The expected number of intersections of a four
valued bounded martingale with any level may
be infinite

Alexander Gordon and Isaac M. Sonin

According to the well-known Doob’s lemma, the expected number of crossings of
every fixed intervala,b) by trajectories of a bounded martingdhé,) is finite on

the infinite time interval. For such a random sequence (r.s.) with an extra condition
that X, takes no more thahl, N < o, values at each moment> 1, this result

was refined in Sonin (1987) by proving that inside any intefaab) there are non-
random sequences (barrie(d)), such that the expected number of intersections of
dn by (X) is finite on the infinite time interval. This result left open the problem of
whether for such r.s. argonstantbarriersd, = d, n > 1, exist. The main result of

this paper is an example of a bounded martingaled < X, < 1, with at most four
values at each momenf such that no constant 0 < d < 1, is a barrier for(Xy).

We also discuss the relationship of this problem with such problems as the behavior
of a general finite nonhomogeneous Markov chain and the behavior of the simplest
model of an irreversible process.
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1 Introduction

In this note we present some results that shed light on particular properties of ran-
dom sequences in discrete tir},) which satisfy two key assumptions. Fir€X;)
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is a bounded (sub)(super)martingale in forward or reverse time. SeCéfd,at
each momenh, takes no more thatl values, wherdN < . In other words, there
exists a sequence of finite sé@,) such thaP(X, € Gy) =1and|Gy| <N < 0, n>
1. The class of all random sequences that have the latter property is denefé{ by
the class of all random sequences that have both properties is denow#® by

The random sequences from™ appear very naturally, for example, in the study
of finite nonhomogeneous Markov chaiiMC). Let Sbe a countable sefR,) be
a sequence of stochastic matrics= (Z,) be a Markov chain from a family of
MCs defined by a Markov modéb, (R,)). Let @ be the corresponding “tail&r-
algebraforzZ, i.e. ® = NyFne, WhereF,, is ao-algebra generated {in, Zni 1, ...).
It is easy to check that ik € @ and (i) = P(A|Z, =), then the r.s(X,), where
Xn = B(Zy), is amartingale(in forward time). Another, even more important family
of (sub)martingales can be obtained as follows.Debe a subset db. Let us set,
forn>1landi €S

1)

an(i) = { P(Zy € D1|Z, =i) if P(Z,=1i) > 0;
n 0 otherwise

It is easy to verify that the r.§Y;,) specified by, = an(Z,), n > 1, is amartingale

in reverse timelf a subseD; is replaced by a sequence of sBisC S and dn(i)

is defined a®iy(i) = P(Zs € Ds,5=1,2,...,n|Z, = i), then(Y;,) is asubmartingale

in reverse time. Obviously, ifS| = N < « then the martingales and submartingales

described above belong ta#N.

The random sequences fram#™N have much stronger properties than implied
by the well-known Doob’s convergence theorem, i.e. a theorem about the existence
of limits of trajectories of a bounded (sub)martingale when time tends to infinity.
Theorem 1 below describing these properties played a key role in the proof of the
final part of a general theorem describing the behavior of a famifingé nonho-
mogeneouMarkov chains defined by a finite Markov mod& (P,)), whereSis a
finite state space and) is a sequence of stochastic matrices. The striking feature
of this theorem called a Decomposition-Separation (DS) theorem in [9], isithat
assumptionsn the sequence of stochastic matri@g are made. The DS theorem
was initiated by a small paper of A. Kolmogorov [5] and was proved in steps in a
series of papers: D. Blackwell [1], H. Cohn ([3] and other papers) and I. Sonin ([6],
[7], [9] and other papers). We refer the reader to [9], where the final version of the
DS theorem was presented and a brief survey of related results was given, and to a
current expository paper [10]. Theorem 1 left an open problem described below and
the main goal of our paper is to give an answer to that problem.

