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According to the well-known Doob’s lemma, the expected number of crossings of
every fixed interval(a,b) by trajectories of a bounded martingale(Xn) is finite on
the infinite time interval. For such a random sequence (r.s.) with an extra condition
that Xn takes no more thanN, N < ∞, values at each momentn ≥ 1, this result
was refined in Sonin (1987) by proving that inside any interval(a,b) there are non-
random sequences (barriers)(dn), such that the expected number of intersections of
dn by (Xn) is finite on the infinite time interval. This result left open the problem of
whether for such r.s. anyconstantbarriersdn ≡ d, n≥ 1, exist. The main result of
this paper is an example of a bounded martingaleXn, 0≤ Xn ≤ 1, with at most four
values at each momentn, such that no constantd, 0 < d < 1, is a barrier for(Xn).
We also discuss the relationship of this problem with such problems as the behavior
of a general finite nonhomogeneous Markov chain and the behavior of the simplest
model of an irreversible process.
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1 Introduction

In this note we present some results that shed light on particular properties of ran-
dom sequences in discrete time(Xn) which satisfy two key assumptions. First,(Xn)
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is a bounded (sub)(super)martingale in forward or reverse time. Second,(Xn), at
each momentn, takes no more thatN values, whereN < ∞. In other words, there
exists a sequence of finite sets(Gn) such thatP(Xn∈Gn) = 1 and|Gn| ≤N < ∞, n≥
1. The class of all random sequences that have the latter property is denoted byG N;
the class of all random sequences that have both properties is denoted byM N.

The random sequences fromM N appear very naturally, for example, in the study
of finite nonhomogeneous Markov chains(MC). Let S be a countable set,(Pn) be
a sequence of stochastic matrices,Z = (Zn) be a Markov chain from a family of
MCs defined by a Markov model(S, (Pn)). Let Φ be the corresponding “tail”σ -
algebra forZ, i.e.Φ = ∩nFn∞, whereFn∞ is aσ -algebra generated by(Zn,Zn+1, ...).
It is easy to check that ifA∈ Φ andβn(i) = P(A|Zn = i), then the r.s.(Xn), where
Xn = β (Zn), is amartingale(in forward time). Another, even more important family
of (sub)martingales can be obtained as follows. LetD1 be a subset ofS. Let us set,
for n≥ 1 andi ∈ S,

αn(i) =
{

P(Z1 ∈ D1|Zn = i) if P(Zn = i) > 0;
0 otherwise.

(1)

It is easy to verify that the r.s.(Yn) specified byYn = αn(Zn), n≥ 1, is amartingale
in reverse time. If a subsetD1 is replaced by a sequence of setsDn ⊆ S, andαn(i)
is defined asαn(i) = P(Zs ∈ Ds,s= 1,2, ...,n|Zn = i), then(Yn) is asubmartingale
in reverse time. Obviously, if|S|= N < ∞ then the martingales and submartingales
described above belong toM N.

The random sequences fromM N have much stronger properties than implied
by the well-known Doob’s convergence theorem, i.e. a theorem about the existence
of limits of trajectories of a bounded (sub)martingale when time tends to infinity.
Theorem 1 below describing these properties played a key role in the proof of the
final part of a general theorem describing the behavior of a family offinite nonho-
mogeneousMarkov chains defined by a finite Markov model(S, (Pn)), whereS is a
finite state space and(Pn) is a sequence of stochastic matrices. The striking feature
of this theorem called a Decomposition-Separation (DS) theorem in [9], is thatno
assumptionson the sequence of stochastic matrices(Pn) are made. The DS theorem
was initiated by a small paper of A. Kolmogorov [5] and was proved in steps in a
series of papers: D. Blackwell [1], H. Cohn ([3] and other papers) and I. Sonin ([6],
[7], [9] and other papers). We refer the reader to [9], where the final version of the
DS theorem was presented and a brief survey of related results was given, and to a
current expository paper [10]. Theorem 1 left an open problem described below and
the main goal of our paper is to give an answer to that problem.

