 0 < β < 1, and τ is a stopping time, τ > 0.

The GI index plays an important role in the theory of Multi-armed bandit (MAB) prob-

lems with independent arms but it also appears naturally in many other problems of

stochastic optimization, e.g. in the optimal replacement problems, where in many cases

to find an optimal strategy amounts to the calculation of (1). There are a few algo-

rithms to calculate this index (see e.g. Varaiya et al. (1985), Kathehakis and Veinot

(1987), Bertsimas and Nino Mora (1996)), Nino Mora (2007) and some generalizations

of this index (see e.g. Mandelbaum (1987), El Karoui and Karatzas (1993)), which do not

cover our generalization. New interesting results connecting the GI with other problems

of stochastic optimization can be found in Bank and El Karoui (2004).

The author would like to thank Robert Anderson, Joseph Quinn and Ernst Presman

who read the first version of this paper and made valuable comments, and an anony-
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mous referee for helpful suggestions.

2. Classical GI and Generalized GI. An important interpretation of the GI, the

so called Retirement Process formulation was provided by Whittle (1980). Given a re-

ward model M = (X,P, c(x), β), 0 < β < 1, he introduced the family of OS mod-

els M(k) = (X, P, c(x), k, β), where the terminal reward function g(x) = k for all

x ∈ X, k is a real number. Denote v(x, k) the value function for such a model, i.e.

v(x, k) = supτ≥0 Ex[
∑τ−1

n=0 βnc(Zn) + βτk], and denote w(x) = inf{k : v(x, k) = k}. Since

β < 1, for sufficiently large k it is optimal to stop immediately and v(x, k) = k. Thus

w(x) < ∞. The results of Whittle imply that v(x, k) = k for k ≥ w(x), v(x, k) > k for

k < w(x), and γ(x) = (1− β)w(x).

Another interesting interpretation of the GI, the so called Restart in State interpretation,

was given in Kathehakis and Veinot (1987), though similar ideas of regenerative cycles

were used in probability theory a long time ago (see e.g. references in Sonin (1996)). Let

us consider a Markov Decision model Mx = (X,A(y), P, c(y), β), where a point x ∈ X

is fixed and a set of actions A(y) available at y, has two actions - to continue or to

return to x and continue from there. In other words, MC (Zn) starting from a point x

after a positive stopping time τ > 0 can be restarted at the same point x, and so on.

Let h(x) denote the supremum over all strategies of the expected total reward on the

infinite time interval in this model, i.e. h(x) = supπ Eπ
x

∑∞
n=0 βnc(Zn), where Eπ

x is an

expectation with respect to a strategy π. Using the standard results of Markov Decision

Processes theory, Kathehakis and Veinot proved that h(x) = w(x) and function h(x)

satisfies the equality

h(x) = sup
τ>0

Ex[
τ−1∑

n=0

βnc(Zn) + βτh(x)]. (2)

Combined with the results of Whittle this implies that γ(x) = (1−β) h(x) = (1−β)w(x).

We will prove the equality h(x) = w(x) in a more general setting in Theorem 1.

Before introducing the Generalized GI (GGI) let us make the following almost trivial

remark. As usual in Markov Decision Processes theory, the optimizations problems,

such as described above, with an explicit discount factor β, are equivalent to problems

where a state space is complemented by an absorbing point x∗ and the new transition

probabilities are defined as follows. The probability of entering an absorbing point x∗ in

one step for any state y 6= x∗ (probability of termination) is equal to 1− β and all other

initial transition probabilities are multiplied by β. In other words, β is the probability
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of ”survival”. The model of latter type with a possible variable probability of survival

β(x) plays a crucial role in our subsequent presentation. Thus, to define the GGI α(x)

we consider a reward model with termination M = (X, P, c(x), β(x)), where we assume

from the beginning that the state space X contains an absorbing point x∗, the function

β(x) is the probability of ”survival” at point x, so 1− β(x) = p(x, x∗). Strictly speaking

the function β(x) is completely specified by a transition matrix P but we include β(x)

in the tuple M, to stress the presence of x∗ and β(x). From now on notation Ex, Px and

(Zn) are referred to such model and survival probabilities β(·) now are automatically

included under the signs Px and Ex. We also assume that c(x∗) = 0.