Before formulating Theorem 1 and the main result of this paper, Theorem 2,
let us recall the well-known Doob’s Upcrossing Lemma (see [2]), which lies at
the foundation of Doob’s convergence theorem(Xf) is a r.s., then the number
of upcrossings of an interva(a,b) by a trajectoryXs, Xz,... on the infinite time
interval is the number of times when a transition, maybe in a few steps, occurs from
values less thaato values larger thah.
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Doob’s Lemma.If X = (X,) is a (sub)martingale, then the expected number
of upcrossings of a fixed intervéh, b) by the trajectories ofX on the infinite time
interval is bounded bgup,E(X,—a)"/(b—a).

Similar statements are true for the number of downcrossings and the number of
crossings. The conditiosup, E(X, —a)™ < « obviously holds if(X,) is bounded,
so for simplicity we will consider only bounded random sequences @khX, < 1
for all n.

Note that the width of the intervdb — a) is in the denominator of the above
estimate, so Doob’s lemma does not imply that inside the interval there eléstsl a
(constant barrieryl, such that the expected number of intersections of this level is
finite, and in general such levels may not exist at all. But for the random sequences
from .#N Doob’s lemma can be substantially strengthened.

The following definition was introduced in [6]. A nonrandom sequeft;g is
called abarrier for the r.s. X = (X,), if the expected number of intersectionis(d;,)
by trajectories o on the infinite time interval ifinite, i.e.

[oe]

Z [P(Xn < bn, Xnt1 > One1) +P(Xn > iy Xnp1 < dn+1)] < 00, (2)

n=1

Theorem 3 in [6] about the existence of barriers for processes with finite variation
and a bounded number of values implies the following

Theorem 1.Let(X,) be a bounded r.s. from?™N. Then inside each intervéa, b)
there exists a barriefd,)), dhe (a,b), n> 1.

An example in Sonin [9] shows that the barriers may not exist inside a given
interval if a bounded martingalgX,) takes acountablenumber of values, but for
the random sequences from™ Theorem 1 left an open problem.

Problem 1.1s it true that for any r.s. from#N in any interval(a, b) there exists
a constant barried, =d, n> 1?

Forar.sX = (X,) defined on afinite or infinite time intervél, 2,..., T}, T <o,
with values in[0, 1], denote byNt (x,X) the expected number of intersections of
level x by this sequence, i.e. the value of the sum in (2) whin= x for all n.
We will omit the indication ofX andT, if T = c andX is clear from the context.
Similarly, byN" (x) we denote the expected number of up-intersections, i.e. the first
sum in (2) whenT = c« andd, = x for all n > 1. Obviously, bothN(x) andN™(x)
are finite or both are infinite.

In the sequel, the abbreviation MCM will mean a (nonhomogeneous) XiC
defined on a finite or infinite time intervél, 2,...,T], T < o, which is also anar-
tingale We also assume th@t< X; < 1 for all i. The main result of this paper is

Theorem 2. 1. For anyX = (X;) € .#?, any valuex € (0, 1) is a constant barrier,
i.e.N(x) < oo forall x € (0,1).

2. ForanyX = (%) € .3, N(x) < o for Lebesgue almost every (a.eg (0,1),
and it is possible thal(x) = o for all x € G, whereG C (0,1) is a countable set.