Before formulating Theorem 1 and the main result of this paper, Theorem 2,
let us recall the well-known Doob’s Upcrossing Lemma (see [2]), which lies at
the foundation of Doob’s convergence theorem. If(Xn) is a r.s., then the number
of upcrossings of an interval(a,b) by a trajectoryX1,X2, ... on the infinite time
interval is the number of times when a transition, maybe in a few steps, occurs from
values less thana to values larger thanb.
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Doob’s Lemma. If X = (Xn) is a (sub)martingale, then the expected number
of upcrossings of a fixed interval(a,b) by the trajectories ofX on the infinite time
interval is bounded bysupnE(Xn−a)+/(b−a).

Similar statements are true for the number of downcrossings and the number of
crossings. The conditionsupnE(Xn−a)+ < ∞ obviously holds if(Xn) is bounded,
so for simplicity we will consider only bounded random sequences with0≤Xn≤ 1
for all n.

Note that the width of the interval(b− a) is in the denominator of the above
estimate, so Doob’s lemma does not imply that inside the interval there exists alevel
(constant barrier)d, such that the expected number of intersections of this level is
finite, and in general such levels may not exist at all. But for the random sequences
from M N Doob’s lemma can be substantially strengthened.

The following definition was introduced in [6]. A nonrandom sequence(dn) is
called abarrier for the r.s.X = (Xn), if the expected number of intersectionsof (dn)
by trajectories ofX on the infinite time interval isfinite, i.e.

∞

∑
n=1

[P(Xn ≤ dn,Xn+1 > dn+1)+P(Xn > dn,Xn+1 ≤ dn+1)] < ∞. (2)

Theorem 3 in [6] about the existence of barriers for processes with finite variation
and a bounded number of values implies the following

Theorem 1.Let(Xn) be a bounded r.s. fromM N. Then inside each interval(a,b)
there exists a barrier(dn), dn∈ (a,b), n≥ 1.

An example in Sonin [9] shows that the barriers may not exist inside a given
interval if a bounded martingale(Xn) takes acountablenumber of values, but for
the random sequences fromM N Theorem 1 left an open problem.

Problem 1. Is it true that for any r.s. fromM N in any interval(a,b) there exists
a constant barrierdn ≡ d, n≥ 1?

For a r.s.X = (Xn) defined on a finite or infinite time interval{1,2, ...,T}, T ≤∞,
with values in[0,1], denote byNT(x,X) the expected number of intersections of
level x by this sequence, i.e. the value of the sum in (2) whendn ≡ x for all n.
We will omit the indication ofX andT, if T = ∞ andX is clear from the context.
Similarly, byN+(x) we denote the expected number of up-intersections, i.e. the first
sum in (2) whenT = ∞ anddn = x for all n≥ 1. Obviously, bothN(x) andN+(x)
are finite or both are infinite.

In the sequel, the abbreviation MCM will mean a (nonhomogeneous) MC(Xi)
defined on a finite or infinite time interval[1,2, ...,T], T ≤ ∞, which is also amar-
tingale. We also assume that0≤ Xi ≤ 1 for all i. The main result of this paper is

Theorem 2. 1. For anyX = (Xi)∈M 2, any valuex∈ (0,1) is a constant barrier,
i.e.N(x) < ∞ for all x∈ (0,1).

2. For anyX = (Xi) ∈M 3, N(x) < ∞ for Lebesgue almost every (a.e.)x∈ (0,1),
and it is possible thatN(x) = ∞ for all x∈G, whereG⊂ (0,1) is a countable set.