Let us denote the numerator in (1), which now equals to Ex
∑τ−1

n=0 c(Zn), by Rτ (x), and

let us denote Qτ (x) = Px(Zτ = x∗), the probability of termination on [0, τ).

The Generalized GI (GGI), α(x), for a model with termination is defined as

α(x) = sup
τ>0

Rτ (x)

Qτ (x)
, (3)

i.e. α(x) is the maximum discounted total reward per chance of termination. Note that

if β(x) is a constant β then the denominator in the second equality in (1) coincides with

Qτ (x) and therefore in this case γ(x) = (1− β)α(x).

The crucial point however is that, if β(x) is not a constant then the latter equality gen-

erally is not true anymore, even if the definition of γ(x) is correspondingly modified, i.e.

βn is replaced by
∏n−1

i=0 β(Zn). Thus, in the general case, the proportionality of the two

indices γ(x) and α(x) as functions of x completely disappears. At the same time, for a

reward model with termination we can define in an absolutely similar way as before a

(generalized) index h(x), as the value function in a restart in x problem, and a (general-

ized) index w(x), as w(x) = inf{k : v(x, k) = k}, where v(x, k) is a value function in the

(generalized) Whittle OS model M(k) = (X, P, c(x), β(x), k). In this model we assume

that c(x∗) = g(x∗) = 0, g(x) = k for x 6= x∗. As Theorem 1 shows below, the equality

α(x) = w(x) = h(x) is preserved ! This means that the ”true meaning” of the Gittins

index is given by the expression in (3) and not in (1) !

Now a few words about the origin of definition (3) and some comments. The first publi-

cations on GI appeared in the 70s (see Gittins (1979) and references there). But as early

as in 1960 the following simple model was analyzed by a few authors simultaneously

(see Mitten (1960)). We present it here in a modified form. Suppose that there is a

finite set of independent Bernoulli trials e1, e2, ..., em, with probability of success pi, and
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correspondingly with probability of failure qi, in i-th trial. A decision maker (DM) can

choose an order in which to conduct (test) the trials. Each trial can be tested only once.

The test of the i-th trial brings a reward ri, and in the case of success she may quit

or continue testing. In the case of failure the testing has to be terminated. The goal of

the DM is to select the optimal order to maximize the expected total reward. A rather

elementary proof shows that the optimal strategy has a remarkably simple structure and

is based on an index α calculated for each trial ei, α(ei) = ri/qi, i.e. reward / probability

of termination. The optimal strategy has the following form: test the trials with positive

index in decreasing order. If all trials must be tested then they should all be tested in the

above order. Each trial may be considered as a simple MC with three states, an initial

state, success and failure. This problem contains in a nutshell both the simplest form

of an index (3) and the main result of Gittins theory, the optimality of an index-based

strategy. This model was generalized in the papers of Granot and Zuckerman (1991),

Denardo et al. (2004), and Presman and Sonin (2006). All of them are using an index of

type (3) though only in the last paper, where new trials may appear in a random fashion,

the variable probability of termination is fully considered. These models represent the

most general setting in which Gittins theorem remains valid.

Note also that contrary to popular belief the renown Gittins theorem mentioned above

holds true for the case of variable β(x) and there is no contradiction with a well-known

result of Berry and Fristedt (1985) which states that geometric discounting is not only

sufficient but is also necessary in the class of discounting sequences (β1, β2, ...). It means

that what really matters for the validity of Gittins theorem is stationarity with respect

to time but not space.

Theorem 1. The three indices defined for a reward model with termination M =

(X, P, c(x), β(x)) coincide, i.e. α(x) = h(x) = w(x).

Proof. First, let us prove that in a such model the relations v(x, k) = k for all k ≥
w(x), v(x, k) > k for all k < w(x) in the original Whittle’s model remains valid.