3. There is a MCMX = (X)) € .4, such thatN(x) = o for all x € (0,1).
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Remark 1. A Markov model(S (P,)) has a transparent deterministic interpre-
tation (see [9]), and the DS theorem mentioned above has such an interpretation
as well. According to this interpretation, the states of N¥&g) are represented by
“cups” containing some solution (liquid), say tea. The e, j) of the stochas-
tic matrix B, represents the proportion of the solution transferred fromi ¢agup
j at momentn. CorrespondinglyP(Z, = i) = my(i) represents the volume of the
solution in cupi at the momenh; an(i) introduced in (1) can be interpreted as the
“concentration” of tea in the cuipat the momenn, and so on. Such a deterministic
“colored” flow is the simplest example of ameversible processThe DS theorem
presented in the language of colored flows states that for any seqifhoéN x N
stochastic matrices the set of cups can be decomposed into a number of groups, with
the decomposition possibly depending on timsuch that both the total volume and
the concentration of tea in each group except possibly one tends to the limits. In the
“exceptional group”, the total volume tends to zero, but the concentration may os-
cillate. The total volume of solution exchanged between these groupstéson
the infinite time interval. The number of groups and the decomposition are unique
(up to a certain equivalence) and depend only on the sequfrceProblem 1 de-
scribed above is equivalent to the question of whether such a decomposition can
be provided by constant values of the concentration. Accordingly, our Theorem 2
can be reformulated as follows. If there are only two cups and the concentrations
of tea in those cups do not tend to a common limit, then the total amount of liquid
exchanged between the cups with the concentration highextfizefore the trans-
fer) and lower tharx (after the transfer), or vice versa, is finite for anyFor three
cups — such values afcan be selected only from a subse{@f1) of full measure.

For four or more cups, suchmay not exist at all. We are going to present this and
other possible interpretations, as well as some related results, in a separate paper.

The authors would like to thank Robert Anderson and Joseph Quinn who read
the first version of this paper and made valuable comments.

2 Proof of Theorem 2. Case®\ =2and N =3

To simplify the presentation, we will consider only martingales in forward time.
We denote byEX andV (X) the expected value and respectively the variance of a
random variable (r.v.X.

CaseN = 2. The definition ofX = (X,) € .#? implies that at each moment
n, X € {an,bn}, where0 < a, < b, < 1, a, is decreasing anb, is increasing.
Let a, = limay, b, = limby,. For anyx < a, or X > b, obviously,N(x) = 0. If
X € (8w, bo ), S€lectd; andd; so thata., < di < X < dz < b, and letng be a number
such that, < dy, b, > d, for all n > ng. Then

00

NT(x)=c+ H P(Xn < d,Xns1 > do). 3

N=nNg
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Proposition 1. For any two r.v'sX;, X; and any two numberd; < da,
P(X1 < d1, X2 > dp) < E(Xg —X2)?/(d2 —d1). (4)

Proof. The assertion of Proposition 1 follows immediately from the implications
(X1 < di, X2 > d2) C (X1 —Xz| > h), h=dy —d1, and the ChebysheV’s inequality,
P([Y| > h) <EY?/h? for any r.v.Y.

To prove part 1) of Theorem 2, note that for a martinglg we haveE (Xn+1|Xn) =
Xn, andV (Xo1 — Xn) = E(Xn1 — Xn)2 = EX2,; — EX,% and hence for a bounded
martingale(Xn), 0 < X, < 1,

T-1
zkE<><n+1f><n>2 —EXf-EX* <1 (5)
n=
Then formula (5) and Proposition 1 imply that the sum in (3) is finite. Part 1) of
Theorem 2 is proved.

For any r.v.X with EX = m, let us denoteM*(X) = E(X —m)*. ThenE(X —
m)*™ = E(m—X)*, andM(X), the mean absolute deviation Xf is

M(X) =EX—m|=EX-—m)"+E(m—X)" =2M"(X). (6)

Let us also puM(X|c) = E|X —c| andM*(X|c) = E(X —¢)T. If (X;) is a martin-
gale, then the equalitlf (X,11|Xn) = X, and (6) imply that

M (Xn+1/%0) = 2M " (Xn 1] Xn). (7)

To study the case & = 3, we need some simple properties of r.v's and martingales
with two and three values. They are described in Propositions 2 - X kB2, i.e.

an r.v. with two valuesiandb, a< b,b—a=d andP(X =b) = p,P(X=a) =q=
1—p. Thenitis easy to check that the following statement is true.