3. There is a MCMX = (Xi) ∈M 4, such thatN(x) = ∞ for all x∈ (0,1).
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Remark 1. A Markov model(S,(Pn)) has a transparent deterministic interpre-
tation (see [9]), and the DS theorem mentioned above has such an interpretation
as well. According to this interpretation, the states of MC(Zn) are represented by
“cups” containing some solution (liquid), say tea. The entrypn(i, j) of the stochas-
tic matrix Pn represents the proportion of the solution transferred from cupi to cup
j at momentn. Correspondingly,P(Zn = i) = mn(i) represents the volume of the
solution in cupi at the momentn; αn(i) introduced in (1) can be interpreted as the
“concentration” of tea in the cupi at the momentn, and so on. Such a deterministic
“colored” flow is the simplest example of anirreversible process. The DS theorem
presented in the language of colored flows states that for any sequence(Pn) of N×N
stochastic matrices the set of cups can be decomposed into a number of groups, with
the decomposition possibly depending on timen, such that both the total volume and
the concentration of tea in each group except possibly one tends to the limits. In the
“exceptional group”, the total volume tends to zero, but the concentration may os-
cillate. The total volume of solution exchanged between these groups isfinite on
the infinite time interval. The number of groups and the decomposition are unique
(up to a certain equivalence) and depend only on the sequence(Pn). Problem 1 de-
scribed above is equivalent to the question of whether such a decomposition can
be provided by constant values of the concentration. Accordingly, our Theorem 2
can be reformulated as follows. If there are only two cups and the concentrations
of tea in those cups do not tend to a common limit, then the total amount of liquid
exchanged between the cups with the concentration higher thanx (before the trans-
fer) and lower thanx (after the transfer), or vice versa, is finite for anyx. For three
cups – such values ofx can be selected only from a subset of(0,1) of full measure.
For four or more cups, suchx may not exist at all. We are going to present this and
other possible interpretations, as well as some related results, in a separate paper.

The authors would like to thank Robert Anderson and Joseph Quinn who read
the first version of this paper and made valuable comments.

2 Proof of Theorem 2. CasesN = 2 and N = 3

To simplify the presentation, we will consider only martingales in forward time.
We denote byEX andV(X) the expected value and respectively the variance of a
random variable (r.v.)X.

CaseN = 2. The definition ofX = (Xn) ∈ M 2 implies that at each moment
n, Xn ∈ {an,bn}, where0 ≤ an < bn ≤ 1, an is decreasing andbn is increasing.
Let a∞ = lim an, b∞ = lim bn. For anyx≤ a∞ or x≥ b∞, obviously,N(x) = 0. If
x∈ (a∞,b∞), selectd1 andd2 so thata∞ < d1 < x< d2 < b∞, and letn0 be a number
such thatan < d1, bn > d2 for all n≥ n0. Then

N+(x) = c+
∞

∑
n=n0

P(Xn ≤ d1,Xn+1 > d2). (3)
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Proposition 1.For any two r.v’sX1,X2 and any two numbersd1 < d2,

P(X1 ≤ d1,X2 > d2)≤ E(X1−X2)2/(d2−d1)2. (4)

Proof. The assertion of Proposition 1 follows immediately from the implications
(X1 ≤ d1,X2 ≥ d2)⊂ (|X1−X2| ≥ h), h = d2−d1, and the Chebyshev’s inequality,
P(|Y| ≥ h)≤ EY2/h2 for any r.v.Y.

To prove part 1) of Theorem 2, note that for a martingale(Xn) we haveE(Xn+1|Xn)=
Xn, andV(Xn+1−Xn) = E(Xn+1−Xn)2 = EX2

n+1−EXn
2 and hence for a bounded

martingale(Xn), 0≤ Xn ≤ 1,

T−1

∑
n=k

E(Xn+1−Xn)2 = EX2
T −EXk

2 ≤ 1. (5)

Then formula (5) and Proposition 1 imply that the sum in (3) is finite. Part 1) of
Theorem 2 is proved.

For any r.v.X with EX = m, let us denoteM+(X) = E(X−m)+. ThenE(X−
m)+ = E(m−X)+, andM(X), the mean absolute deviation ofX, is

M(X) = E|X−m|= E(X−m)+ +E(m−X)+ = 2M+(X). (6)

Let us also putM(X|c) = E|X−c| andM+(X|c) = E(X−c)+. If (Xn) is a martin-
gale, then the equalityE(Xn+1|Xn) = Xn and (6) imply that

M(Xn+1|Xn) = 2M+(Xn+1|Xn). (7)

To study the case ofN = 3, we need some simple properties of r.v’s and martingales
with two and three values. They are described in Propositions 2 - 4. LetX ∈G2, i.e.
an r.v. with two valuesa andb, a< b, b−a= d andP(X = b) = p, P(X = a) = q=
1− p. Then it is easy to check that the following statement is true.