Using our notation Rτ (x) and Qτ (x), we can represent the value function v(x, k) =

supτ≥0 Ex[
∑τ−1

n=0 c(Zn) + I(Zτ 6= x∗)k] = supτ≥0[R
τ (x) + (1 − Qτ (x))k], where I(A) is a

characteristic function of a set A. If v(x, k) > k then there is a stopping time τ > 0

such that Rτ (x) + (1 − Qτ (x))k > k. Therefore, Rτ (x)/Qτ (x) > k and if m < k then

Rτ (x) + (1 − Qτ (x))m > m and v(x,m) > m. Then, using the definition of w(x), we

obtain that v(x, k) > k for all k < w(x) and v(x, k) = k for all k > w(x). The equality

v(x,w(x)) = w(x) follows from the continuity of function v(x, k) in k. One also may
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conclude that if k < w(x) then α(x) > k. Since this is true for any k < w(x), we ob-

tain that α(x) ≥ w(x). If k > w(x), then, as we proved, v(x, k) = k, and therefore by

the definition of v(x, k), k ≥ Rτ (x) + (1 − Qτ (x))k for any τ > 0. This implies that

k ≥ Rτ (x)/Qτ (x) and hence α(x) ≤ k for any k > w(x). Therefore α(x) ≤ w(x). The

equality α(x) = w(x) is proved.

To prove α(x) = h(x), note that in a reward model with termination the equality (2)

remains true, but now, when β(x) is not a discount factor but a ”survival” probability,

takes the form h(x) = supτ>0 Ex[
∑τ−1

n=0 c(Zn) + I(Zτ 6= x∗)h(x)]. This follows from the

fact that the proof of (2) uses only the general properties of Markov Decision Processes

equally true for both reward and general reward models. This equality can be rewritten

as h(x) = supτ>0[R
τ (x)+(1−Qτ (x))h(x)]. Assuming, as in a classical Gittins case, that

β(x) < 1, and hence Qτ (x) ≥ 1 − β(x) > 0, it is easy to see that this is equivalent to

the equality h(x) = supτ>0 Rτ (x)/Qτ (x), i.e. h(x) = α(x).

3. The Elimination Algorithm for the problem of Optimal Stopping of a

Markov chain. We present here just the bare facts necessary for the subsequent dis-

cussion and refer the reader to Sonin (1999a), (1999b) and (2006). Let M1 = (X1, P1)

be a Markov model, and D ⊂ X1. If (Zn) is a MC specified by this model, and (Yn) be a

random sequence obtained by observing (Zn) during its visits to the set X2 = X1 \D,

then (Yn) is a MC in X2 with the following transition probabilities P2. If matrix P1 is

decomposed as

P1 =




Q1 T1

R1 P ′
1


 , (4)

where substochastic matrix Q1 describes the transitions inside of D, P ′
1 describes the

transitions inside of X2 and so on, then

P2 = P ′
1 + R1U1 = P ′

1 + R1N1T1. (5)

In this formula U1 = {u1(x, y), x ∈ D, y ∈ X2} is a matrix for the distribution of a MC at

the moment of first exit from D (exit probabilities matrix), and N1 = {n1(x, y), x, y ∈ D}
is a fundamental matrix for the substochastic matrix Q1, i.e. N1 =

∑∞
n=0 Qn

1 = (I−Q1)
−1,

and n1(x, y) is the expected number of visits to y before the moment of first exit from

D starting at x. Given set D, matrices N1 and U1 are related by formula U1 = N1T1.
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An important case is when the set D consists of one nonabsorbing point z. In this case

formula (5) obviously takes the form

p2(x, ·) = p1(x, ·) + p1(x, z)n1(z)p1(z, ·), (6)

where n1(z) = 1/(1− p1(z, z)).

According to this formula, each row-vector of the new stochastic matrix P2 is a linear

combination of two rows of P1 (with the z-column deleted). For a given row of P2, these

two rows are the corresponding row of P1 and the zth row of P1. This transformation

corresponds formally to one step of the Gaussian elimination method.

Let M1 = (X1, P1, c1(x), g(x), β1(x)) be an OS model with termination, v1(x) be the

value function for this model, and S = {x : g(x) = v1(x)} be the corresponding optimal

stopping set. Let us introduce now a transformation of the cost function c1(x) (or any

function f(x)) defined on X1 into the cost function c2(x) defined on X2, under the

transition from model M1 to model M2. Given set D, D ⊂ X1, let τ be the moment of

the first return to X2, i.e. τ = min(n ≥ 1, Zn ∈ X2). Then given function c1(x) defined

for x ∈ X1, function c2(x) is defined on x ∈ X2 as

c2(x) = Ex

τ−1∑

n=0

c1(Zn) = c1(x) +
∑

z∈D

p1(x, z)
∑

w∈D

n1(z, w)c1(w). (7)

In other words the new function c2(x) represents the expected cost (reward) gained by

a MC starting from point x ∈ X2 up to the moment of first return to X2. For a function

f(x) defined on a set X1 and a set G ⊂ X1 denote fG a column-vector function reduced

to a set G. Then formula (7) can be written in matrix form as c2 = c1,X2 + R1N1c1,D.