Proposition 2.1f X € G?, thenM(X) = 2pqd, V(X) = pgc?, and hence

M (X) =V(X)/d. (8)

Let X be an r.v. with three values< e<b, andP(X =b) = p, P(X =€) =,
P(X = a) = g, wherep+r +q= 1. Let us denote byx" an r.v. obtained from
X by averaging the two upper values, iX takes two values andb’ = (er +
bp)/(r + p) with probabilitiesq andp’ = r + p. Similarly, we define an ruX" as
an r.v. obtained fronX by averaging the two lower values, X" takes two values
a = (ag+er)/(q+r) andb with probabilitiesq’ = g+r andp. It is easy to check
that for such r.v's the following statement is true

Proposition 3.a)a<a <e<b' <b,EX=EXA V(X*) <V(X),A=U orlL,
b) M(XY) < M(X), M*(XY) < M*(X), with equalities whelEX < e,
c) M(XL) < M(X), M+(XL) < M*(X) with equalities whelEX > e.
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For a r.s.(X,) € .#°3, i.e. for a martingale with three valueg < e, < b, at
momentn, similarly to Proposition 3, it is easy to obtain

Proposition 4.a)If (Xn) € .23, then(X}) € .72,V (X 1 —Xn) <V (Xap1—Xn),
A=UorlL,

b) M (X, 11%n) < M (Xay1/%n), with equality wherk, < en;1,

€) MT (X, 1[%n) < M* (Xn41[%n), with equality wherk, > en1.

Now we can prove part 2) of Theorem 2 (cd$e- 3). The situation in this case
is substantially different frofN = 2 andN > 3. It is possible to havél(x) = o, for
example, for all rational numbers; nevertheless the Lebesque measure of the set of
all suchx is always zero. We prove here only the latter statement.

Lemma 2.For any r.s.(Xn),0< X, <1, andT < oo,
1 T-1
[N 0dx= 3 EM" (Xaral¥). ©
: n=1

Proof. The proof follows immediately from the definition BE (x) = 51 1 P(Xy <
X, Xn+1 > X) and the equalities: WP(Xn < X, Xnt1 > X) = EI(Xn, Xn41]X), where
I(A,B|x) =1if A<x< B, and0 otherwise, 2)[01I(A,B\x)dx: (B—A)* and 3)
E(Xnr1— %)™ = EM* (Xn11/%n).

Note that if, givena, b, 0 < a < b <1 in the left side of (9) we change the
limits of integration from0 andl, to aandb, i.e. considerfab, then the equality (9)
remains true wittM ™ (Xn, 1|Xn) replaced byM™ (Xn. 1|X%n, @, b) = E(min(b, X 11) —
max(a, Xn)) ™. For simplicity we will denotéM™ (Xq1|Xn, 26, 1—2€) asM™ (Xn11|Xn, €).

To prove that the integral in (9) is finite and herdg(x) < « almost surely, we
will show that for any(X,) € .22 and anye, 0 < € < 1/4,

MT (X2 [Xn,€) <V (X1 —Xn)Xn) /€. (10)

If (Xn) is a martingale, theEV ((Xas1 — Xn)[Xn) = E(E((Xas1 — Xn)2[%n)) =
E(Xns1—X%n)2 =V (Xn11— Xn). Since series in (5) is convergent, estimate (10) will
prove that the integral in (9) is finite.

Let (Xn) € .#° and{an, en,bn} be the ordered set of possible values(ft the
momentn, 0 < a, < e, < by < 1. The definition of a martingale again implies that
the sequencéa,) can only decrease, the sequelibg) can only increase but the
sequencée,) may oscillate betweea, andb,. Let € > 0 andng be a number such
thata, < €, and1l— & < by for all n > ng. In the sequel we will consider onty> ng.

If X, > 1— 2¢, then, obviouslyM™ (X,11|%n, €) = 0. Sinceb, > 1— €, we need
to consider further only the casis = a, or X, = e,.