Proposition 2. If X ∈G2, thenM(X) = 2pqd, V(X) = pqd2, and hence

M+(X) = V(X)/d. (8)

Let X be an r.v. with three valuesa≤ e≤ b, andP(X = b) = p, P(X = e) = r,
P(X = a) = q, where p+ r + q = 1. Let us denote byXU an r.v. obtained from
X by averaging the two upper values, i.e.XU takes two valuesa andb′ = (er+
bp)/(r + p) with probabilitiesq and p′ = r + p. Similarly, we define an r.v.XL as
an r.v. obtained fromX by averaging the two lower values, i.e.XL takes two values
a′ = (aq+er)/(q+ r) andb with probabilitiesq′ = q+ r andp. It is easy to check
that for such r.v’s the following statement is true

Proposition 3.a)a≤ a′ ≤ e≤ b′ ≤ b, EX = EXA, V(XA)≤V(X), A = U or L,

b) M(XU )≤M(X), M+(XU )≤M+(X), with equalities whenEX≤ e,

c) M(XL)≤M(X), M+(XL)≤M+(X) with equalities whenEX≥ e.
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For a r.s.(Xn) ∈ M 3, i.e. for a martingale with three valuesan ≤ en ≤ bn at
momentn, similarly to Proposition 3, it is easy to obtain

Proposition 4.a)If (Xn)∈M 3, then(XA
n )∈M 2,V(XA

n+1−Xn)≤V(Xn+1−Xn),
A = U or L,

b) M+(XU
n+1|Xn)≤M+(Xn+1|Xn), with equality whenXn ≤ en+1,

c) M+(XL
n+1|Xn)≤M+(Xn+1|Xn), with equality whenXn ≥ en+1.

Now we can prove part 2) of Theorem 2 (caseN = 3). The situation in this case
is substantially different fromN = 2 andN > 3. It is possible to haveN(x) = ∞, for
example, for all rational numbers; nevertheless the Lebesque measure of the set of
all suchx is always zero. We prove here only the latter statement.

Lemma 2.For any r.s.(Xn), 0≤ Xn ≤ 1, andT ≤ ∞,

∫ 1

0
N+

T (x)dx=
T−1

∑
n=1

EM+(Xn+1|Xn). (9)

Proof.The proof follows immediately from the definition ofN+
T (x) = ∑T−1

n=1 P(Xn≤
x,Xn+1 > x) and the equalities: 1)P(Xn ≤ x,Xn+1 > x) = EI(Xn,Xn+1|x), where
I(A,B|x) = 1 if A≤ x < B, and0 otherwise, 2)

∫ 1
0 I(A,B|x)dx = (B−A)+ and 3)

E(Xn+1−Xn)+ = EM+(Xn+1|Xn).
Note that if, givena, b, 0≤ a < b≤ 1, in the left side of (9) we change the

limits of integration from0 and1, to a andb, i.e. consider
∫ b

a , then the equality (9)
remains true withM+(Xn+1|Xn) replaced byM+(Xn+1|Xn,a,b)≡E(min(b,Xn+1)−
max(a,Xn))+. For simplicity we will denoteM+(Xn+1|Xn,2ε,1−2ε) asM+(Xn+1|Xn,ε).

To prove that the integral in (9) is finite and henceN+
T (x) < ∞ almost surely, we

will show that for any(Xn) ∈M 3 and anyε, 0 < ε < 1/4,

M+(Xn+1|Xn,ε)≤V((Xn+1−Xn)|Xn)/ε. (10)

If (Xn) is a martingale, thenEV((Xn+1−Xn)|Xn) = E(E((Xn+1−Xn)2|Xn)) =
E(Xn+1−Xn)2 = V(Xn+1−Xn). Since series in (5) is convergent, estimate (10) will
prove that the integral in (9) is finite.

Let (Xn) ∈M 3 and{an,en,bn} be the ordered set of possible values ofXn at the
momentn, 0≤ an ≤ en ≤ bn ≤ 1. The definition of a martingale again implies that
the sequence(an) can only decrease, the sequence(bn) can only increase but the
sequence(en) may oscillate betweenan andbn. Let ε > 0 andn0 be a number such
thatan < ε, and1−ε < bn for all n≥ n0. In the sequel we will consider onlyn≥ n0.