If the set D = {z} then the function c1(x) is transformed as follows

c2(x) = c1(x) + p1(x, z)n1(z)c1(z), x ∈ X2. (8)

The latter formula was obtained earlier in Sheskin (1999) in the context of Markov

Decision Processes.

The Elimination algorithm for the OSP of a MC is based on the following three facts.

1. Though in an OSP it may be difficult to find the states where it is optimal to stop, it

is easy to find a state (states) where it is optimal not to stop. It is optimal not to stop

at z if g(z) < c(z) + Pg(z), i.e. the expected reward of doing one more step is larger
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than the reward from stopping. Generally, it is optimal not to stop at any state where

the expected reward of doing some, perhaps random number of steps, is larger than the

reward from stopping.

2. After we have found states (state) which are not in the optimal stopping set, we can

eliminate them and recalculate the transition matrix using (6) or (5), and recalculate

the cost function using (8) or (7). After that in the reduced model we can repeat the

first step and so on.

3. Finally, though if g(z) ≥ c(z) + Pg(z) at a particular point z, we can not make

a conclusion about whether this point belongs to the stopping set or not, but if this

inequality is true for all points in the state space then we have the following simple and

well-known statement

Proposition 1. Let M be an optimal stopping problem, and g(x) ≥ c(x) + Pg(x) for

all x ∈ X. Then X is the optimal stopping set in the problem M, and v(x) = g(x) for

all x ∈ X.

The following theorem provides the formal justification for the EA. It was formulated in

a slightly different form in Sonin (1995) and proved in Sonin (1999a) for the case when

c(x) = 0 for all x. (The proof for general c(x) can be found in Sonin (2006)).

Theorem 2. (Elimination theorem). Let M1 = (X1, P1, c1, g) be an OS model, D ⊆
C1 = {z ∈ X1 : g(z) < c1(z)+P1g(z)}. Consider an OS model M2 = (X2, P2, c2, g) with

X2 = X1 \ D, p2(x, y) defined by (5), and c2 is defined by (7). Let S be the optimal

stopping set in M2. Then a) S is the optimal stopping set in M1 also, b) v1(x) = v2(x) ≡
v(x) for all x ∈ X2, and for all z ∈ D

vD = N1[c1,D + T1vX2 ]. (9)

If the set D = {z} then formula (9) can be written as

v1(z) = n1(z)[c1(z) +
∑

y∈X2

p1(z, y)v(y)]. (10)

For the sake of brevity we call two such OS models M1 and M2 equivalent.

The EA consists of two stages: reduction and backward stages. The first stage can be

described as a sequence of steps where subsets of states that do not belong to the stop-

ping set are eliminated till the stopping set is achieved. The selection of these steps in

the countable case is dictated by the structure of the problem and the convenience of
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calculation of matrices U = NT. The algorithm has an especially simple structure if the

state space is finite, and only one state is eliminated at each step.

Finally, on the backward stage, by reversing the steps of the reduction stage, we can

calculate recursively the values of v(x) for all x ∈ X1, using sequentially formula (9) or

(10), starting from the equalities v(x) = g(x) for x ∈ S =Xk, where k is the number of

iteration where the reduction stage of the algorithm stops.

4. The Gittins Index Elimination (GIE) Algorithm. To apply the EA algorithm

to calculate α(x) we need the following statement. Given a reward model with termi-

nation M = (X, P, c(x), β(x)), with β(x) = 1 − p(x, x∗) < 1, let us define the function

d(x) = c(x)/(1− β(x)), number d = maxx∈X d(x), and the set D = {x : d(x ) = d}.
Theorem 3. Let M be a reward model with termination, number d and set D defined

as above. Then α(x) = d for x ∈ D and α(x) < d for all x ∈ X \D.