If X, = a, or ey, anden1 < 2¢, thenM ™" (Xn;1/%q, €) = MT(XE ;[ X, €). Using
(8) applied tox}, , € .#?, and part a) of Proposition 4, we halgé/™ (Xt ;X €) <
V(Xg1 —Xn)/(bri1—an, 1) <V (Xar1—Xa)/(bni1—af, ). Sincea),, ; < en1 <
2¢ andbp 1 > 1—¢, we haveb, 1 — ag“ >1-—3¢ > ¢, and thus (10) holds.
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If eny1 > 26 and Xy < 2€ thenM™ (Xq41/ X0, &) = MT (XY 4 [Xn, €). Using (8)
applied toXY, ; € .42, and point a) of Proposition 4, we haM™ (XY, ; [Xq, &) <
V( U+1 —Xn)/(0h 1 —@n11) <V (Xnrr—Xn)/(bh 1 —@ni1). Sinceby ) > en1 >
2¢ andan 1 < &, we haveb, ; —an;1 > €, and thus (10) holds. Remaining is the
case wher@e < X, =6, <1—2¢andey 1 > 2¢.

If Xy = en < eny1, thenM™* (Xo 1]|Xn, &) = MT( U+1|Xn,s). Using (8) applied to

V. 1 € .42, and point a) of Proposition 4, we haM ™ ( Y X, 8) V(XY —
Xn)/(Bnyq — @ni1) < V(Xnsa —Xn)/ (D1 — ns1). Sinceby,,; > en1 > 2¢ and
a1 < €, we havebﬁprl —aps1 > € and thus (10) holds. 1K, = e, > ey,1 then
M* (Xa11/Xn, €) = MT (XL 4 [Xn, €). Using (8) applied taXt ; € .#2, and point
a) of Proposition 4, we havEM™* (X}, 1|%,€) < V(Xt; — Xa)/(bnyz — 8l 4) <
V(Xnt1—Xn)/ (b1 —af, 1) Sincea), ; < enp1 <€ <1-2¢andbyg >1-¢,
we havebn,1 —ay,,, > € and thus (10) holds. Part 2 of Theorem 2 is also proved.

3 Proof of Theorem 2. CaseéN > 3. An example

We prove part 3) of Theorem 2 by a direct construction of the MEM (X) for
N = 4. First, we construct an auxiliary MCM = (U;). Let (a), (bk),k=1,2... be
two deterministic sequences such that

l>ag>a>...>0,ar<bi<by<..<1 lima=0, limb, =1 (11)

Given such sequencéay) and(by), we can define a M@ = (U;), i =1,2,...,
suchthaP(U; =b1) =1, Uy 1 € {ax, b, 1}, Ux € {a, 1}, and the transition prob-
abilitiesu;(x,y) are u(1,1) =1, ug_1(ax, a) = 1, Uzx_1(bk, 1) + Ux_1(bx,ax) = 1,
Ugk (ak, bk+1) + Uk (ax,ak+1) = 1, k> 1. To obtain not just a MC but a (unique)
MCM, it is sufficient to define

bk — ax

A — &
1 a Uk (8K, B 1) =

K> 1
Bryr1 — a1

Uzk—1(bk, 1) =

Assumptions (11) imply that this is possible and thgt= P(Ux_1 =by) >0
forallk > 1.