If Xn > 1−2ε, then, obviously,M+(Xn+1|Xn,ε) = 0. Sincebn > 1− ε, we need
to consider further only the casesXn = an or Xn = en.

If Xn = an or en, anden+1 ≤ 2ε, thenM+(Xn+1|Xn,ε) = M+(XL
n+1|Xn,ε). Using

(8) applied toXL
n+1∈M 2, and part a) of Proposition 4, we haveEM+(XL

n+1|Xn,ε)≤
V(XL

n+1−Xn)/(bn+1−a′n+1)≤V(Xn+1−Xn)/(bn+1−a′n+1). Sincea′n+1 ≤ en+1 ≤
2ε andbn+1 > 1− ε, we havebn+1−a′n+1 ≥ 1−3ε ≥ ε, and thus (10) holds.
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If en+1 ≥ 2ε and Xn ≤ 2ε then M+(Xn+1|Xn,ε) = M+(XU
n+1|Xn,ε). Using (8)

applied toXU
n+1 ∈M 2, and point a) of Proposition 4, we haveEM+(XU

n+1|Xn,ε)≤
V(XU

n+1−Xn)/(b′n+1−an+1)≤V(Xn+1−Xn)/(b′n+1−an+1). Sinceb′n+1 ≥ en+1 ≥
2ε andan+1 < ε, we haveb′n+1−an+1 ≥ ε, and thus (10) holds. Remaining is the
case where2ε ≤ Xn = en ≤ 1−2ε anden+1 ≥ 2ε.

If Xn = en≤ en+1, thenM+(Xn+1|Xn,ε) = M+(XU
n+1|Xn,ε). Using (8) applied to

XU
n+1 ∈M 2, and point a) of Proposition 4, we haveEM+(XU

n+1|Xn,ε) ≤V(XU
n+1−

Xn)/(b′n+1− an+1) ≤ V(Xn+1−Xn)/(b′n+1− an+1). Sinceb′n+1 ≥ en+1 ≥ 2ε and
an+1 ≤ ε, we haveb′n+1− an+1 ≥ ε and thus (10) holds. IfXn = en ≥ en+1 then
M+(Xn+1|Xn,ε) = M+(XL

n+1|Xn,ε). Using (8) applied toXL
n+1 ∈ M 2, and point

a) of Proposition 4, we haveEM+(XL
n+1|Xn,ε) ≤ V(XL

n+1−Xn)/(bn+1− a′n+1) ≤
V(Xn+1−Xn)/(bn+1−a′n+1). Sincea′n+1 ≤ en+1 ≤ en ≤ 1−2ε andbn+1 ≥ 1− ε,
we havebn+1−a′n+1 ≥ ε and thus (10) holds. Part 2 of Theorem 2 is also proved.

3 Proof of Theorem 2. CaseN > 3. An example

We prove part 3) of Theorem 2 by a direct construction of the MCMX = (Xi) for
N = 4. First, we construct an auxiliary MCMU = (Ui). Let (ak),(bk),k = 1,2... be
two deterministic sequences such that:

1 > a1 > a2 > ... > 0, a1 < b1 < b2 < ... < 1, lim ak = 0, lim bk = 1. (11)

Given such sequences(ak) and(bk), we can define a MCU = (Ui), i = 1,2, ...,
such thatP(U1 = b1) = 1, U2k−1∈ {ak,bk,1}, U2k ∈ {ak,1}, and the transition prob-
abilitiesui(x,y) are: uk(1,1) = 1, u2k−1(ak,ak) = 1, u2k−1(bk,1)+u2k−1(bk,ak) = 1,
u2k(ak,bk+1) + u2k(ak,ak+1) = 1, k ≥ 1. To obtain not just a MC but a (unique)
MCM, it is sufficient to define

u2k−1(bk,1) =
bk−ak

1−ak
, u2k(ak,bk+1) =

ak−ak+1

bk+1−ak+1
, k≥ 1.

Assumptions (11) imply that this is possible and thatmk = P(U2k−1 = bk) > 0
for all k≥ 1.