Proof. Let us consider the Whittle OS model M(k) and let S(k) be the optimal stopping

set. If k ≥ d then the definition of d implies that for this OS model g(x)−(c(x)+Pg(x)) =

k − (c(x) + β(x)k) = (1 − β(x))(k − d(x)) ≥ 0 for all x ∈ X and hence by Proposition

1, S(k) = X and v(x, k) = k for all x ∈ X. If x /∈ D and d(x) < k < d then similarly

v(x, k) = k and hence by the definition of w(x), and equality α(x) = w(x) we obtain

α(x) < d. If x ∈ D and k < d then g(x) − (c(x) + Pg(x)) < 0 for x ∈ D and therefore

x /∈ S(k) and v(x, k) > k. By the definition of w(x), and equality α(x) = w(x) this

implies that α(x) ≥ d and therefore α(x) = d for x ∈ D. The theorem is proved.

Now we can describe the GIE algorithm and prove that it really calculates the GGI.

Step 1. Given a reward model with termination M1 = (X1, P1, c1(x), β1(x)), calculate de-

fined above the function d1(x), the number d1, and the set D1. By Theorem 3, α(x) = d1

on the set D1. Without loss of generality we can assume that D1 = {z}.
Step 2. Define model M2 = (X2, P2, c2(x), β2(x)), where X2 = X2 \D1, stochastic matrix

P2 is obtained by (5) for D = D1, function c2(x) is obtained by (7), β2(x) =1−p2(x, x∗).

Calculate d2(x) = c2(x)/(1 − β2(x)) on X2, number d2 = maxx∈X2 , and set D2 = {x :

d2(x) = d2}.
To prove that α(x) = d2 on a set D2, let us consider Whittle OS model M1(k) =

(X1, P1, c1(x), β1(x), k) with k < d1. Let S1(k) be an optimal stopping set for this model.

Theorem 3 implies that for all such k we have D1 ∩ S1(k) = ∅ and hence by Theorem

2 this model is equivalent to a new OS model M2(k) = (X2, P2, c2(x), β2(x), k), where

X2, P2, β2(x), d2(x), d2, and D2 are described above. It can be checked using formulas

(5) and (7) that d2(x) = [k(x)d1(x) + k′(x, z))d1(z)]/(k + k′), where k, k′ > 0. Hence
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d2(x) < d1(x) and d2 < d1. Theorem 3 implies that α(x) = d2 on a set D2. And so on.

If |X1| is finite, in no more than |X1| steps α(x) will be calculated for all points. Note

also that the elimination of a set D1 can be performed state by state using (6) and (8)

or at once using formulas (5) and (7).

Example 1. Let our reward model has X1 = {1, 2, 3, x∗}, with c1(1) = 3, c1(2) =

2, c1(3) = 1, and β(x) = .9 for all x 6= x∗ and corresponding transition matrix P = P1 is

P1 =

.3 .3 .3 .1

.45 .3 .15 .1

.1 .5 .3 .1

0 0 0 1

, P2 =

.4929 .3429 .1642

.5429 .3429 .1142

0 0 1

, P3 =
.7099 .2901

0 1

.

Then d1 = c1(1)/(1 − β) = 30, D1 = {1}, and by Theorem 3 α(1) = 30. Therefore,

we eliminate the state 1 on a first step and, applying formulas (6) and (8), we ob-

tain new transition matrix P2 and function c2(x) for a state space X2 = {2, 3, x∗};
c2(2) = 3.9286, c2(3) = 1.4286. Therefore d2 = c2(2)/(1 − β2(2)) = 23.9130 = α(2),

D2 = {2} and on the second step state 2 is eliminated, and we obtain matrix P3, and

c3(3) = 5.6338. Therefore α(3) = c3(3)/(1 − β3(3)) = 19.4175. (All calculations were

rounded up four digits after decimal point.)

Note that though we started in this example from a constant survival function β(x),

after the first step we deal with variable βi(x) for i > 1. The classical GI for this model

γ(x) = (1− β)α(x) = .1α(x).

5. The optimal stopping times and the Representation Identity. For the case

when X is finite, we can describe also two optimal stopping times where the value of

GGI α(x) is achieved. We omit the proof of both lemmas.