The MCM U = (U;) will serve as a “frame sequence” for MCX = (X), i.e.
(%) will consist of "blocks” (X¥), k > 1, where each{X¥) is a MCM defined on a
time intervallty, &, t1 = 1, tx;1 = &+ 1, k> 1, and each block is “inserted” into a
constructed above “frame sequentk™= (U;) so that the time intervgRk — 1, 2k]
"stretches” into the time intervaly, e, k > 1. More precisely, the values and the
transition probabilitiesi (x,y) for MCM (X;) are defined as follow(X; = X{ =
b1)=1,PXe = X";l € {a1,1}) = 1. Any otherk-th block,k > 2, has three entrance
points{ay, by, 1} and two exit pointday, 1}, i.e. P(X, = Xtt € {a, bk, 1}) =1, and
P(Xe = X(';K € {a,1}) = 1. The statel is an absorbing statgy (1,1) = 1 for all
i > 1. The transition probabilitiebetweerblocks, i.e. at moments,, k > 1, are
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defined using the transition probabilities from MAM: if i = e then pi(ax,y) =
ug(ax,y), wherey = a1 or by, 1. The transition probabilities d¢-th block p; (x,y),
tx <i < e, are as followsp; (ax, ax) = 1for alli, the other transition probabilities are
the “shifted” probabilities from MCMWK = (Y¥) k > 1, where(YX) is defined on the
time interval[1, Ty], Tk =& —tk+1,i.e. pyyi—1(Xy) = qik(x, y), wherei=1,2,..., Ty
andg¥(x,y) are transition probabilities fofY<). We say that blockX is obtained
from a blockY* by ashift from interval[1, Ty] to intervalty, &, ex =t + Tk — 1.

The structure of each MCM* = (YX) k= 1,2, .... is similar and its properties
are described in Lemma 1 which is the key element of our construction.

Lemma 1.For every tuple = (a,b,¢,C),0<a<b<1,0<e<b—a C>0,
there is a MCMY = (Y;) defined on a finite time intervél, 2,...,T], T =T(B), and
such that

1)P(Yi=b)=1,P(Yr € {a,1}) =1, and for all otheri, 1 <i < T, Y; takes no
more than three values,s,1, a<ri<s <Ll

2) NY(x) > C for eachx € (a+¢,b).

We will prove Lemma 1 later. Assuming that Lemma 1 holds, we next construct
a MCM (X) satisfying part 3) of Theorem 2.

Let (&) be a sequencey > 0, limg = 0, and let(ax), (bx) be two sequences
satisfying conditions (11). LefU;) be a corresponding “frame” MCMj;(x,y) its
transitional probabilitiesi = 1,2,.... andmy = P(Ux_1 = by) > 0,k > 1. Given
k>1, letY<=(YK),i=12,..,Tg be a MCM satisfying the conditions of Lemma
1 with parametersay, by, &,Ck), whereCy = 1/my. We define sequencet) and
(&) by:t1 =1, e =t + Tk — 1, tx 11 = &+ 1, k > 1. Let us denote byX;) the
combined MC consisting of blocké¥ obtained by the corresponding shift froff
and connected by the frame sequefldg as described above.

Let us denote byN¥(x) = NIkk(x) the expected number of intersections of level

x by a rs.(Y¥),k >1, andN(x) = NX(x) the expected number of intersections
of level x by a r.s.X = (X;). By our choice ofC, we haveN¥(x) > 1/my for each

X € (ax + &, bk), wheremy = P(X, = by),k > 1. Let x € (0,1) and letk(x) be a
number such that € (ax+ &, by) for all k> k(x). Then by our construction

NG > 3 P(X, = BON () > k% =

Thus, to prove part 3 of Theorem 2 we only need to prove Lemma 1. From now on,
the numbers (indices)k andn and such notation gg(x,y) have a new meaning.

We prove Lemma 1 for a special case when:- 0, b = % The general case
requires only minor changes in notation.

We will construct(Y;) combining the finite number of MCM, having similar
structure. To avoid confusion with the "blocks” used above, we call these MCM
modules.Each moduIe(L:"r) is a MCM characterized by two parametdisr),
k>1,0<r <1, and defined on the time intervdl, 2,....,K].