The MCM U = (Ui) will serve as a “frame sequence” for MCMX = (Xi), i.e.
(Xi) will consist of ”blocks”(Xk

i ), k≥ 1, where each(Xk
i ) is a MCM defined on a

time interval[tk,ek], t1 = 1, tk+1 = ek +1, k≥ 1, and each block is “inserted” into a
constructed above “frame sequence”U = (Ui) so that the time interval[2k−1,2k]
”stretches” into the time interval[tk,ek], k≥ 1. More precisely, the values and the
transition probabilitiespi(x,y) for MCM (Xi) are defined as follows:P(X1 = X1

1 =
b1) = 1, P(Xe1 = Xk

e1
∈ {a1,1}) = 1. Any otherk-th block,k≥ 2, has three entrance

points{ak,bk,1} and two exit points{ak,1}, i.e.P(Xtk = Xk
tk ∈ {ak,bk,1}) = 1, and

P(Xek = Xk
ek
∈ {ak,1}) = 1. The state1 is an absorbing state,pi(1,1) = 1 for all

i ≥ 1. The transition probabilitiesbetweenblocks, i.e. at momentsek, k ≥ 1, are
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defined using the transition probabilities from MCMU : if i = ek then pi(ak,y) =
u2k(ak,y), wherey= ak+1 or bk+1. The transition probabilities ofk-th blockpi(x,y),
tk≤ i < ek, are as follows:pi(ak,ak) = 1 for all i, the other transition probabilities are
the “shifted” probabilities from MCMYk = (Yk

i ),k≥ 1, where(Yk
i ) is defined on the

time interval[1,Tk], Tk = ek−tk+1, i.e. ptk+i−1(x,y) = qk
i (x,y), wherei = 1,2, ...,Tk

andqk
i (x,y) are transition probabilities for(Yk

i ). We say that blockXk is obtained
from a blockYk by ashift from interval[1,Tk] to interval[tk,ek], ek = tk +Tk−1.

The structure of each MCMYk = (Yk
i ),k = 1,2, .... is similar and its properties

are described in Lemma 1 which is the key element of our construction.

Lemma 1.For every tupleβ = (a,b,ε,C), 0≤ a < b < 1, 0 < ε < b−a, C > 0,
there is a MCMY = (Yi) defined on a finite time interval[1,2, ...,T], T = T(β ), and
such that

1) P(Y1 = b) = 1, P(YT ∈ {a,1}) = 1, and for all otheri, 1 < i < T, Yi takes no
more than three valuesr i ,si ,1, a≤ r i < si ≤ 1.

2) NY
T (x)≥C for eachx∈ (a+ ε,b).

We will prove Lemma 1 later. Assuming that Lemma 1 holds, we next construct
a MCM (Xi) satisfying part 3) of Theorem 2.

Let (εk) be a sequence,εk > 0, lim εk = 0, and let(ak),(bk) be two sequences
satisfying conditions (11). Let(Ui) be a corresponding “frame” MCM,ui(x,y) its
transitional probabilities,i = 1,2, .... and mk = P(U2k−1 = bk) > 0,k ≥ 1. Given
k≥ 1, letYk = (Yk

i ), i = 1,2, ...,Tk, be a MCM satisfying the conditions of Lemma
1 with parameters(ak,bk,εk,Ck), whereCk = 1/mk. We define sequences(tk) and
(ek) by: t1 = 1, ek = tk + Tk− 1, tk+1 = ek + 1, k ≥ 1. Let us denote by(Xi) the
combined MC consisting of blocksXk obtained by the corresponding shift fromYk

and connected by the frame sequence(Ui) as described above.
Let us denote byNk(x) ≡ NYk

Tk
(x) the expected number of intersections of level

x by a r.s.(Yk
i ),k ≥ 1, and N(x) ≡ NX(x) the expected number of intersections

of level x by a r.s.X = (Xi). By our choice ofCk we haveNk(x) ≥ 1/mk for each
x ∈ (ak + εk,bk), wheremk = P(Xtk = bk),k ≥ 1. Let x ∈ (0,1) and letk(x) be a
number such thatx∈ (ak + εk,bk) for all k≥ k(x). Then by our construction

N(x)≥
∞

∑
k=1

P(Xtk = bk)Nk(x)≥
∞

∑
k≥k(x)

mk/mk = ∞.