Lemma 1. Let M be a reward model with termination, and let the sets Di and the

numbers di, i = 1, 2, ... be those which occur in the calculation of α(x). Then, if x ∈ Di

, τ1 = min{n > 0 : Zn /∈ (D1 ∪ ... ∪ Di−1)} ≡ min{n > 0 : α(Zn) ≤ α(x) = di} and

τ 0
1 = min{n > 0 : Zn /∈ (D1 ∪ ... ∪ Di)} ≡ min{n > 0 : α(Zn) < α(x) = di} are the

optimal stopping times.

Lemma 2. Let M be a general reward model. Then the following formula (Representa-

tion Identity) holds

v(x) ≡ Ex

∞∑

n=0

c(Zn) = Ex

∞∑

n=0

[ min
0≤i≤n

α(Zi)]I(Bn+1), (11)
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where α(x) is a GGI for this model, and Bn = {T = n} ≡ {Zn−1 6= x∗, Zn = x∗}.
Note also that using this equality and the sequence of models Mn described in the algo-

rithm, it is possible also to calculate v(x) recursively. This remark can be also extended

to the general setting of Gittins theorem.

6. A Brief Comparison with Other Algorithms. The assumption that discount

rate is constant is mainly a technical convenience in applied probability models and

is not natural in many economic or financial applications. As we described above, our

algorithm deals with the more general case of a variable discount rate depending on a

state of a MC. It belongs to a wide class of algorithms based on the idea of states elimi-

nation. This idea was first applied in 1985 in two independent papers of T. Sheskin, and

Grassman, Taksar and Heyman concerned with the calculation of invariant distribution

of MC. We refer the reader to our paper Sonin (1999b) where this approach is discussed.

Our algorithm has the same computational complexity O(n3) as the algorithm of Varaya

et al or similar algorithm of Bertsimas and Nino-Mora (1996) and Nino-Mora (2007). It

has simple and transparent probabilistic interpretation and lends itself naturally to the

extension to the case of countable MC. A simple example of such a situation is a random

walk on a line {x∗, 0,±1,±2, ...} with general transition probabilities p(i, i + 1) = pi,

p(i, i−1) = qi, p(i, i) = ri, p(i, x∗) = si, pi+qi+ri+si = 1, and function c(i) ≥ 0, c(i) → 0

as i → ±∞. It is easy to check that in this case for any i, the index α(i) is calculated in

a finite number of steps. More than that, the computations in this example as in some

other examples can be performed in parallel. Finally note that the algorithm based on

the idea of using state elimination to calculate Gittins index was briefly, in a few lines

described in Tsitsiklis (1994), but the assertion there that for the case of a discrete MC

such an algorithm will coincide with the algorithm of Varaya et al and that it is also

a special case of the algorithm in Weiss (1988) is not true. Even the calculations for

our simple Example 1 will be quite different. This line of study was continued in Katta

and Sethuraman (2004) who presented an algorithm similar to our but without rigorous

proofs and without a reference to optimal stopping problem. The comparison of com-

putational properties of existing algorithms (for constant β), including our algorithm

described in a technical report, is presented in forthcoming paper Nino-Mora (2007).

7. Possible Generalizations and Open Problems. We described our algorithm to

calculate the GGI for the case when β(x) < 1. In a very similar way it can be used for the

undiscounted case, β = 1, assuming that the corresponding GI in (1), γ(x), is finite. It

can be proved that in this case limβ→1 αβ(x)(1−β) = γ(x). For example in Example 1, the

11



corresponding values for γ are: γ(1) = 3, γ(2) = 17/7 = 2.428, γ(3) = 232/112 = 2.071.

The algorithm described above can be modified to accommodate also the case when the

expression Rτ (x) in the definition of GGI has a form Rτ (x) = Ex[
∑τ−1

n=o c(Zn)+ g(Zτ )],

where the function g(x) is a terminal reward at the end of a cycle [0, τ), but this modifi-

cation is not quite trivial. We described our algorithm for the case when the state space

X is finite. The sequential calculation of α(x) is possible also for the countable case if at

each stage the sets Di are not empty and ∪∞i=1Di = X. The general description of such

situations is an open problem. The other open problems are the analogs of the described

algorithm for continuous time and/or space.
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