First we describe thstandard modulevith parametergk,0). This is a MC
(L:"O) = (S) defined on[1,2,...,K], and taking at each momentwo values0 and
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s, where(s) is a deterministic sequence given by formula

1
= i=12..,k 12
. k+1—i’ =550 (12)

Obviously0< { =s; < ... <1 =3 < %=1, ands satisfys1(1—s) =s. Point
s is an initial point for a r.s(S), i.e. P(S; = s1) = 1. The transition probabilities

pi(x,y) are defined as follows. Staéeis absorbing for ali, i.e. p;(0,0) =1, i =
2,3,...,k— 1. The other transition probabilities are given by

k—i

Pi(s,0) =s,pi(s,841) =1-s =15, i=1..k-1 (13)

It is easy to see th&(S1|S =s) = s+1(1—s) = 5. Therefore, the r.5(S) is
also a martingale, i.€5) is a MCM.
Itis easy to check that

k+1—i 1
I_lp] SJ)Sj+1 k E, |:1,2,...,k. (14)

Let us denote byNK(x) the expected number of intersections of lexddy the
rs.(9). If xe(s,s+1), i =1,2,....,k— 2, then every trajectory can intersecbn
the way up and after that on the way down Nﬂt(x P(St1=S+1)+P(S+1=
S+1,% =0) =2P(S;1=5+1) - P(&=1) = M > 1/ks. These relations
imply that

N (x) > f*(x), wheref®(x) = P if K< x<1/2. (15)

Themodule(Lik’r) with parametergk,r), 0 <r < 1,k>1lis ar.s. defined on the

finite time intervali = 1,2, ..,k by equalities

L =r+(1-ns, i=12..k (16)

where(§) = (L:"O) is a standard module with parametéks0).
Formula (16) implies that the initial point chLik’r) is

1-r
r+ K (17)
and that(L:(’r) is also a MCM with the same transitional probabilities as in (13)
but with possible values andr + (1 —r)s instead of 0 ands. The valuer is the
smallest of possible values for this module, so later we will refera®to the "floor”
of this module. The intersection functiot’ (x) for (L"), instead of (15), satisfies
the inequality

— 1-r 1-r 1+t
Kr i) > gk [ X=T < _ )
N®H(x) > f 1) r+ K X<r+ 5 5 (18)
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Formula (14) fori = k and formula (16) imply that

1
Kk’

pLET =)= K1 (19)

kr _
P(LE = 1) = -

Now we will construct a sequence of MCM"), n=1,2,....i=1,2,.... Ty, and
we will show that for anye > 0 and anyC for largen each of these MCM will satisfy
the condition of Lemma 1. EadN,") consists oh modules connected subsequently,
each with parameter&;,r;), j = 1,2,...,n. The parameter&k;,rj), j =1,2,...,n,
givenn=1,2, ..., are selected as follows

k=nt+j, r=-J j=1.n (20)

Itis easy to check that

1-r;j 1
M-1=T+— = =Tt

» j=2,...,n. (22)

Thus, for eacn, pointsr; divide the interval(0, %) into n equal parts of size
1/2n and the interva{1—r;,1) containsk; subintervals of this size. Let us denote,
for the sake of brevity(Likj’”) by (L. Formulas (17) and (21) imply that the floor
r; of the moduleg(L) ") serves as the initial point for the next modulg).

Let To = y{_1kj —n+1 be the total length of the time interval where these
modules are sequentially defined. We defiifg = (Y"), 1 <i < T,, as follows.
Statel is absorbing for ali. At moment1 r.s. (Y;) starts atro = 1 and on the

time interval[1,k;] coincides with the modulé_:‘l"l) = (L}). Then, at momeri;

according to (19), we have

ky —
ki

1
P(Yy = 1) = P(LE, = 1) = o, PV = 1) =P(LE, =12) = @2)

On the time intervalky, ki + ko — 1] r.s. (Y;) stays atl with prob::xbilityk—l1 and with
probability my = klk—zl coincides with the modul¢L?). As mentioned above, the

floor ry of the modulg(L!) serves as the initial point for the next modgle). And
so on. Obviously, MCMY;) satisfies the condition 1) of Lemma 1 with= 5 and
a=0.
From the above construction, using the last equality in formula (14)dc=k;
and denotingny = 1, we also obtain that fof=1,2,...,n,
kj -1 n

mj = P(Yk1+...+kj—j+l = rj) = mjflp(l-qu = ri) =Mj_1 K = m (23)

Our last step is to estimaM (x), the expected number of intersections of level
x by the constructed MCMY"), i = 1,2,..., Ty, and to show that for ang, 0 < £ <
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1/2, limy N (x) = oo uniformly for all x, € < x < 1/2. Therefore, given any number
C, for sufficiently largen, MCM (Y;") will satisfy the condition 2) of Lemma 1.