Thus, to prove part 3 of Theorem 2 we only need to prove Lemma 1. From now on,
the numbers (indices)i,k andn and such notation aspi(x,y) have a new meaning.

We prove Lemma 1 for a special case whena = 0, b = 1
2. The general case

requires only minor changes in notation.
We will construct(Yi) combining the finite number of MCM, having similar

structure. To avoid confusion with the ”blocks” used above, we call these MCM
modules.Each module(Lk,r

i ) is a MCM characterized by two parameters(k, r),
k≥ 1, 0≤ r < 1, and defined on the time interval[1,2, ...,k].

First we describe thestandard modulewith parameters(k,0). This is a MC
(Lk,0

i ) ≡ (Si) defined on[1,2, ...,k], and taking at each momenti two values0 and
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si , where(si) is a deterministic sequence given by formula

si =
1

k+1− i
, i = 1,2, ...,k. (12)

Obviously0< 1
k = s1 < ... < sk−1 = 1

2 < sk = 1, andsi satisfysi+1(1−si) = si . Point
s1 is an initial point for a r.s.(Si), i.e. P(S1 = s1) = 1. The transition probabilities
pi(x,y) are defined as follows. State0 is absorbing for alli, i.e. pi(0,0) = 1, i =
2,3, ...,k−1. The other transition probabilities are given by

pi(si ,0) = si , pi(si ,si+1) = 1−si =
k− i

k+1− i
, i = 1, ...,k−1. (13)

It is easy to see thatE(Si+1|Si = si) = si+1(1− si) = si . Therefore, the r.s.(Si) is
also a martingale, i.e(Si) is a MCM.

It is easy to check that

P(Si = si) =
i−1

∏
j=1

p j(sj ,sj+1) =
k+1− i

k
=

1
ksi

, i = 1,2, ...,k. (14)

Let us denote byNk(x) the expected number of intersections of levelx by the
r.s. (Si). If x ∈ (si ,si+1), i = 1,2, ...,k−2, then every trajectory can intersectx on
the way up and after that on the way down, soNk(x) = P(Si+1 = si+1)+P(Si+1 =
si+1,Sk = 0) = 2P(Si+1 = si+1)−P(Sk = 1) = 2(k−i)−1

k ≥ 1/ksi . These relations
imply that

Nk(x)≥ f k(x), where f k(x) =
1
kx

, if
1
k

< x≤ 1/2. (15)

Themodule(Lk,r
i ) with parameters(k, r), 0≤ r < 1, k≥ 1 is a r.s. defined on the

finite time intervali = 1,2, ..,k by equalities

Lk,r
i = r +(1− r)Si , i = 1,2, ...,k, (16)

where(Si) = (Lk,0
i ) is a standard module with parameters(k,0).

Formula (16) implies that the initial point for(Lk,r
i ) is

r +
1− r

k
(17)

and that(Lk,r
i ) is also a MCM with the same transitional probabilities as in (13)

but with possible valuesr andr +(1− r)si instead of 0 andsi . The valuer is the
smallest of possible values for this module, so later we will refer tor as to the ”floor”
of this module. The intersection functionNk,r(x) for (Lk,r

i ), instead of (15), satisfies
the inequality

Nk,r(x)≥ f k
(

x− r
1− r

)
, r +

1− r
k

≤ x < r +
1− r

2
=

1+ r
2

. (18)
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Formula (14) fori = k and formula (16) imply that

P(Lk,r
k = 1) =

1
k
, P(Lk,r

k = r) =
k−1

k
. (19)

Now we will construct a sequence of MCM(Yn
i ), n = 1,2, ..., i = 1,2, ...,Tn, and

we will show that for anyε > 0 and anyC for largen each of these MCM will satisfy
the condition of Lemma 1. Each(Yn

i ) consists ofn modules connected subsequently,
each with parameters(k j , r j), j = 1,2, ...,n. The parameters(k j , r j), j = 1,2, ...,n,
givenn = 1,2, ..., are selected as follows

k j = n+ j, r j =
n− j
2n

, j = 1, ...,n. (20)

It is easy to check that

r j−1 = r j +
1− r j

k j
= r j +

1
2n

, j = 2, ...,n. (21)

Thus, for eachn, points r j divide the interval(0, 1
2) into n equal parts of size

1/2n and the interval(1− r j ,1) containsk j subintervals of this size. Let us denote,

for the sake of brevity,(Lk j ,r j
i ) by (L j

i ). Formulas (17) and (21) imply that the floor

r j of the module(L j−1
i ) serves as the initial point for the next module(L j

i ).
Let Tn = ∑n

j=1k j − n+ 1 be the total length of the time interval where these
modules are sequentially defined. We define(Yi) ≡ (Yn

i ), 1≤ i ≤ Tn, as follows.
State1 is absorbing for alli. At moment1 r.s. (Yi) starts atr0 = 1

2 and on the

time interval[1,k1] coincides with the module(Lk1,r1
i ) = (L1

i ). Then, at momentk1

according to (19), we have

P(Yk1 = 1) = P(L1
k1

= 1) =
1
k1

, P(Yk1 = r1) = P(L1
k1

= r1) =
k1−1

k1
. (22)

On the time interval[k1,k1 +k2−1] r.s.(Yi) stays at1 with probability 1
k1

and with

probability m2 = k1−1
k1

coincides with the module(L2
i ). As mentioned above, the

floor r1 of the module(L1
i ) serves as the initial point for the next module(L2

i ). And
so on. Obviously, MCM(Yi) satisfies the condition 1) of Lemma 1 withb = 1

2 and
a = 0.

From the above construction, using the last equality in formula (14) fori = k= k j

and denotingm0 = 1, we also obtain that forj = 1,2, ...,n,

mj = P(Yk1+...+k j− j+1 = r j) = mj−1P(L j
k j

= r j) = mj−1
k j −1

k j
=

n
n+ j

. (23)

Our last step is to estimateN(n)(x), the expected number of intersections of level
x by the constructed MCM(Yn

i ), i = 1,2, ...,Tn, and to show that for anyε, 0 < ε <
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1/2, limnN(n)(x) = ∞ uniformly for all x, ε ≤ x≤ 1/2. Therefore, given any number
C, for sufficiently largen, MCM (Yn

i ) will satisfy the condition 2) of Lemma 1.
By our construction, we have obviouslyN(n)(x) = ∑n

j=1mj−1N j(x), whereN j(x)
is the expected number of intersections of levelx by module(L j

i ). Using for each
j the estimate (18) withk = k j andr = r j taken from (20), and taking into account
that by (23),12 ≤mj ≤ 1 for all j, we obtain that

N(n)(x)≥ 1
2

n

∑
j=1

f k j

(
x− r j

1− r j

)
, (24)

where f k j

(
x−r j
1−r j

)
is defined by (15) (see also (18)) forr j−1≤ x< (1+ r j)/2 and for

otherx’s can be defined to be equal to zero. Hencef k j

(
x−r j
1−r j

)
≥ 1−r j

k j (x−r j )
= 1−r j

2n(x−r j )

for r j−1 ≤ x ≤ (1+ r j)/2. Using formulas (20) and (21), we obtain that for any
x,0 < x≤ 1/2,

N(n)(x)≥ 1
2

n

∑
j:r j−1≤x

1
2n(x− r j)

=
1
2

n

∑
j:n− j+1≤2nx

1

2n(x− n− j
2n )

=
1
2

[2nx]−1

∑
k=0

1

2n(x− k
2n)

,

(25)
where[a] is an integer part ofa.

The last sum is just a Riemann sum of the integral
∫ x

0
dy

x−y = ∞. Thus, for largen

the sumN(n)(x) in (25) can be made arbitrarily large uniformly for allx, 0 < ε ≤
x≤ 1/2. This proves Lemma 1 and therefore part 3) of Theorem 2.

Remark. A slightly different but similar construction proves the analog of The-
orem 2 for the case where(Xi) is a martingale in reverse time.
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