By our construction, we have obviousi" (x) = 57_, m;_1NJ(x), whereN! (x)
is the expected number of intersections of levély module(L/). Using for each
j the estimate (18) witk = k; andr = r; taken from (20), and taking into account
that by (23),5 < m; < 1for all j, we obtain that

n (X
233 1 (122).

wherefki (X:—r') is defined by (15) (see also (18)) fiqr.; < x < (14rj)/2and for

otherx's can be defined to be equal to zero. Hembe()l( ;') > % ﬁ"m

for rji_y < x< (1+rj)/2. Using formulas (20) and (21), we obtain that for any
X,0<x<1/2,

2]|'J 1<><2n Jn J; nxzn nj) 2 k=0 2n(x_zikn)7

where[a] is an integer part o
The last sum is just a Riemann sum of the integ§af¥, = co. Thus, for largen

the sumN(" (x) in (25) can be made arbitrarily large uniformly for all 0 < & <
x < 1/2. This proves Lemma 1 and therefore part 3) of Theorem 2.

Remark. A slightly different but similar construction proves the analog of The-
orem 2 for the case whe(&;) is a martingale in reverse time.

References

1. Blackwell D. (1945). Finite nonhomogeneous Markov chafm. Math 46 594-599.

Strook D. W. (1999). Probability Theory, an analytic view. Cambridge Univ. Press.

3. Cohn H. (1989). Products of stochastic matrices and applications]. Math. Sci12 209-

333.

4. Cohn H. (1976). Finite nonhomogeneous Markov chains: asymptotic behAder.Appl.
Prob.8 502-516.

5. Kolmogoroff A. N. (1936). Zur Theorie der Markoffschen Kettévtath. Ann. Bd112 Se-
lected Works of A.N. Kolmogorov, v. 2, Prob. Theory and Math. Stat., ed. A.N. Shiryaev,
Kluwer Acad. Publ.

6. Sonin |. (1987). Theorem on separation of jets and some properties of random sequences.
Stochastics21, pp. 231-250.

7. Sonin 1. (1996). The Asymptotic Behaviour of a General Finite Nonhomogeneous Markov
Chain (The Decomposition-Separation Theorem), IMS, Lecture Notes-Monograph Series, v.
30, Statistics, Probability and Game Theory, papers in Honor of David Blackwell, eds. T. S.
Fergusson, L. S. Shapley and J. B. MacQueen, 337-346.

N



12

10.

Alexander Gordon and Isaac M. Sonin

. Sonin I. M. (1991b). An arbitrary nonhomogeneous Markov chain with bounded number of

states may be decomposed into asymptotically noncommunicating components having the
mixing property.Theory Probab. AppB6 74-85.

. Sonin 1. (1997). On Some Asymptotic Properties of Nonhomogeneous Markov Chains and

Random Sequences with Countable Number of Values, in Statistics and Control of Stochastic
Processes, The Liptser Festschrift, Proc. of Steklov Math. Inst. Seminar, eds. Y. Kabanov, B.
Rozovskii, A. Shiryaev, World Scientific, 297-313.

Sonin, I. (2007). The Decomposition-Separation Theorem for Finite Nonhomogeneous
Markov Chains and Related Problems, to appear in Markov Processes and Related Fields:
A Festschrift in Honor of Thomas G. Kurtz, eds. S. Ethier, J. Feng and R.H. Stockbridge,
IMS.



